椭圆习题集
- 格式:docx
- 大小:1.06 MB
- 文档页数:17
《机械制图》(第六版)习题集答案第3页图线、比例、制图工具的用法、尺寸注法、斜度和锥度●要掌握和理解比例、斜度、锥度的定义;各种图线的画法要规范。
第4页椭圆画法、曲线板用法、平面图形的尺寸注法、圆弧连接1、已知正六边形和正五边形的外接圆,试用几何作图方法作出正六边形,用试分法作出正五边形,它们的底边都是水平线。
●注意多边形的底边都是水平线;要规范画对称轴线。
●正五边形的画法:①求作水平半径ON的中点M;②以M为圆心,MA为半径作弧,交水平中心线于H。
③AH为五边形的边长,等分圆周得顶点B、C、D、E④连接五个顶点即为所求正五边形。
2、用四心圆法画椭圆(已知椭圆长、短轴分别为70mm、45mm)。
●参教P23四心圆法画椭圆的方法做题。
注意椭圆的对称轴线要规范画。
3~4、在平面图形上按1:1度量后,标注尺寸(取整数)。
5、参照左下方所示图形的尺寸,按1:1在指定位置处画全图形。
第6页点的投影1、按立体图作诸点的两面投影。
●根据点的两面投影的投影规律做题。
2、已知点A在V面之前36,点B在H面之上,点D在H面上,点E在投影轴上,补全诸的两面投影。
●根据点的两面投影的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
3、按立体图作诸点的两面投影。
●根据点的三面投影的投影规律做题。
4、作出诸点的三面投影:点A(25,15,20);点B距离投影面W、V、H分别为20、10、15;点C在A之左,A之前15,A之上12;点D在A之下8,与投影面V、H等距离,与投影面W的距离是与H面距离的3.5倍。
●根据点的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
各点坐标为:A(25,15,20)B(20,10,15)C(35,30,32)D(42,12,12)5、按照立体图作诸点的三面投影,并表明可见性。
●根据点的三面投影的投影规律做题,利用坐标差进行可见性的判断。
(由不为0的坐标差决定,坐标值大者为可见;小者为不可见。
(完整word版)椭圆的方程练习题椭圆的方程练题
1. 根据椭圆的定义,椭圆是平面上到两个定点距离之和等于常数的点的集合。
椭圆的标准方程可以表示为:
其中,(h, k)是椭圆的中心坐标,a是椭圆长半轴的长度,b是椭圆短半轴的长度。
2. 练题一:
已知椭圆的中心坐标为(2, 3),长半轴的长度为4,短半轴的长度为2。
求解该椭圆的方程。
解答:
根据标准椭圆方程的形式,代入已知条件可以得到方程:
即:
3. 练题二:
已知椭圆的方程为:
求解该椭圆的中心坐标以及长半轴和短半轴的长度。
解答:
根据标准椭圆方程的形式,可以得到椭圆的中心坐标为(1, 4),长半轴的长度为3,短半轴的长度为4。
4. 练题三:
已知椭圆的中心坐标为(-2, 5),长半轴与短半轴的比值为2。
求解该椭圆的方程。
解答:
假设长半轴的长度为a,短半轴的长度为b,则b/a=1/2。
代入标准椭圆方程可以得到方程:
即:。
第3页图线、比例、制图工具的用法、尺寸注法、斜度和锥度●要掌握和理解比例、斜度、锥度的定义;各种图线的画法要规范。
第4页椭圆画法、曲线板用法、平面图形的尺寸注法、圆弧连接1、已知正六边形和正五边形的外接圆,试用几何作图方法作出正六边形,用试分法作出正五边形,它们的底边都是水平线。
●注意多边形的底边都是水平线;要规范画对称轴线。
●正五边形的画法:①求作水平半径ON的中点M;②以M为圆心,MA为半径作弧,交水平中心线于H。
③AH为五边形的边长,等分圆周得顶点B、C、D、E④连接五个顶点即为所求正五边形。
2、用四心圆法画椭圆(已知椭圆长、短轴分别为70mm、45mm)。
●参教P23四心圆法画椭圆的方法做题。
注意椭圆的对称轴线要规范画。
3~4、在平面图形上按1:1度量后,标注尺寸(取整数)。
5、参照左下方所示图形的尺寸,按1:1在指定位置处画全图形。
第6页点的投影1、按立体图作诸点的两面投影。
●根据点的两面投影的投影规律做题。
2、已知点A在V面之前36,点B在H面之上,点D在H面上,点E在投影轴上,补全诸的两面投影。
●根据点的两面投影的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
3、按立体图作诸点的两面投影。
●根据点的三面投影的投影规律做题。
4、作出诸点的三面投影:点A(25,15,20);点B距离投影面W、V、H分别为20、10、15;点C在A之左,A之前15,A之上12;点D在A之下8,与投影面V、H等距离,与投影面W的距离是与H面距离的3.5倍。
●根据点的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
各点坐标为:A(25,15,20)B(20,10,15)C(35,30,32)D(42,12,12)5、按照立体图作诸点的三面投影,并表明可见性。
●根据点的三面投影的投影规律做题,利用坐标差进行可见性的判断。
(由不为0的坐标差决定,坐标值大者为可见;小者为不可见。
高等几何习题集习题1.11.证明:任一三角形都有一个内切椭圆,其切点为三边的中点,中心为三角形的重心;同时有一个外接椭圆以三角形的重心为中心。
2.平行于平行四边形ABCD 对角线AC 作一直线与AB 、BC 交于点E 、F ,证明:三角形AED 和CDF 的面积相等。
3.在椭圆的内接三角形的顶点作切线构成外切三角形,证明:如果这两上三角形有两对边平行,则第三对边也平行。
4.过三角形ABC 内任一点P 作DE//BC ,交AB 、AC 于E 、E ,作FG//CA 交BC 、BA 于F 、G ,作HK//AB 交BC 、CA 于H 、K ,证明:=++ABHK CA FG BC DE 常数。
5.设X 、Y 是三角形ABC 的边AB 、CA 上的动点,满足BX :XA=CY :Y A 。
证明:BY 与CX 的交点在一条定直线上。
6.设D 、E 、F 各是三角形ABC 的边BC 、CA 、AB 上的点,且DE//AB ,DF//CA ,证明:CD E BFD AEF S S S ∆∆∆⋅=2。
7.将三角形的每边三等分,将每个分点与三角形的对顶点相连,这六条直线构成一个六边形,证明:此六边形的三双对顶点的连线共点。
8.在三角形ABC 的边BC 、CA 、AB 上取点D 、E 、F 使BD :DC = CE :EA = AF :FB = 1 :n 。
设AD 交BE 于L ,BE 交CF 于K ,CF 交AD 于M ,证明:1122++-=n n n S S ABC LKM )(∆∆ 。
9.设点D 、E 、F 分别位于三角形ABC 的边BC 、CA 、AB 上,且BD :DC=CE :EA=AF :FB ,三线AD 、BE 、CF 构成三角形PQR ,证明:三角形ABC 、DEF 和PQR 具有共同的重心。
10.过椭圆的弦AB 的中点C 任作二弦PQ 和ST ,PS 、QT 分别交AB 于M 、N ,证明:MC=CN 。
高中数学椭圆知识点汇总椭圆的面积公式怎么算点与椭圆点M(x0,y0)椭圆x?/a?+y?/b?=1;点在圆内:x0?/a?+y0?/b?1;点在圆上:x0?/a?+y0?/b?=1;点在圆外:x0?/a?+y0?/b?1;跟圆与直线的位置关系一样的:相交、相离、相切。
直线与椭圆y=kx+m①x?/a+y?/b?=1②由①②可推出x?/a?+(kx+m)?/b?=1相切△=0相离△0无交点相交△0可利用弦长公式:设A(x1,y1)B(x2,y2)求中点坐标根据韦达定理x1+x2=-b/a,x1__x2=c/a带入直线方程可求出y+y/2=可求出中点坐标。
|AB|=d=√(1+k?)[(x1+x2)?-4x1__x2]=√(1+1/k?)[(y1+y2)?-4x1__x2]椭圆面积用定积分怎么算椭圆面积用定积分算为S=abπ。
解题思路:设椭圆x^2/a^2+y^2/b^2=1取第一象限内面积有 y^2=b^2-b^2/a^2__x^2即 y=√(b^2-b^2/a^2__x^2)=b/a__√(a^2-x^2)由于该式反导数为所求面积,观察到原式为圆方程公式__a/b,根据(af(x))=a__f(x),且x=a时圆面积为a^2π/4可得当x=a时,1/4S=b/a__1/4__a^2__π=abπ/4即S=abπ。
高考数学复习策略1、拓实基础,强化通性通法高考对基础知识的考查既全面又突出重点。
抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。
2、认真阅读考试说明,减少无用功在平时练习或进行模拟考试时,高中英语,要注意培养考试心境,养成良好的习惯。
首先认真对考试说明进行领会,并要按要求去做,对照说明后的题例,体会说明对知识点是如何考查的,了解说明对每个知识的要求,千万不要对知识的要求进行拔高训练。
第5讲椭圆1.椭圆的定义条件结论1结论2 平面内的动点M与平面内的两个定点F1,F2M点的轨迹为椭圆F1、F2为椭圆的焦点|F1F2|为椭圆的焦距|MF1|+|MF2|=2a 2a>|F1F2|标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:x轴、y轴对称中心:(0,0)顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为2a短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca,e∈(0,1)a,b,c的关系c2=a2-b2已知点P(x0,y0),椭圆x2a2+y2b2=1(a>b>0),则(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1;(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1;(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.4.椭圆中四个常用结论(1)P 是椭圆上一点,F 为椭圆的焦点,则|PF |∈[a -c ,a +c ],即椭圆上的点到焦点距离的最大值为a +c ,最小值为a -c ;(2)椭圆的通径(过焦点且垂直于长轴的弦)长为2b 2a,通径是最短的焦点弦;(3)P 是椭圆上不同于长轴两端点的任意一点,F 1,F 2为椭圆的两焦点,则△PF 1F 2的周长为2(a +c ).(4)设P ,A ,B 是椭圆上不同的三点,其中A ,B 关于原点对称,直线P A ,PB 斜率存在且不为0,则直线P A 与PB 的斜率之积为定值-b 2a2.判断正误(正确的打“√”,错误的打“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆的离心率e 越大,椭圆就越圆.( ) (3)椭圆既是轴对称图形,又是中心对称图形.( )(4)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( ) (5)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相同.( ) 答案:(1)× (2)× (3)√ (4)√ (5)√(教材习题改编)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1 B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1 解析:选D.右焦点为F (1,0)说明两层含义:椭圆的焦点在x 轴上;c =1.又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1. 与椭圆x 29+y 24=1有相同离心率的椭圆方程是( )A.y 29+x 24=1 B.x 236+y 225=1 C.y 236+x 225=1 D.x 236+y 211=1 解析:选A.椭圆y 29+x 24=1与已知椭圆的长轴长和短轴长分别相等,因此两椭圆的形状、大小完全一样,只是焦点所在坐标轴不同,故两个椭圆的离心率相同. 若方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是________.解析:由已知得⎩⎪⎨⎪⎧5-k >0,k -3>0,5-k ≠k -3,解得3<k <5且k ≠4.答案:(3,4)∪(4,5)(教材习题改编)椭圆C :x 225+y 216=1的左右焦点分别为F 1,F 2,过F 2的直线交椭圆C 于A 、B 两点,则△F 1AB 的周长为________. 解析:△F 1AB 的周长为 |F 1A |+|F 1B |+|AB |=|F 1A |+|F 2A |+|F 1B |+|F 2B | =2a +2a =4a .在椭圆x 225+y 216=1中,a 2=25,a =5,所以△F 1AB 的周长为4a =20. 答案:20椭圆的定义及应用[典例引领](1)(2018·豫北六校联考)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |,且|AB |=4,△ABF 2的周长为16,则|AF 2|=________.(2)(2018·徐州模拟)已知F 1、F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2,若△PF 1F 2的面积为9,则b =________. 【解析】 (1)由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3, 因为△ABF 2的周长为16,所以4a =16,所以a =4.则|AF 1|+|AF 2|=2a =8, 所以|AF 2|=8-|AF 1|=8-3=5. (2)设|PF 1|=r 1,|PF 2|=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2, 所以2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2,所以S △PF 1F 2=12r 1r 2=b 2=9,所以b =3.【答案】 (1)5 (2)3本例(2)中增加条件“△PF 1F 2的周长为18”,其他条件不变,求该椭圆的方程. 解:由原题得b 2=a 2-c 2=9,又2a +2c =18,所以a -c =1,解得a =5,故椭圆的方程为x 225+y 29=1.(1)椭圆定义的应用范围①确认平面内与两定点有关的轨迹是否为椭圆. ②解决与焦点有关的距离问题. (2)焦点三角形的结论椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫作焦点三角形.如图所示,设∠F 1PF 2=θ. ①|PF 1|+|PF 2|=2a .②4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos θ. ③焦点三角形的周长为2(a +c ).④S △PF 1F 2=12|PF 1||PF 2|sin θ=b 2·sin θ1+cos θ=b 2tan θ2=c |y 0|,当|y 0|=b ,即P 为短轴端点时,S △PF 1F 2取最大值,为bc .已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,N (2,0),线段AN的垂直平分线交MA 于点P ,则动点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线D .抛物线解析:选B.点P 在线段AN 的垂直平分线上,故|P A |=|PN |.又AM 是圆的半径,所以|PM |+|PN |=|PM |+|P A |=|AM |=6>|MN |.由椭圆的定义知,P 的轨迹是椭圆.椭圆的标准方程[典例引领](待定系数法)(1)一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为( ) A.x 28+y 26=1 B.x 216+y 26=1 C.x 24+y 22=1 D.x 28+y 24=1 (2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为( )A.x 220+y 24=1 B.x 225+y 24=1 C.y 220+x 24=1 D.x 24+y 225=1 【解析】 (1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12,又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12,得a 2=8,b 2=6,故椭圆方程为x 28+y26=1.(2)设所求椭圆方程为y 225-k +x 29-k =1(k <9),将点(3,-5)的坐标代入可得(-5)225-k +(3)29-k=1,解得k =5(k =21舍去),所以所求椭圆的标准方程为y 220+x 24=1.【答案】 (1)A (2)C[提醒] 当椭圆焦点位置不明确时,可设为x 2m +y 2n =1(m >0,n >0,m ≠n ),也可设为Ax 2+By 2=1(A >0,B >0,且A ≠B ).[通关练习]1.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则该椭圆的方程为________.解析:设椭圆方程为mx 2+ny 2=1(m >0,n >0,且m ≠n ).因为椭圆经过P 1,P 2两点,所以P 1,P 2点坐标适合椭圆方程,则⎩⎪⎨⎪⎧6m +n =1,①3m +2n =1,②①②两式联立,解得⎩⎨⎧m =19,n =13.所以所求椭圆方程为x 29+y 23=1.答案:x 29+y 23=12.已知椭圆C 的中心在原点,一个焦点F (-2,0),且长轴长与短轴长的比是2∶3,则椭圆C 的方程是________________. 解析:设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0).由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,a ∶b =2∶3,c =2,解得a 2=16,b 2=12.所以椭圆C 的方程为x 216+y 212=1.答案:x 216+y 212=1椭圆的几何性质(高频考点)椭圆的几何性质是高考的热点,高考中多以小题出现,试题难度一般较大.高考对椭圆几何性质的考查主要有以下三个命题角度: (1)由椭圆的方程研究其性质; (2)求椭圆离心率的值(范围); (3)由椭圆的性质求参数的值(范围).[典例引领]角度一 由椭圆的方程研究其性质已知正数m 是2和8的等比中项,则圆锥曲线x 2+y 2m=1的焦点坐标为( ) A .(±3,0)B .(0,±3)C .(±3,0)或(±5,0)D .(0,±3)或(±5,0)【解析】 因为正数m 是2和8的等比中项,所以m 2=16,即m =4,所以椭圆x 2+y 24=1的焦点坐标为(0,±3),故选B.【答案】 B角度二 求椭圆离心率的值(范围)(2017·高考全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为 ( ) A.63 B.33C.23D.13【解析】 以线段A 1A 2为直径的圆的方程为x 2+y 2=a 2,由原点到直线bx -ay +2ab =0的距离d =2abb 2+a 2=a ,得a 2=3b 2,所以C 的离心率e =1-b 2a 2=63,选A. 【答案】 A角度三 由椭圆的性质求参数的值(范围)已知椭圆mx 2+4y 2=1的离心率为22,则实数m 等于( ) A .2 B .2或83C .2或6D .2或8【解析】 显然m >0且m ≠4,当0<m <4时,椭圆长轴在x 轴上,则1m -141m=22,解得m =2;当m >4时,椭圆长轴在y 轴上,则14-1m 14=22,解得m =8. 【答案】 D(1)求椭圆离心率的方法①直接求出a ,c 的值,利用离心率公式e =ca=1-b 2a2直接求解. ②列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=a 2-c 2消去b ,转化为含有e 的方程(或不等式)求解.(2)利用椭圆几何性质求值或范围的思路①将所求问题用椭圆上点的坐标表示,利用坐标范围构造函数或不等关系. ②将所求范围用a ,b ,c 表示,利用a ,b ,c 自身的范围、关系求范围.[通关练习]1.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为( ) A .(-3,0) B .(-4,0) C .(-10,0)D .(-5,0)解析:选D.因为圆的标准方程为(x -3)2+y 2=1, 所以圆心坐标为(3,0),所以c =3.又b =4, 所以a =b 2+c 2=5. 因为椭圆的焦点在x 轴上, 所以椭圆的左顶点为(-5,0).2.(2018·新余模拟)椭圆C 的两个焦点分别是F 1,F 2,若C 上的点P 满足|PF 1|=32|F 1F 2|,则椭圆C 的离心率e 的取值范围是( ) A .e ≤12B .e ≥14C.14≤e ≤12D .0<e ≤14或12≤e <1解析:选C.因为椭圆C 上的点P 满足|PF 1|=32|F 1F 2|,所以|PF 1|=32×2c =3c .由a -c ≤|PF 1|≤a +c ,解得14≤c a ≤12.所以椭圆C 的离心率e 的取值范围是⎣⎡⎦⎤14,12.3.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为( ) A .2 B .3 C .6D .8解析:选C.由椭圆x 24+y 23=1可得F (-1,0),点O (0,0),设P (x ,y )(-2≤x ≤2),则OP →·FP →=x 2+x +y 2=x 2+x +3⎝⎛⎭⎫1-x 24 =14x 2+x +3=14(x +2)2+2,-2≤x ≤2, 当且仅当x =2时,OP →·FP →取得最大值6.直线与椭圆的位置关系[典例引领](2017·高考北京卷)已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5. 【解】 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).由题意得⎩⎪⎨⎪⎧a =2,c a =32,解得c = 3.所以b 2=a 2-c 2=1.所以椭圆C 的方程为x 24+y 2=1.(2)设M (m ,n ),则D (m ,0),N (m ,-n ). 由题设知m ≠±2,且n ≠0. 直线AM 的斜率k AM =nm +2,故直线DE 的斜率k DE =-m +2n .所以直线DE 的方程为y =-m +2n(x -m ). 直线BN 的方程为y =n2-m(x -2).联立⎩⎨⎧y =-m +2n (x -m ),y =n2-m (x -2),解得点E 的纵坐标y E=-n (4-m 2)4-m 2+n 2.由点M 在椭圆C 上,得4-m 2=4n 2, 所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |,所以△BDE 与△BDN 的面积之比为4∶5.(1)直线与椭圆位置关系判断的步骤①联立直线方程与椭圆方程;②消元得出关于x (或y )的一元二次方程;③当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.(2)直线被椭圆截得的弦长公式设直线与椭圆的交点为A (x 1,y 1)、B (x 2,y 2),则 |AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率,k ≠0). 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点⎝⎛⎭⎫1,32,离心率为12,左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点. (1)求椭圆C 的方程;(2)当△F 2AB 的面积为1227时,求直线的方程.解:(1)因为椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点⎝⎛⎭⎫1,32, 所以1a 2+94b 2=1.①又因为离心率为12,所以c a =12,所以b 2a 2=34.②解①②得a 2=4,b 2=3. 所以椭圆C 的方程为x 24+y 23=1.(2)当直线的倾斜角为π2时,A ⎝⎛⎭⎫-1,32,B ⎝⎛⎭⎫-1,-32, S △ABF 2=12|AB |·|F 1F 2|=12×3×2=3≠1227.当直线的倾斜角不为π2时,设直线方程为y =k (x +1),代入x 24+y 23=1得(4k 2+3)x 2+8k 2x +4k 2-12=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以S △ABF 2=12|y 1-y 2|×|F 1F 2|=|k |(x 1+x 2)2-4x 1x 2 =|k |⎝⎛⎭⎫-8k 24k 2+32-4·4k 2-124k 2+3=12|k |k 2+14k 2+3=1227,所以17k 4+k 2-18=0,解得k 2=1⎝⎛⎭⎫k 2=-1817舍去, 所以k =±1,所以所求直线的方程为x -y +1=0或x +y +1=0.椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于|F 1F 2|,避免了动点轨迹是线段或不存在的情况.求椭圆的标准方程,常采用“先定位,后定量”的方法(待定系数法).先“定位”,就是先确定椭圆和坐标系的相对位置,以椭圆的中心为原点的前提下,看焦点在哪条坐标轴上,确定标准方程的形式;再“定量”,就是根据已知条件,通过解方程(组)等手段,确定a 2,b 2的值,代入所设的方程,即可求出椭圆的标准方程.若不能确定焦点的位置,这时的标准方程常可设为mx 2+ny 2=1(m >0,n >0且m ≠n )与椭圆有关的最值问题,在转化为函数求最值时,一定注意函数的定义域. 易错防范(1)判断两种标准方程的方法为比较标准形式中x 2与y 2的分母大小.(2)在解关于离心率e 的二次方程时,要注意利用椭圆的离心率e ∈(0,1)进行根的取舍,否则将产生增根.(3)椭圆的范围或最值问题常常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b ,0<e <1等,在求椭圆相关量的范围时,要注意应用这些不等关系.1.已知椭圆x 2m -2+y 210-m =1的焦点在x 轴上,焦距为4,则m 等于( )A .8B .7C .6D .5解析:选A.因为椭圆x 2m -2+y 210-m =1的焦点在x 轴上.所以⎩⎪⎨⎪⎧10-m >0,m -2>0,m -2>10-m ,解得6<m <10.因为焦距为4,所以c 2=m -2-10+m =4,解得m =8.2.(2018·湖北武汉模拟)已知椭圆的中心在坐标原点,长轴长是8,离心率是34,则此椭圆的标准方程是( ) A.x 216+y 27=1 B.x 216+y 27=1或x 27+y 216=1 C.x 216+y 225=1 D.x 216+y 225=1或x 225+y 216=1 解析:选B.因为a =4,e =34,所以c =3,所以b 2=a 2-c 2=16-9=7.因为焦点的位置不确定,所以椭圆的标准方程是x 216+y 27=1或x 27+y 216=1.3.(2018·湖北八校联考)设F 1,F 2分别为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.513C.49D.59解析:选B.由题意知a =3,b =5,c =2.设线段PF 1的中点为M ,则有OM ∥PF 2,因为OM ⊥F 1F 2,所以PF 2⊥F 1F 2,所以|PF 2|=b 2a =53.又因为|PF 1|+|PF 2|=2a =6,所以|PF 1|=2a-|PF 2|=133,所以|PF 2||PF 1|=53×313=513,故选B.4.(2018·湖南百校联盟联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点和上顶点分别为A 、B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M 、N 两点.若四边形F AMN 是平行四边形,则该椭圆的离心率为( )A.35B.12C.23D.34解析:选A.因为圆O 与直线BF 相切,所以圆O 的半径为bc a ,即OC =bca ,因为四边形F AMN是平行四边形,所以点M 的坐标为⎝⎛⎭⎫a +c 2,bc a ,代入椭圆方程得(a +c )24a 2+c 2b 2a 2b 2=1,所以5e 2+2e -3=0,又0<e <1,所以e =35.故选A.5.设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( ) A.⎝⎛⎦⎤0,22 B.⎝⎛⎦⎤0,33 C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫33,1解析:选D.由题意可设P ⎝⎛⎭⎫a2c ,y ,因为PF 1的中垂线过点F 2,所以|F 1F 2|=|F 2P |,即2c = ⎝⎛⎭⎫a 2c -c 2+y 2,整理得y 2=3c 2+2a 2-a 4c 2. 因为y 2≥0,所以3c 2+2a 2-a 4c 2≥0, 即3e 2-1e 2+2≥0,解得e ≥33.所以e 的取值范围是⎣⎡⎭⎫33,1.6.(2018·贵阳模拟)若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为4,则椭圆的标准方程为________.解析:由题意可知e =c a =32,2b =4,得b =2,所以⎩⎪⎨⎪⎧c a =32,a 2=b 2+c 2=4+c 2,解得⎩⎨⎧a =4,c =23,所以椭圆的标准方程为x 216+y 24=1.答案:x 216+y 24=17.设F 1,F 2是椭圆x 249+y 224=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=4∶3,则△PF 1F 2的面积为________.解析:因为|PF 1|+|PF 2|=14, 又|PF 1|∶|PF 2|=4∶3, 所以|PF 1|=8,|PF 2|=6. 因为|F 1F 2|=10,所以PF 1⊥PF 2.所以S △PF 1F 2=12|PF 1|·|PF 2|=12×8×6=24.答案:248.(2018·海南海口模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-c ,0),右顶点为A ,上顶点为B ,现过A 点作直线F 1B 的垂线,垂足为T ,若直线OT (O 为坐标原点)的斜率为-3bc ,则该椭圆的离心率为________.解析:因为椭圆x 2a 2+y 2b 2=1(a >b >0),A ,B 和F 1点坐标分别为(a ,0),(0,b ),(-c ,0),所以直线BF 1的方程是y =b c x +b ,OT 的方程是y =-3bc x .联立解得T 点坐标为⎝⎛⎭⎫-c 4,3b 4,直线AT 的斜率为-3b 4a +c .由AT ⊥BF 1得,-3b 4a +c ·b c =-1,因为a 2=b 2+c 2,e =ca ,所以e =12.答案:129.分别求出满足下列条件的椭圆的标准方程.(1)与椭圆x 24+y 23=1有相同的离心率且经过点(2,-3);(2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且与长轴垂直的直线恰过椭圆的一个焦点.解:(1)由题意,设所求椭圆的方程为x 24+y 23=t 1或y 24+x 23=t 2(t 1,t 2>0),因为椭圆过点(2,-3),所以t 1=224+(-3)23=2,或t 2=(-3)24+223=2512.故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1.(2)由于焦点的位置不确定,所以设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b>0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,(2c )2=52-32,解得a =4,c =2,所以b 2=12. 故椭圆方程为x 216+y 212=1或y 216+x 212=1.10.(2018·兰州市诊断考试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(2,1),且离心率为22.(1)求椭圆C 的方程;(2)设M ,N 是椭圆上的点,直线OM 与ON (O 为坐标原点)的斜率之积为-12.若动点P 满足OP→=OM →+2ON →,求点P 的轨迹方程. 解:(1)因为e =22,所以b 2a 2=12,又椭圆C 经过点(2,1),所以2a 2+1b 2=1,解得a 2=4,b 2=2,所以椭圆C 的方程为x 24+y 22=1.(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由OP →=OM →+2ON →得x =x 1+2x 2,y =y 1+2y 2, 因为点M ,N 在椭圆x 24+y 22=1上,所以x 21+2y 21=4,x 22+2y 22=4,故x 2+2y 2=(x 21+4x 1x 2+4x 22)+2(y 21+4y 1y 2+4y 22)=(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM 与ON 的斜率,由题意知, k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20,故点P 的轨迹方程为x 220+y 210=1.1.(2017·高考全国卷Ⅰ)设A 、B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( ) A .(0,1]∪[9,+∞) B .(0,3]∪[9,+∞) C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)解析:选A.依题意得,⎩⎪⎨⎪⎧3m≥tan∠AMB 20<m <3或 ⎩⎪⎨⎪⎧m 3≥tan ∠AMB 2m >3,所以⎩⎪⎨⎪⎧3m ≥tan 60°0<m <3 或⎩⎪⎨⎪⎧m 3≥tan 60°m >3,解得0<m ≤1或m ≥9.故选A. 2.已知F 是椭圆5x 2+9y 2=45的左焦点,P 是此椭圆上的动点,A (1,1)是一定点.则|P A |+|PF |的最大值为________,最小值为________. 解析:如图所示,设椭圆右焦点为F 1,则|PF |+|PF 1|=6. 所以|P A |+|PF |=|P A |-|PF 1|+6.利用-|AF 1|≤|P A |-|PF 1|≤|AF 1|(当P ,A ,F 1共线时等号成立). 所以|P A |+|PF |≤6+2,|P A |+|PF |≥6- 2. 故|P A |+|PF |的最大值为6+2,最小值为6- 2. 答案:6+2 6- 23.设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b . 解:(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b 2a ,b 2a 2c =34,2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,ca =-2(舍去).故C 的离心率为12.(2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴, 所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点, 故b 2a =4,即b 2=4a .① 由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1.解得a =7,b 2=4a =28, 故a =7,b =27.4.已知椭圆C 的中心为坐标原点O ,一个长轴端点为(0,2),短轴端点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=2PB →. (1)求椭圆的方程; (2)求m 的取值范围.解:(1)由题意知椭圆的焦点在y 轴上,可设椭圆方程为y 2a 2+x 2b 2=1(a >b >0),由题意知a =2,b =c , 又a 2=b 2+c 2, 则b =2,所以椭圆的方程为y 24+x 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由题意知,直线l 的斜率存在,设其方程为y =kx +m ,与椭圆方程联立,得⎩⎪⎨⎪⎧y 2+2x 2=4,y =kx +m . 则(2+k 2)x 2+2mkx +m 2-4=0,Δ=(2mk )2-4(2+k 2)(m 2-4)>0.由根与系数的关系知⎩⎪⎨⎪⎧x 1+x 2=-2mk 2+k 2x 1x 2=m 2-42+k2,又由AP →=2PB →,即(-x 1,m -y 1)=2(x 2,y 2-m ),得-x 1=2x 2,故⎩⎪⎨⎪⎧x 1+x 2=-x 2,x 1x 2=-2x 22,可得m 2-42+k 2=-2⎝⎛⎭⎫2mk 2+k 22, 整理得(9m 2-4)k 2=8-2m 2,又9m 2-4=0时不符合题意, 所以k 2=8-2m 29m 2-4>0,解得49<m 2<4,此时Δ>0,解不等式49<m 2<4,得23<m <2或-2<m <-23, 所以m 的取值范围为⎝⎛⎭⎫-2,-23∪⎝⎛⎭⎫23,2.。
高三数学解析几何习题集
一、直线与平面
1. 已知直线L1的方程为x + 2y - 3 = 0,点A(2, -1)在该直线上,求直线L1与直线L2:2x - y + 4 = 0的交点坐标。
2. 平面α过点A(1, -2, 3),且与直线L:x = 2 + 3t,y = -1 - t,z = 3t相交于点P(5, 1, -2),求平面α的方程。
3. 已知平面α与平面β垂直,平面α通过点A(1, 2, -1),平面β通过直线L:x = 2 - 4t,y = t,z = 3t,求平面β的方程。
二、曲线的方程
1. 曲线C为椭圆,已知其焦点F1(-3, 0),F2(3, 0),且顶点为(0, 2),求曲线C的方程。
2. 曲线C为双曲线,已知其离心率为2,焦点为F1(3, 0),F2(-3, 0),求曲线C的方程。
3. 曲线C为抛物线,已知其焦点为F(2, -1),过顶点V(0, 0),求曲线C的方程。
三、空间向量与坐标系
1. 已知向量AB = 2i + j - k,向量AC = i - 2j + 3k,求向量BC的坐标表示。
2. 平行四边形ABCD中,已知向量AB = 2i - 3j + 4k,向量AC = 3i + 4j - k,求向量BD的坐标表示。
3. 在XYZ坐标系中,已知A(2, -1, 3),B(-1, 2, -3),C(4, 3, -2),求三角形ABC的面积。
以上是高三数学解析几何习题集的部分题目,希望能对高三学生的数学学习有所帮助。
请自行努力解答,并核对答案,巩固知识理解和运用能力。
祝你学业进步,取得优异成绩!。
2016-2017学年度???学校11月月考卷1.如图,已知椭圆C 的中心为原点O ,为C 的左焦点,P 为C 上一点,,则椭圆C 的方程为( )A C 2.上有一点P ,椭圆内一点Q 在2PF 的延长线上,满足1QF QP ⊥,若 )AC 3上一点A 关于原点的对称点为B F ,为其右焦点,若AF BF ⊥,设ABF α∠=,且 )4.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为21,F F ,且两条曲线在第一象限的交点为P ,21F PF ∆是以1PF 为底边的等腰三角形,若10||1=PF ,椭圆与双曲线的离心率分别为21,e e ,则121+⋅e e 的取值范围是( )A .),1(+∞ BC5.且椭圆C 经过点直线:l y x m =+与椭圆C 交于不同的两点A B ,.(I )求椭圆C 的方程;(II )若AOB ∆的面积为1(O 为坐标原点),求直线l 的方程.6.已知椭圆C C 过点P (3,2). (Ⅰ)求椭圆C 的标准方程;(Ⅱ)与直线OP 平行的直线交椭圆C 于A ,B 两点,求△PAB 面积的最大值.7.且椭圆C 经过点直线:l y x m =+与椭圆C 交于不同的两点A B ,.(I )求椭圆C 的方程;(II )若AOB ∆的面积为1(O 为坐标原点),求直线l 的方程. 8.已知椭圆C :的左、右焦点分别为1(1,0)F -,2(1,0)F ,点在椭圆C 上. (1)求椭圆C 的标准方程;(22的直线l ,使得当直线l 与椭圆C 有两个不同交点M 、N 时,上找到一点P ,在椭圆C 上找到一点Q ,满足PM NQ =?若存在,9.已知椭圆C 的两个焦点分别为1(1,0)F -,2(1,0)F ,短轴的两个端点分别为1B ,2B .(1)若112F B B ∆为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴为2,过点2F 的直线l 与椭圆C 相交于P ,Q 两点,且11F P FQ ⊥,求直线l 的方程.10.已知中心在坐标原点,焦点在x 轴上的椭圆,离心率为点()1,0C -的动直线与该椭圆相交于A B 、两点.(1)若线段AB 中点的横坐标是,求直线AB 的方程;(2)在x 轴上是否存在点M ,使MA MB 为常数?若存在,求出点M 的坐标;若不存在,请说明理由.11.已知椭圆Γ的中心在原点,焦点在x 轴,焦距为2(1)求椭圆Γ的标准方程;(2)设(2,0)P ,过椭圆Γ左焦点F 的直线l 交Γ于A 、B 两点,若对满足条件的任意直线l ,不等式PA PB λ⋅≤(R λ∈)恒成立,求λ的最小值.12C (1)求椭圆及圆C 的方程;(2)过原点O 作直线l 与圆C 交于A ,B 两点,若2CA CB ⋅=-u u r u u r ,求直线l 的方程.13.设椭圆的中心在原点,焦点在x 轴上,求这个椭圆方程.参考答案1.C【解析】 试题分析:设'F 为椭圆的右焦点,由余弦定理,,由椭圆定义,12842=+=a ,所以6=a ,又,所以162=b .考点:余弦定理、椭圆的定义.2.D【解析】 试题分析:因为Q 在椭圆内,所以以21F F 为直径,原点为圆心的圆在椭圆内部,所以b c <,则222c a c -<,.又n PF m PF ==21,则,则仅当所以故应选D . 考点:椭圆的定义余弦定理与基本不等式等知识的综合运用.【易错点晴】本题考查的是椭圆的几何性质与函数方程的数学思想的范围问题,解答时先运,再借助椭圆的定义将其等价转化为从而获得答案.3.B【解析】试题分析:因为,B A 关于原点对称,所以B 也在椭圆上,设左焦点为'F ,根据椭圆的定义:,O 是直角三角形ABF 斜边的中点,所以()2sin cos 2c a αα+=,考点:直线与圆锥曲线位置关系. 【思路点晴】设左焦点为'F ,根据椭圆的定义:利用直角三角形和焦距,得到()2sin cos 2c a αα+=,最后根据α的取值范围求出离心率的取值范围.在圆锥曲线的小题中,往往可以向定义去想,如双曲线.4.B【解析】试题分析:对于椭圆,对于双曲线,离心率,故B. 考点:直线与圆锥曲线位置关系.【思路点晴】本题主要考查椭圆和双曲线的定义,椭圆和双曲线的离心率,平面几何分析方法,值域的求法.由于椭圆和双曲线有公共点,那么公共点既满足椭圆的定义,也满足上曲121e e ⋅+的表达式,表达式分母还有二次函数含有参数,根据三角形两边和大于第三边,求出c 的取值范围,进而求得121e e ⋅+的取值范围.5.(III【解析】试题分析:(I方程组得24a =,21b =(II )利用弦长公式求底AB :222212128444251()42()4555m m m x x x x --+-=--=解方程21425|||1252mm AB d -==可得10m =±试题解析:解:(I c e ==,得224a b =,① ∵椭圆C 经过点 联立①②,解得24a =,21b =, ∴椭圆C 的方程为(II )设11(,)A x y ,22(,)B x y .将直线:l y x m =+与椭圆22:440C x y +-=联立,可得2258440x mx m ++-=, 由226445(44)0m m ∆=-⨯⨯->,得 222212128444251()42()4555m m m x x x x --+-=--= 原点O 到直线:0l x y m -+=的距离||2m d = 21425|||1252m m d -==,化简得,42420250m m -+=,∴2m =∴直线l 的方程为考点:直线与椭圆位置关系【方法点睛】有关圆锥曲线弦长问题的求解方法涉及弦长的问题中,应熟练地利用根与系数关系,设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解。
涉及中点弦问题往往利用点差法.6.(1)2) 6 【解析】试题分析:,利用椭圆定义求得a ,结合隐含条件求得b ,则椭圆方程可求;,设与直线OP 平行的直线方程为()230,,0x y t t R t -+=∈≠且联立直线和椭圆方程,运用韦达定理和判别式大于0,以及弦长公式,点到直线的距离公式和三角形的面积公式,结合基本不等式即可得到所求最大值.试题解析:解:(Ⅰ)设椭圆C 的方程为解得22188a b ⎧=⎪⎨=⎪⎩, 故椭圆C 的方程为 (Ⅱ)直线OP 方程为230x y -=,设直线AB 方程为()230,,0x y t t R t -+=∈≠且 将直线AB 的方程代入椭圆C 的方程并整理得2284720x tx t ++-= 设()()1122,,,A x y B x y . 当()()222163272161440t t t ∆=--=->,即O 到直线AB 的距离PAB ∴∆面积的最大值为6考点:椭圆的简单性质.7.(III 【解析】试题分析:(I方程组得24a =,21b=(II )利用弦长公式求底AB :222212128444251()42()4555m m m x x x x --+-=--=解方程21425|||1252mm AB d -==可得10m =±试题解析:解:(I c e ==,得224a b =,①∵椭圆C 经过点 联立①②,解得24a =,21b =, ∴椭圆C 的方程为(II )设11(,)A x y ,22(,)B x y .将直线:l y x m =+与椭圆22:440C x y +-=联立,可得2258440x mx m ++-=, 由226445(44)0m m ∆=-⨯⨯->,得222212128444251()42()4555m m m x x x x --+-=--= 原点O 到直线:0l x y m -+=的距离||2m d = 21425|||1252m m d -==,化简得,42420250m m -+=,∴2m =∴直线l 的方程为考点:直线与椭圆位置关系【方法点睛】有关圆锥曲线弦长问题的求解方法涉及弦长的问题中,应熟练地利用根与系数关系,设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解。
涉及中点弦问题往往利用点差法.8.(1(2)不存在这样的点Q ,理由见解析. 【解析】试题分析:(1)借助题设条件运用椭圆定义建立方程求解;(2)借助题设运用直线与椭圆的位置关系探求.试题解析:(1)设椭圆C 的焦距为2c ,则1c =, 在椭圆C 上,所以 ,2221b a c =--,故椭圆C 的方程为 (2)椭圆C 上不存在这样的点Q .证明如下:设直线l 的方程为2y x t =+,设11(,)M x y ,22(,)N x y ,,44(,)Q x y ,MN 的中点为00(,)D x y ,得229280y ty t -+-=, 9,且22436(8)0t t ∆=-->,故,且33t -<<, 由PM NQ =知四边形PMQN 为平行四边形,而D 为线段MN 的中点,因此,D 也是线段PQ 的中点,因此点Q 不在椭圆上.考点:椭圆的标准方程及直线与椭圆的位置关系的综合运用. 【易错点晴】本题是一道考查直线与椭圆的位置关系的综合问题.解答本题的第一问时,直接依据题设条件求出1=c ,最终求得椭圆的标准方程为,先设直线l 的方程为2y x t =+,再运用直线与椭圆的位置关系建立方程229280y ty t-+-=组,进而运用方程的知识进行分析推断,使得问题获解.9.(1(2 【解析】 试题分析:(1)根据题意列出a ,b ,c 所满足的方程组,从而求解;(2)设出直线方程,联立椭圆方程,利用韦达定理结合向量数量积的坐标表示即可求解.试题解析:(1)112F B B ∆为等边三角形,则C ⇒:(2)容易求得椭圆C 的方程为当直线l 的斜率不存在时,其方程为1x =,不符合题意; 当直线的斜率存在时,设直线l 的方程为(1)y k x =-,得2222(21)42(1)0k x k x k +-+-=,设11(,)P x y ,22(,)Q x y ,,111(1,)F P x y =+,122(1,)FQ x y =+, ∵11F P FQ ⊥,∴110F P FQ ⋅=,即212121212(1)(1)()x x y yx x x x +++=++++,故直线l的方程为考点:1.椭圆的标准方程及其性质;2.直线与椭圆的位置关系.【思路点睛】对于圆锥曲线的综合问题,①要注意将曲线的定义性质化,找出定义赋予的条件;②要重视利用图形的几何性质解题(本书多处强调);③要灵活运用韦达定理、弦长公式、斜率公式、中点公式、判别式等解题,巧妙运用“设而不求”、“整体代入”、“点差法”、“对称转换”等方法.10.(1(2 【解析】试题分析:(1)椭圆的离心率公式,及,,a b c 的关系,求得,a b ,得到椭圆的方程;设出直线AB 的方程,将直线方程代入椭圆,用舍而不求和韦达定理方法表示出中点坐标,此时代入已知AB 中点的横坐标,即可求出直线AB 的方程;(2)假设存在点M ,使MA MB 为常数,分别分当AB 与x 轴不垂直时以及当直线AB 与x 轴垂直时,求出点M 的坐标,最后综合两种情况得出结论.试题解析:(1)易求椭圆的方程为2235x y +=, 直线斜率不存在时显然不成立,设直线():1AB y k x =+, 将():1AB y k x =+代入椭圆的方程2235x y +=,消去y 整理得()2222316350k x k x k +++-=,设()()1122,,,A x y B x y ,则因为线段AB 的中点的横坐标为 所以直线AB 的方程为(2)假设在x 轴上存在点(),0M m ,使得MA MB 为常数,①当直线AB 与x 轴不垂直时,由(1212233k x x k -=+所以()()()()()2222121212121MA MB x m x m y y k x x k mx x km =--+=++-+++(2162m +--因为MA MB 是与k 无关的常数,从而有 此时49MA MB =综上可知,在x 轴上存在定点49MA MB =,为常数. 考点:直线与椭圆的综合问题. 【方法点晴】本题主要考查了直线与椭圆的综合问题,其中解答中涉及到椭圆的标准方程及其简单的几何性质,直线与圆锥曲线的位置关系的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,此类问题的解答中把直线的方程代入椭圆的方程,转化为根与系数的关系,以及韦达等量是解答的关键,试题有一定的难度,属于中档试题.11.(12)λ的最小值为【解析】试题分析:(1)依题意,求出2a ,2b ,可得椭圆Γ的标准方程;(2)设11(,)A x y ,22(,)B x y ,可得PA PB ⋅1212(2)(2)x x y y =--+,首先讨论当直线l 垂直于x 轴时, 17PA PB ⋅=. 当直线l 不垂直于x 轴时,设直线l :(1)y k x =+,与椭圆方程联立,得到,,则P A P B ⋅121(2)(2)x x y y =--+,将1122(1),(1)y k x y k x =+=+及,代入可得2317)(1)21)2P Ak x x ⋅++=-要使不等式PA PB λ⋅≤(R λ∈)恒成立,只需()PA PB ⋅=,即λ的最小值为 试题解析:(1,1c =,解得22a =,21b =,∴椭圆Γ的标准方程为 (2)设11(,)A x y ,22(,)B x y ,所以112(2,)(2,)P AP B x y x y ⋅=-⋅-121(2)(2)x x y y =--+,当直线l 垂直于x 轴时,121x x ==-,12y y =-此时1(3,)PA y =-,21(3,)(3,)PB y y =-=--,所以(3)PA PB ⋅=- 当直线l 不垂直于x 轴时,设直线l :(1)y k x =+,由22(1),22,y k x x y =+⎧⎨+=⎩整理得2222(12)4220k x k x k +++-=,所以21212122()4(1)(1)PA PB x x x x k x x ⋅=-+++++2221212(1)(2)()4k x x k x x k =++-+++要使不等式PA PB λ⋅≤(R λ∈)恒成立,只需()PA PB ⋅=,即λ的最小值为考点:椭圆的标准方程,直线与椭圆的位置关系12.(1)圆的方程为22(2)(1)4x y -+-=;(2)0y =或430x y -=.【解析】试题分析:(1,结合222a b c =+得从而求的,a b ,得到椭圆和圆的方程;(2)设出直线l 的方程,整理方程组,由判别式求出直线斜率的范围,韦达定理得到,A B 坐标的关系,根据向量数量积的坐标表示列出方程,求的斜率k . 试题解析:(1)设椭圆的焦距为2c ,左、右焦点分别为12(,0),(,0)F c F c -,由椭圆的离心率以椭圆的一个短轴端点及两个焦点为顶点的三角形的面积为,即,圆的方程为22(2)(1)4x y -+-=(2)①当直线l 的斜率不存时,直线方程为0x =,与圆C 相切,不符合题意 ②当直线l 的斜率存在时,设直线方程y kx =,由22(2)(1)4y kxx y =⎧⎨-+-=⎩可得22(1)(24)10k x k x +-++=,由条件可得22(24)4(1)0k k ∆=+-+>,即设11(,)A x y ,22(,)B x y ,则而圆心C 的坐标为(2,1)则11(2,1),CA x y =--u u r 22(2,1)CB x y =--u u r ,所以1212(2)(2)(1)(1)2CA CB x x y y ⋅=--+--=-u u r u u r ,即121212122()()52x x x x y y y y -++-++=-解得0k =或:0l y ∴=或430x y -=考点:圆、椭圆的标准方程及其几何性质,直线与圆的位置关系.【方法点睛】本题主要考查了圆、椭圆的标准方程及其几何性质,直线与圆的位置关系.,属于中档题.根据椭圆的离心率和三角形的面积列出,,a b c 的方程,求出椭圆和圆的方程;题中给出了直线l 与圆的两个交点与定点之间的关系,所以直线与圆的位置关系采用方程法处理,转化为研究它们交点坐标的关系,通过平面向量的数量积运算求解.13【解析】(a >b >0),M (x ,y )为椭圆上的点,由离心率得a=2b y=-b 时|PM|2最大,这种情况4b 2+3=7,从而求出b 值,最后求得所求方程试题解析:所以椭圆方程可以化简为2224a y x =+, 设该椭圆上一点),(y x M(1)当,即1<a 时,,解得;(2)即1≥a 时,解得12>=a 符合题意.考点:椭圆的简单性质;椭圆的定义;椭圆的标准方程。