高考数学复习第九章平面解析几何专题探究课五学案理新人教B版
- 格式:docx
- 大小:173.15 KB
- 文档页数:14
解析几何热点问题三年真题考情核心热点真题印证核心素养直线方程、定值问题2019·Ⅰ,19;2018·Ⅰ,19;2018·,19数学运算、逻辑推理椭圆方程、定点问题2019·,19;2017·Ⅰ,20;2017·Ⅱ,20数学运算、逻辑推理直线与椭圆的位置关系2019·Ⅱ,19;2018·Ⅲ,20 数学运算、逻辑推理直线与抛物线的位置关系2019·Ⅲ,21;2019·,18;2018·Ⅱ,19;2017·Ⅲ,20数学运算、逻辑推理热点聚焦突破教材高考——求曲线方程及直线与圆锥曲线[教材探究](选修2-1P49习题A5(1)(2))求适合以下条件的椭圆的标准方程: (1)过点P (-22,0),Q (0,5);(2)长轴长是短轴长的3倍,且经过点P (3,0).[试题评析] 1.问题涉及解析几何中最重要的一类题目:求曲线的方程,解决的方法都是利用椭圆的几何性质.2.对于(1)给出的两点并不是普通的两点,而是长轴和短轴的端点,这就告诉我们要仔细观察、借助图形求解问题,(2)中条件给出a ,b 的值,但要讨论焦点的位置才能写出椭圆方程. [教材拓展] 设抛物线y 2=2px (p >0)的焦点为F ,准线为l ,过抛物线上一点A 作l 的垂线,垂足为B ,设C ⎝ ⎛⎭⎪⎫72p ,0,AF 与BC 相交于点E ,假设|CF |=2|AF |,且△ACE 的面积为32,那么p 的值为________.解析 易知抛物线的焦点F 的坐标为⎝ ⎛⎭⎪⎫p2,0,又|CF |=2|AF |且|CF |=⎪⎪⎪⎪⎪⎪72p -p 2=3p , ∴|AB |=|AF |=32p ,可得A (p ,2p ).易知△AEB ∽△FEC ,∴|AE ||FE |=|AB ||FC |=12,故S △ACE =13S △ACF =13×3p ×2p ×12=22p 2=32,∴p 2=6,∵p >0,∴p = 6. 答案6探究提高 1.解答此题的关键有两个:(1)利用抛物线的定义求出点A 的坐标,(2)根据△AEB ∽△FEC 求出线段比,进而得到面积比并利用条件“S △ACE =32〞求解.2.对于解析几何问题,除了利用曲线的定义、方程进行运算外,还应恰当地利用平面几何的知识,能起到简化运算的作用.[高考] (2019·某某卷)设椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,上顶点为B .椭圆的短轴长为4,离心率为55. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上,假设|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率. 解 (1)设椭圆的半焦距为c ,依题意,2b =4,c a =55,又a 2=b 2+c 2,可得a =5,b =2,c =1.所以椭圆的方程为x 25+y 24=1.(2)由题意,设P (x P ,y P )(x P ≠0),M (x M ,0), 直线PB 的斜率为k (k ≠0),又B (0,2),那么直线PB 的方程为y =kx +2,与椭圆方程联立⎩⎪⎨⎪⎧y =kx +2,x 25+y 24=1,整理得(4+5k 2)x2+20kx =0, 可得x P =-20k4+5k2,代入y =kx +2得y P =8-10k24+5k2,进而直线OP 的斜率为y P x P =4-5k 2-10k.在y =kx +2中,令y =0,得x M =-2k.由题意得N (0,-1),所以直线MN 的斜率为-k2.由OP ⊥MN ,得4-5k 2-10k ·⎝ ⎛⎭⎪⎫-k 2=-1,化简得k 2=245,从而k =±2305(满足Δ=(20k )2>0).所以直线PB 的斜率为2305或-2305.教你如何审题——圆锥曲线中的证明问题[例题] (2019·卷)抛物线C :x 2=-2py (p >0)经过点(2,-1). (1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点. [审题路线][自主解答](1)解 由抛物线C :x 2=-2py 经过点(2,-1)得p =2. 所以抛物线C 的方程为x 2=-4y ,其准线方程为y =1. (2)证明 抛物线C 的焦点为F (0,-1).设直线l 的方程为y =kx -1(k ≠0).由⎩⎪⎨⎪⎧y =kx -1,x 2=-4y 得x 2+4kx -4=0. 设M (x 1,y 1),N (x 2,y 2),那么x 1x 2=-4. 直线OM 的方程为y =y 1x 1x .令y =-1,得点A 的横坐标x A =-x 1y 1, 同理得B 的横坐标x B =-x 2y 2.设点D (0,n ),那么DA →=⎝ ⎛⎭⎪⎫-x 1y 1,-1-n ,DB →=⎝ ⎛⎭⎪⎫-x 2y 2,-1-n , DA →·DB →=x 1x 2y 1y 2+(n +1)2 =x 1x 2⎝ ⎛⎭⎪⎫-x 214⎝ ⎛⎭⎪⎫-x 224+(n +1)2 =16x 1x 2+(n +1)2=-4+(n +1)2.令DA →·DB →=0,即-4+(n +1)2=0,得n =1或n =-3. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).探究提高 1.解决此题的关键是直径所对的圆周角为直角,要证明直线经过y 轴上定点D ,只需满足DA →·DB →=0,进而求解.类似的还有角的关系转化为斜率之间的关系,线段的长度比转化为线段端点的坐标之比. 2.解决此类问题,一般方法是“设而不求〞,通过“设参、用参、消参〞的推理及运算,借助几何直观,达到证明的目的.[尝试训练] (2018·全国Ⅰ卷)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . (1)解 由得F (1,0),l 的方程为x =1.把x =1代入椭圆方程x 22+y 2=1,可得点A 的坐标为⎝ ⎛⎭⎪⎫1,22或⎝ ⎛⎭⎪⎫1,-22,又M (2,0),所以直线AM 的方程为y =-22x +2或y =22x - 2. (2)证明 当l 与x 轴重合时,∠OMA =∠OMB =0°. 当l 与x 轴垂直时,OM 为AB 的垂直平分线, 所以∠OMA =∠OMB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2), 那么x 1<2,x 2<2,直线MA ,MB 的斜率之和为k MA +k MB =y 1x 1-2+y 2x 2-2.由y 1=k (x 1-1),y 2=k (x 2-1)得k MA +k MB =2kx 1x 2-3k 〔x 1+x 2〕+4k〔x 1-2〕〔x 2-2〕.将y =k (x -1)代入x 22+y 2=1得(2k 2+1)x 2-4k 2x +2k 2-2=0. 所以,x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.那么2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k2k 2+1=0. 从而k MA +k MB =0,故MA ,MB 的倾斜角互补. 所以∠OMA =∠OMB . 综上,∠OMA =∠OMB .总分值答题示X ——圆锥曲线中的定点、定值问题[例题] (12分)(2020·某某模拟)点P 在圆O :x 2+y 2=6上运动,点P 在x 轴上的投影为Q ,动点M 满足(1-3)OQ →=OP →-3OM →. (1)求动点M 的轨迹E 的方程;(2)过点(2,0)的动直线l 与曲线E 交于A ,B 两点,问:在x 轴上是否存在定点D ,使得DA →·AB →+DA →2的值为定值?假设存在,求出定点D 的坐标及该定值;假设不存在,请说明理由. [规X 解答]解 (1)设M (x ,y ),P (x 0,y 0),由(1-3)OQ →=OP →-3OM →,得OQ →-OP →=3OQ →-3OM →,即PQ →=3MQ →,2′∴⎩⎨⎧x 0=x ,y 0=3y ,又点P (x 0,y 0)在圆O :x 2+y 2=6上,∴x 20+y 20=6, ∴x 2+3y 2=6,∴轨迹E 的方程为x 26+y 22=1.4′(2)当直线l 的斜率不存在时,直线l 的方程为x =2,易求得直线l 与椭圆C 的两个交点坐标分别为⎝ ⎛⎭⎪⎫2,63,⎝ ⎛⎭⎪⎫2,-63, 此时DA →·DB →=⎝ ⎛⎭⎪⎫-13,63·⎝ ⎛⎭⎪⎫-13,-63=-59.6′当直线l 的斜率存在时,设l :y =k (x -2),由⎩⎪⎨⎪⎧x 26+y 22=1,y =k 〔x -2〕,消去y 得(1+3k 2)x 2-12k 2x +12k 2-6=0, 设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=12k 21+3k 2,x 1·x 2=12k 2-61+3k 2,7′根据题意,假设x 轴上存在定点D (m ,0), 使得DA →·AB →+DA →2=DA →·(AB →-AD →)=DA →·DB →为定值, 那么有DA →·DB →=(x 1-m ,y 1)·(x 2-m ,y 2) =(x 1-m )(x 2-m )+y 1y 2=(x 1-m )(x 2-m )+k 2(x 1-2)(x 2-2) =(k 2+1)x 1x 2-(2k 2+m )(x 1+x 2)+(4k 2+m 2) =(k 2+1)·12k 2-61+3k 2-(2k 2+m )·12k 21+3k2+(4k 2+m 2)=〔3m 2-12m +10〕k 2+〔m 2-6〕3k 2+110′ 要使上式为定值,即与k 无关,那么3m 2-12m +10=3(m 2-6), 即m =73,此时DA →·DB →=m 2-6=-59为常数,定点D 的坐标为⎝ ⎛⎭⎪⎫73,0. 综上所述,存在定点D ⎝ ⎛⎭⎪⎫73,0,使得DA →·AB →+DA →2为定值-59.12′[高考状元总分值心得]❶得步骤分:抓住得分点的步骤,“步步为赢〞,求得总分值.如第(1)问中对向量的化简,第(2)问中联立直线方程和椭圆方程设而不求.❷得关键分:解题过程中不可忽视关键点,有那么给分,无那么没分,如第(2)问中直线斜率不存在时的讨论,数量积的坐标运算与化简.❸得计算分:解题过程中计算准确是得总分值的保障,如第(1)问中的轨迹方程,第(2)问中D 点坐标及所求定值. [构建模板]……求圆锥曲线的方程……特殊情况分类讨论……联立直线和圆锥曲线的方程……应用根与系数的关系用参数表示点的坐标……根据相关条件计算推证……明确结论[规X 训练] (2019·卷)椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为(1,0),且经过点A (0,1).(1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .假设|OM |·|ON |=2,求证:直线l 经过定点. (1)解 由题意,得b 2=1,c =1, 所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1.(2)证明 设P (x 1,y 1),Q (x 2,y 2), 那么直线AP 的方程为y =y 1-1x 1x +1. 令y =0,得点M 的横坐标x M =-x 1y 1-1.又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1.同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1.由⎩⎪⎨⎪⎧y =kx +t ,x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0, 那么x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1=⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k 〔t -1〕〔x 1+x 2〕+〔t -1〕2=⎪⎪⎪⎪⎪⎪2t 2-21+2k2k 2·2t 2-21+2k 2+k 〔t -1〕·⎝ ⎛⎭⎪⎫-4kt 1+2k 2+〔t -1〕2=2⎪⎪⎪⎪⎪⎪1+t 1-t .又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2.解得t =0,所以直线l 经过定点(0,0).热点跟踪训练1.(2020·某某九校联考)椭圆C :x 2a 2+y 2b2=1过A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值. (1)解 由题意知,a =2,b =1, 所以椭圆C 的方程为x 24+y 2=1.因为c =a 2-b 2=3, 所以椭圆C 的离心率e =c a =32.(2)证明 设P (x 0,y 0)(x 0<0,y 0<0),那么x 20+4y 20=4. 因为A (2,0),B (0,1), 所以直线PA 的方程为y =y 0x 0-2(x -2),令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2. 直线PB 的方程为y =y 0-1x 0x +1,令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1. 所以四边形ABNM 的面积S =12|AN |·|BM |=12⎝ ⎛⎭⎪⎫2+x 0y 0-1·⎝ ⎛⎭⎪⎫1+2y 0x 0-2=x 20+4y 20+4x 0y 0-4x 0-8y 0+42〔x 0y 0-x 0-2y 0+2〕=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2,所以四边形ABNM 的面积为定值2.2.(2018·某某卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B ,椭圆的离心率为53,点A 的坐标为(b ,0),且|FB |·|AB |=6 2. (1)求椭圆的方程;(2)设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .假设|AQ ||PQ |=524sin∠AOQ (O 为原点),求k 的值. 解 (1)设椭圆的焦距为2c ,由有c 2a 2=59,又由a 2=b 2+c 2,可得2a =3b . 由可得,|FB |=a ,|AB |=2b , 由|FB |·|AB |=62, 可得ab =6,从而a =3,b =2. 所以,椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2). 由有y 1>y 2>0,故|PQ |sin∠AOQ =y 1-y 2.又因为|AQ |=y 2sin∠OAB ,而∠OAB =π4,故|AQ |=2y 2.由|AQ ||PQ |=524sin∠AOQ ,可得5y 1=9y 2. 由方程组⎩⎪⎨⎪⎧y =kx ,x 29+y 24=1,消去x ,可得y 1=6k9k 2+4. 易知直线AB 的方程为x +y -2=0,由方程组⎩⎪⎨⎪⎧y =kx ,x +y -2=0,消去x ,可得y 2=2kk +1.代入5y 1=9y 2,可得5(k +1)=39k 2+4, 将等式两边平方,整理得56k 2-50k +11=0, 解得k =12或k =1128.所以,k 的值为12或1128.3.(2020·某某湘东六校联考)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =12,点A (b ,0),B ,F分别为椭圆的上顶点和左焦点,且|BF |·|BA |=2 6. (1)求椭圆C 的方程;(2)假设过定点M (0,2)的直线l 与椭圆C 交于G ,H 两点(G 在M ,H 之间),设直线l 的斜率k >0,在x 轴上是否存在点P (m ,0),使得以PG ,PH 为邻边的平行四边形为菱形?如果存在,求出m 的取值X 围;如果不存在,请说明理由.解 (1)设椭圆的焦距为2c ,由离心率e =12得a =2c ,①由|BF |·|BA |=26,得a ·b 2+b 2=26, ∴ab =23,②a 2-b 2=c 2,③由①②③可得a 2=4,b 2=3, ∴椭圆C 的方程为x 24+y 23=1.(2)设直线l 的方程为y =kx +2(k >0),由⎩⎪⎨⎪⎧y =kx +2〔k >0〕,x 24+y 23=1消y 得(3+4k 2)x 2+16kx +4=0,可得Δ>0,∴k >12.设G (x 1,y 1),H (x 2,y 2),那么x 1+x 2=-16k 4k 2+3,PG →+PH →=(x 1+x 2-2m ,k (x 1+x 2)+4),GH →=(x 2-x 1,y 2-y 1)=(x 2-x 1,k (x 2-x 1)).∵菱形的对角线互相垂直,∴(PG →+PH →)·GH →=0,∴(1+k 2)(x 1+x 2)+4k -2m =0,得m =-2k 4k 2+3, 即m =-24k +3k,∵k >12, ∴-36≤m <0⎝ ⎛⎭⎪⎫当且仅当3k =4k 时,等号成立. ∴存在满足条件的实数m ,m 的取值X 围为⎣⎢⎡⎭⎪⎫-36,0. 4.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝⎛⎭⎪⎫1,22在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当该直线与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM →=NQ →?假设存在,求出直线的方程;假设不存在,说明理由.解 (1)设椭圆C 的焦距为2c ,那么c =1,因为A ⎝ ⎛⎭⎪⎫1,22在椭圆C 上,所以2a =|AF 1|+|AF 2|=22,那么a =2,b 2=a 2-c 2=1. 故椭圆C 的方程为x 22+y 2=1. (2)椭圆C 上不存在这样的点Q ,理由如下:设直线的方程为y =2x +t ,M (x 1,y 1),N (x 2,y 2),P ⎝ ⎛⎭⎪⎫x 3,53,Q (x 4,y 4), 由⎩⎪⎨⎪⎧y =2x +t ,x 22+y 2=1,消去x 得9y 2-2ty +t 2-8=0, 所以y 1+y 2=2t 9,且Δ=4t 2-36(t 2-8)>0, 即-3<t <3.由PM →=NQ →得⎝⎛⎭⎪⎫x 1-x 3,y 1-53=(x 4-x 2,y 4-y 2),所以有y 1-53=y 4-y 2,y 4=y 1+y 2-53=29t -53. 又-3<t <3,所以-73<y 4<-1, 与椭圆上点的纵坐标的取值X 围是[-1,1]矛盾.因此椭圆C 上不存在这样的点Q .5.椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),左、右顶点分别为A 1,A 2,P 为椭圆E 上的动点(不与A 1,A 2重合),且直线PA 1与PA 2的斜率的乘积为-34. (1)求椭圆E 的方程;(2)过点F 2作两条互相垂直的直线l 1与l 2(均不与x 轴重合)分别与椭圆E 相交于A ,B ,C ,D 四点,线段AB ,CD 的中点分别为M ,N ,求证:直线MN 过定点,并求出该定点的坐标.(1)解 设P (x 0,y 0)(y 0≠0),那么x 20a 2+y 20b2=1. 整理,得x 20-a 2=-a 2y 20b 2. 由题意,得y 0x 0-a ·y 0x 0+a =-34. 整理,得x 20-a 2=-43y 20. ∴-a 2y 20b 2=-43y 20,又y 0≠0,即a 2=43b 2. ∵c =1,a 2=b 2+c 2,∴a 2=4,b 2=3.故椭圆E 的方程为x 24+y 23=1. (2)证明 设直线AB 的方程:y =k (x -1)(k ≠0), A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k 〔x -1〕,3x 2+4y 2=12消y 得(4k 2+3)x 2-8k 2x +4k 2-12=0. ∴x 1+x 2=8k 24k 2+3.∴x M =x 1+x 22=12·8k 24k 2+3=4k 24k 2+3, ∴y M =k (x M -1)=-3k 4k 2+3. 用-1k 替换点M 坐标中的k ,可得x N =43k 2+4,y N =3k 3k 2+4. 假设直线AB 关于x 轴对称后得到直线A ′B ′,直线CD 关于x 轴对称后得到直线C ′D ′,线段A ′B ′,C ′D ′的中点分别为M ′,N ′,那么直线M ′N ′与直线MN 关于x 轴对称. ∴假设直线MN 经过定点,那么该定点一定是直线M ′N ′与MN 的交点,该交点必在x 轴上.设该交点为T (s ,0),那么MT →=(s -x M ,-y M ),NM →=(x M -x N ,y M -y N ).由MT →∥NM →,得s =x N y M -x M y N y M -y N. 代入点M ,N 的坐标并化简,得s =47. ∴经过的定点为⎝ ⎛⎭⎪⎫47,0. 6.(2020·某某质量监测)如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为32,过焦点F 2且垂直于x 轴的直线被椭圆C 截得的线段长为1.(1)求椭圆C 的方程;(2)(一题多解)点P (x 0,y 0)(y 0≠0)为椭圆C 上一动点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交椭圆C 的长轴于点M (m ,0),某某数m 的取值X 围.解 (1)将x =c 代入x 2a 2+y 2b2=1中,由a 2-c 2=b 2, 可得y 2=b 4a 2,所以弦长为2b 2a . 由⎩⎪⎨⎪⎧2b 2a =1,c a =32,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b =1,所以椭圆C 的方程为x 24+y 2=1. (2)法一 因为点P (x 0,y 0)(y 0≠0),F 1(-3,0),F 2(3,0), 所以直线PF 1,PF 2的方程分别为 l 1:y 0x -(x 0+3)y +3y 0=0,l 2:y 0x -(x 0-3)y -3y 0=0. 由题意可知|my 0+3y 0|y 20+〔x 0+3〕2=|my 0-3y 0|y 20+〔x 0-3〕2. 由于点P 为椭圆C 上除左、右顶点外的任一点,所以x 204+y 20=1(y 0≠0), 所以|m +3|⎝ ⎛⎭⎪⎫32x 0+22=|m -3|⎝ ⎛⎭⎪⎫32x 0-22,因为-3<m <3,-2<x 0<2,所以m +332x 0+2=3-m2-32x 0,即m =34x 0, 因此,-32<m <32. 法二 设|PF 1|=t ,在△PF 1M 中,由正弦定理得tsin∠PMF 1=m +3sin∠MPF 1, 在△PF 2M 中,由正弦定理得4-t sin∠PMF 2=3-m sin∠MPF 2, 因为∠PMF 1+∠PMF 2=π,∠MPF 1=∠MPF 2,所以t 4-t =3+m 3-m,解得m =14(23t -43), 因为t ∈(a -c ,a +c ),即t ∈(2-3,2+3),所以-32<m <32.。
第3课时 证明与探索性问题证明问题例1(2018·全国Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . (1)解 由已知得F (1,0),l 的方程为x =1. 由已知可得,点A 的坐标为⎝ ⎛⎭⎪⎫1,22或⎝ ⎛⎭⎪⎫1,-22. 又M (2,0),所以AM 的方程为y =-22x +2或y =22x - 2. 即x +2y -2=0或x -2y -2=0.(2)证明 当l 与x 轴重合时,∠OMA =∠OMB =0°. 当l 与x 轴垂直时,OM 为AB 的垂直平分线, 所以∠OMA =∠OMB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2),则x 1<2,x 2<2,直线MA ,MB 的斜率之和k MA +k MB =y 1x 1-2+y 2x 2-2.由y 1=kx 1-k ,y 2=kx 2-k ,得k MA +k MB =2kx 1x 2-3k x 1+x 2+4kx 1-2x 2-2.将y =k (x -1)代入x 22+y 2=1,得(2k 2+1)x 2-4k 2x +2k 2-2=0,由题意知Δ>0恒成立, 所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k2k 2+1=0, 从而k MA +k MB =0, 故MA ,MB 的倾斜角互补.所以∠OMA =∠OMB . 综上,∠OMA =∠OMB .思维升华圆锥曲线中的证明问题涉及证明的X 围比较广,但无论证明什么,其常用方法有直接法和转化法,对于转化法,先是对已知条件进行化简,根据化简后的情况,将证明的问题转化为另一问题.跟踪训练1(2019·某某模拟)已知顶点是坐标原点的抛物线Γ的焦点F 在y 轴正半轴上,圆心在直线y =12x 上的圆E 与x 轴相切,且点E ,F 关于点M (-1,0)对称.(1)求E 和Γ的标准方程;(2)过点M 的直线l 与圆E 交于A ,B 两点,与Γ交于C ,D 两点,求证:|CD |>2|AB |.(1)解 设Γ的标准方程为x 2=2py ,p >0,则F ⎝ ⎛⎭⎪⎫0,p2.已知E 在直线y =12x 上,故可设E ()2a ,a .因为E ,F 关于M (-1,0)对称,所以⎩⎨⎧2a +02=-1,p2+a 2=0,解得⎩⎪⎨⎪⎧a =-1,p =2.所以抛物线Γ的标准方程为x 2=4y . 因为圆E 与x 轴相切,故半径r =|a |=1, 所以圆E 的标准方程为(x +2)2+(y +1)2=1. (2)证明 由题意知,直线l 的斜率存在, 设l 的斜率为k ,那么其方程为y =k (x +1)(k ≠0). 则E (-2,-1)到l 的距离d =|k -1|k 2+1,因为l 与E 交于A ,B 两点,所以d 2<r 2,即k -12k 2+1<1,解得k >0,所以|AB |=21-d 2=22kk 2+1. 由⎩⎪⎨⎪⎧x 2=4y ,y =k x +1消去y 并整理得,x 2-4kx -4k =0.Δ=16k 2+16k >0恒成立,设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4k , 那么|CD |=k 2+1|x 1-x 2| =k 2+1·x 1+x 22-4x 1x 2=4k 2+1·k 2+k .所以|CD |2|AB |2=16k 2+1k 2+k8k k 2+1=2k 2+12k 2+kk>2kk=2.所以|CD |2>2|AB |2,即|CD |>2|AB |.探索性问题例2(2019·某某模拟)已知F 为抛物线C :y 2=2px (p >0)的焦点,过F 的动直线交抛物线C 于A ,B 两点.当直线与x 轴垂直时,|AB |=4.(1)求抛物线C 的方程;(2)若直线AB 与抛物线的准线l 相交于点M ,在抛物线C 上是否存在点P ,使得直线PA ,PM ,PB 的斜率成等差数列?若存在,求出点P 的坐标;若不存在,说明理由.解 (1)因为F ⎝ ⎛⎭⎪⎫p2,0,在抛物线y 2=2px 中,令x =p2,可得y =±p ,所以当直线与x 轴垂直时|AB |=2p =4,解得p =2, 所以抛物线的方程为y 2=4x .(2)不妨设直线AB 的方程为x =my +1(m ≠0), 因为抛物线y 2=4x 的准线方程为x =-1, 所以M ⎝ ⎛⎭⎪⎫-1,-2m .联立⎩⎪⎨⎪⎧y 2=4x ,x =my +1消去x ,得y 2-4my -4=0,Δ=16m 2+16>0恒成立,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4,若存在定点P (x 0,y 0)满足条件,则2k PM =k PA +k PB ,即2y 0+2m x 0+1=y 0-y 1x 0-x 1+y 0-y 2x 0-x 2,因为点P ,A ,B 均在抛物线上, 所以x 0=y 204,x 1=y 214,x 2=y 224.代入化简可得2my 0+2m y 20+4=2y 0+y 1+y 2y 20+y 1+y 2y 0+y 1y 2,将y 1+y 2=4m ,y 1y 2=-4代入整理可得my 0+2m y 20+4=y 0+2my 20+4my 0-4, 即(m 2+1)(y 20-4)=0,因为上式对∀m ≠0恒成立,所以y 20-4=0, 解得y 0=±2,将y 0=±2代入抛物线方程,可得x 0=1,所以在抛物物C 上存在点P (1,±2),使直线PA ,PM ,PB 的斜率成等差数列. 思维升华解决探索性问题的注意事项探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在. (1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采取另外合适的方法. 跟踪训练2(2020·某某调研)已知定点A (-3,0),B (3,0),直线AM ,BM 相交于点M ,且它们的斜率之积为-19,记动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点T (1,0)的直线l 与曲线C 交于P ,Q 两点,是否存在定点S (x 0,0),使得直线SP 与SQ 斜率之积为定值,若存在,求出S 的坐标;若不存在,请说明理由.解 (1)设动点M (x ,y ), 则k MA =y x +3(x ≠-3),k MB =yx -3(x ≠3), ∵k MA ·k MB =-19,即y x +3·y x -3=-19.化简得x 29+y 2=1, 由已知x ≠±3,故曲线C 的方程为x 29+y 2=1(x ≠±3).(2)由已知直线l 过点T (1,0),设l 的方程为x =my +1,则联立方程⎩⎪⎨⎪⎧x =my +1,x 2+9y 2=9,消去x 得(m 2+9)y 2+2my -8=0, 设P (x 1,y 1),Q (x 2,y 2), 则⎩⎪⎨⎪⎧y 1+y 2=-2mm 2+9,y 1y 2=-8m 2+9,直线SP 与SQ 斜率分别为k SP =y 1x 1-x 0=y 1my 1+1-x 0,k SQ =y 2x 2-x 0=y 2my 2+1-x 0,k SP ·k SQ =y 1y 2my 1+1-x 0my 2+1-x 0=-8x 20-9m 2+91-x 02,当x 0=3时,∀m ∈R ,k SP ·k SQ =-891-x 02=-29;当x 0=-3时,∀m ∈R ,k SP ·k SQ =-891-x 02=-118.所以存在定点S (±3,0),使得直线SP 与SQ 斜率之积为定值.例 (12分)(2019·全国Ⅱ)已知点A (-2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为-12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连接QE 并延长交C 于点G .(ⅰ)证明:△PQG 是直角三角形; (ⅱ)求△PQG 面积的最大值. 规X 解答 (1)解 由题设得yx +2·y x -2=-12, 化简得x 24+y 22=1(|x |≠2),所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.[2分] (2)(ⅰ)证明 设直线PQ 的斜率为k ,则其方程为y =kx (k >0).由⎩⎪⎨⎪⎧y =kx ,x 24+y22=1,得x =±21+2k2.[3分]记u =21+2k2,则P (u ,uk ),Q (-u ,-uk ),E (u ,0).[4分]于是直线QG 的斜率为k 2,方程为y =k2(x -u ).由⎩⎪⎨⎪⎧y =k2x -u ,x 24+y 22=1,得(2+k 2)x 2-2uk 2x +k 2u 2-8=0.①[5分]设G (x G ,y G ),则-u 和x G 是方程①的解,故x G =u 3k 2+22+k 2,由此得y G =uk 32+k 2.[6分]从而直线PG 的斜率为uk 32+k 2-uk u 3k 2+22+k2-u =-1k,[7分] 所以PQ ⊥PG ,即△PQG 是直角三角形.[8分](ⅱ)解 由(ⅰ)得|PQ |=2u 1+k 2,|PG |=2uk k 2+12+k 2,所以△PQG 的面积S =12|PQ ||PG |=8k 1+k 21+2k 22+k 2=8⎝ ⎛⎭⎪⎫1k +k 1+2⎝ ⎛⎭⎪⎫1k+k 2.[10分] 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号.因为S =8t1+2t 2在[2,+∞)上单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169.[12分]解决直线与圆锥曲线的位置关系的一般步骤第一步:设直线方程,联立方程组,得关于x 或y 的一元二次方程. 第二步:写出根与系数的关系(或解出交点的坐标). 第三步:根据题目题设条件列出关系式,求得结果.第四步:有关求最值(X 围)问题时,用一个变量表示目标变量,通过变形,用函数知识或基本不等式求解.第五步:反思回顾,查看有无疏忽问题,再完善.1.(2017·全国Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →. (1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .(1)解 设P (x ,y ),M (x 0,y 0),则N (x 0,0), NP →=(x -x 0,y ),NM →=(0,y 0).由NP →=2NM →得x 0=x ,y 0=22y .因为M (x 0,y 0)在C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2. (2)证明 由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则OQ →=(-3,t ),PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn , OP →=(m ,n ),PQ →=(-3-m ,t -n ).由OP →·PQ →=1,得-3m -m 2+tn -n 2=1. 又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以OQ →·PF →=0,即OQ →⊥PF →. 又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .2.在平面直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)在y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?请说明理由. 解 (1)由题设可得M (2a ,a ),N (-2a ,a ), 或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,曲线C 在点(2a ,a )处的切线方程为y -a =a (x -2a ),即ax -y -a =0. y =x 24在x =-2a 处的导数值为-a ,曲线C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点,理由如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2), 直线PM ,PN 的斜率分别为k 1,k 2.将y =kx +a 代入C 的方程得x 2-4kx -4a =0.Δ=16k 2+16a >0恒成立,故x 1+x 2=4k ,x 1x 2=-4a . 从而k 1+k 2=y 1-b x 1+y 2-b x 2=2kx 1x 2+a -bx 1+x 2x 1x 2=k a +ba.当b =-a 时,有k 1+k 2=0, 则直线PM 的倾斜角与直线PN 的倾斜角互补,故∠OPM =∠OPN ,所以存在点P (0,-a ),使得当k 变动时,总有∠OPM =∠OPN . 3.(2019·全国100所名校联考)已知F 1,F 2分别是椭圆E :x 29+y 25=1的左、右焦点.(1)圆C :(x -1)2+(y -b )2=9与x 轴交于A ,B 两点,且△CF 1F 2是等腰三角形,求|AB |; (2)两直线l 1,l 2均过点(1,0),直线l 1与椭圆E 相交于M ,P 两点,直线l 2与椭圆E 相交于N ,Q 两点,且直线MN 过F 1,设直线MN ,PQ 的斜率均存在且分别为k 1,k 2,试问:k 1k 2是否是定值?若是,求出该定值;若不是,请说明理由. 解 (1)由题意得F 1(-2,0),F 2(2,0),C (1,b ), 当以CF 1为△CF 1F 2的底边时,|CF 2|=|F 1F 2|=4,∴b 2+1=16,得|b |=15>3,则圆C 与x 轴没有交点,不符合题意; 当以CF 2为△CF 1F 2的底边时,|CF 1|=|F 1F 2|=4, ∴b 2+32=42,得|b |=7<3,则圆C 与x 轴相交, ∴|AB |=29-7=2 2.(2)设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4), 则直线MP 的方程为x =x 1-1y 1·y +1,代入椭圆方程x 29+y 25=1,得5-x 1y 21·y 2+x 1-1y 1·y -4=0. 易知y 1+y 3=y 1x 1-1x 1-5,可得y 3=4y 1x 1-5,从而得P ⎝⎛⎭⎪⎫5x 1-9x 1-5,4y 1x 1-5,同理得Q ⎝ ⎛⎭⎪⎫5x 2-9x 2-5,4y 2x 2-5.又因为M ,F 1,N 共线,所以y 2-y 1x 2-x 1=y 2x 2+2, 所以x 1y 2-x 2y 1=2(y 1-y 2),故k 2=y 3-y 4x 3-x 4=4y 1x 1-5-4y 2x 2-55x 1-9x 1-5-5x 2-9x 2-5=7y 1-y 24x 1-x 2=7k 14,∴k 1k 2=47,即k 1k 2是定值,定值为47.4.(2020·某某一中模拟)已知抛物线y 2=4x ,过点P (8,-4)的动直线l 交抛物线于A ,B 两点,(1)当P 恰为AB 的中点时,求直线l 的方程;(2)抛物线上是否存在一个定点Q ,使得以弦AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标;若不存在,请说明理由.解 (1)设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 当P 恰为AB 的中点时, 显然x 1≠x 2,故k AB =y 1-y 2x 1-x 2=4y 1+y 2, 又y 1+y 2=-8,故k AB =-12.则直线l 的方程为y =-12x .(2)假设存在定点Q ,设Q ⎝ ⎛⎭⎪⎫y 204,y 0,当直线l 斜率存在时,设l :y =k (x -8)-4(k ≠0),A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y 2=4x ,y =k x -8-4,整理得ky 2-4y -32k -16=0,Δ>0,y 1+y 2=4k ,y 1y 2=-32-16k,由以弦AB 为直径的圆恒过点Q 知QA →·QB →=0,即⎝⎛⎭⎪⎫x 1-y 204⎝ ⎛⎭⎪⎫x 2-y 204+(y 1-y 0)(y 2-y 0)=0, 即⎝ ⎛⎭⎪⎫y 214-y 204⎝ ⎛⎭⎪⎫y 224-y 204+(y 1-y 0)(y 2-y 0) =⎣⎢⎡⎦⎥⎤y 1+y 0y 2+y 016+1(y 1-y 0)(y 2-y 0)=0, 故(y 1+y 0)(y 2+y 0)=-16,即y 1y 2+y 0(y 1+y 2)+y 20+16=0, 整理得(y 20-16)k +4(y 0-4)=0, 即当y 0=4时,恒有OA →·OB →=0, 故存在定点Q (4,4)满足题意;当直线l 斜率不存在时,l :x =8, 不妨令A (8,42),B (8,-42),Q (4,4),也满足QA →·QB →=0.综上所述,存在定点Q (4,4),使得以弦AB 为直径的圆恒过点Q .5.(2019·某某模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0),A (2,0)是长轴的一个端点,弦BC 过椭圆的中心O ,点C 在第一象限,且AC →·BC →=0,|OC →-OB →|=2|AB →+BC →|. (1)求椭圆的标准方程;(2)设P ,Q 为椭圆上不重合的两点且异于A ,B ,若∠PCQ 的平分线总是垂直于x 轴,问是否存在实数λ,使得PQ →=λAB →?若存在,求λ取得最大值时的PQ 的长;若不存在,请说明理由. 解 (1)∵AC →·BC →=0,∴∠ACB =90°, ∵|OC →-OB →|=2|AB →+BC →|.即|BC →|=2|AC →|, ∴△AOC 是等腰直角三角形, ∵A (2,0),∴C (1,1),而点C 在椭圆上,∴1a 2+1b 2=1,a =2,∴b 2=43,∴所求椭圆方程为x 24+3y 24=1. (2)存在.理由如下: 对于椭圆上两点P ,Q ,word 11 / 11 ∵∠PCQ 的平分线总是垂直于x 轴,∴PC 与CQ 所在直线关于x =1对称, 设k PC =k ,则k CQ =-k ,∵C (1,1),∴PC 的直线方程为y =k (x -1)+1,① QC 的直线方程为y =-k (x -1)+1,②将①代入x 24+3y 24=1, 得(1+3k 2)x 2-6k (k -1)x +3k 2-6k -1=0,③∵C (1,1)在椭圆上,∴x =1是方程③的一个根,∴x P =3k 2-6k -11+3k2. 以-k 替换k ,得到x Q =3k 2+6k -13k 2+1. ∴k PQ =k x P +x Q -2k x P -x Q =13, ∵∠ACB =90°,A (2,0),C (1,1),弦BC 过椭圆的中心O ,∴B (-1,-1),∴k AB =13, ∴k PQ =k AB ,∴PQ ∥AB ,∴存在实数λ,使得PQ →=λAB →,|PQ →|=⎝ ⎛⎭⎪⎫-12k1+3k 22+⎝ ⎛⎭⎪⎫-4k1+3k 22=1609k 2+1k2+6≤2303, 当9k 2=1k 2时,即k =±33时取等号,|PQ →|max =2303, 又|AB →|=10,λmax =230310=233, ∴λ取得最大值时的PQ 的长为2303.。
【创新方案】(新课标)2017届高考数学总复习 第九章 解析几何教案 理 新人教A 版第一节 直线的倾斜角与斜率、直线的方程考纲要求:1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式. 2.掌握确定直线位置的几何要素;掌握直线方程的几种形式(点斜式、两点式及一般式等),了解斜截式与一次函数的关系.1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°.(2)范围:直线l 倾斜角的范围是[0,π). 2.直线的斜率(1)定义:若直线的倾斜角θ不是90°,则斜率k =tan_θ.(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1. 3.直线方程的五种形式1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)坐标平面内的任何一条直线均有倾斜角与斜率.( ) (2)过点M (a ,b ),N (b ,a )(a ≠b )的直线的倾斜角是45°.( ) (3)倾斜角越大,斜率越大.( )(4)经过点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示.( )(5)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )(6)直线的截距即是直线与坐标轴的交点到原点的距离.( )(7)若直线在x 轴,y 轴上的截距分别为m ,n ,则方程可记为x m +yn=1.( ) 答案:(1)× (2)× (3)× (4)× (5)√ (6)× (7)×2.若过两点A (-m,6),B (1,3m )的直线的斜率为12,则m =________. 答案:-23.直线3x -y +a =0的倾斜角为________. 答案:60°4.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为____________.答案:x +13y +5=05.直线l 经过点P (-2,5),且斜率为-34,则直线l 的方程为________.答案:3x +4y -14=0[典题1] (1)直线2x cos α-y -3=0α∈π6,π3的倾斜角的取值范围是( )A.⎣⎢⎡⎦⎥⎤π6,π3B.⎣⎢⎡⎦⎥⎤π4,π3C.⎣⎢⎡⎦⎥⎤π4,π2 D.⎣⎢⎡⎦⎥⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.[听前试做] (1)直线2x cos α-y -3=0的斜率k =2cos α,因为α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cos α≤32,因此k =2·cos α∈[1, 3 ].设直线的倾斜角为θ,则有tan θ∈[1, 3 ].又θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3,即倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,π3.(2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪[1,+∞). 答案:(1)B (2)(-∞,- 3 ]∪[1,+∞)[探究1] 若将题(2)中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围.解:∵P (-1,0),A (2,1),B (0,3), ∴k AP =1-02--1=13,k BP =3-00--1= 3.如图可知,直线l 斜率的取值范围为⎣⎢⎡⎦⎥⎤13,3. [探究2] 若将题(2)条件改为“经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点”,求直线l 的倾斜角α的范围.解:法一:如图所示,k PA =-2--11-0=-1,k PB =1--12-0=1,由图可观察出:直线l 倾斜角α的范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π. 法二:由题意知,直线l 存在斜率.设直线l 的斜率为k , 则直线l 的方程为y +1=kx ,即kx -y -1=0. ∵A ,B 两点在直线的两侧或其中一点在直线l 上. ∴(k +2-1)(2k -1-1)≤0,即2(k +1)(k -1)≤0. ∴-1≤k ≤1.∴直线l 的倾斜角α的范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0).[典题2] 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.[听前试做] (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0. (2)由题设知截距不为0,设直线方程为x a +y12-a=1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0;当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5),即kx -y +(10-5k )=0.由点线距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.求直线方程的注意点(1)用斜截式及点斜式时,直线的斜率必须存在;(2)两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,注意分类讨论,判断截距是否为零.已知点A (3,4),求满足下列条件的直线方程: (1)经过点A 且在两坐标轴上截距相等;(2)经过点A 且与两坐标轴围成一个等腰直角三角形. 解:(1)设直线在x ,y 轴上的截距均为a . ①若a =0,即直线过点(0,0)及(3,4). ∴直线的方程为y =43x ,即4x -3y =0.②若a ≠0,设所求直线的方程为x a +y a=1, 又点(3,4)在直线上,∴3a +4a=1,∴a =7.∴直线的方程为x +y -7=0.综合①②可知所求直线的方程为4x -3y =0或x +y -7=0. (2)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3).所求直线的方程为x -y +1=0或x +y -7=0.[典题3] 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.[听前试做] 依题意知,直线l 的斜率k 存在且k <0.则直线l 的方程为y -2=k (x -3)(k <0),且有A ⎝⎛⎭⎪⎫3-2k,0,B (0,2-3k ),∴S△ABO=12(2-3k )⎝ ⎛⎭⎪⎫3-2k =12⎣⎢⎡⎦⎥⎤12+-9k +4-k ≥12⎣⎢⎡⎦⎥⎤12+2-9k ·4-k =12×(12+12)=12. 当且仅当-9k =4-k ,即k =-23时,等号成立. 即△ABO 的面积的最小值为12. 此时直线l 的方程为2x +3y -12=0.(1)含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本(均值)不等式求解最值.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.解:(1)证明:直线l 的方程是k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1,∴无论k 取何值,直线总经过定点(-2,1).(2)由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解之得k >0;当k =0时,直线为y =1,符合题意,故k ≥0. 即k 的取值范围是[0,+∞).(3)由l 的方程,得A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0.∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k | =12·1+2k 2k=12⎝⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.———————————[课堂归纳——感悟提升]————————————————[方法技巧]1.直线的斜率k 与倾斜角θ之间的关系θ 0° 0°<θ<90°90° 90°<θ<180°kk >0 不存在k <02.(1)直接法:根据已知条件选择恰当的直线方程形式,直接求出直线方程.(2)待定系数法:先根据已知条件设出直线方程,再根据已知条件构造关于待定系数的方程(组),求出待定系数,从而求出直线方程.[易错防范]1.利用两点式计算斜率时易忽视x 1=x 2时斜率k 不存在的情况.2.用直线的点斜式求方程时,在斜率k 不明确的情况下,注意分k 存在与不存在讨论,否则会造成失误.3.直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式. 4.由一般式Ax +By +C =0确定斜率k 时易忽视判断B 是否为0的情况,当B =0时,k不存在;当B ≠0时,k =-AB.[全盘巩固]一、选择题1.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则参数m 满足的条件是( )A .m ≠-32 B .m ≠0C .m ≠0且m ≠1D .m ≠1解析:选D 由⎩⎪⎨⎪⎧2m 2+m -3=0,m 2-m =0,解得m =1,故m ≠1时方程表示一条直线.2.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33 B. 3 C .- 3 D .-33解析:选A 设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.3.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1 D .-2或1 解析:选D 由题意可知a ≠0.当x =0时,y =a +2. 当y =0时,x =a +2a .∴a +2a=a +2,解得a =-2或a =1. 4.直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0 D .ab <0,bc <0解析:选A 由于直线ax +by +c =0经过第一、二、四象限,所以直线存在斜率,将方程变形为y =-a b x -c b .易知-a b <0且-c b>0,故ab >0,bc <0.5.两直线x m -y n =a 与x n -y m=a (其中a 为不为零的常数)的图象可能是( )A B C D解析:选B 直线方程x m -y n =a 可化为y =n m x -na ,直线x n -y m =a 可化为y =m nx -ma ,由此可知两条直线的斜率同号.二、填空题6.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为________.解析:设P (x P,1),由题意及中点坐标公式得x P +7=2,解得x P =-5,即P (-5,1),所以k =-13.答案:-137.过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________________. 解析:(1)当直线过原点时,直线方程为y =-53x ;(2)当直线不过原点时,设直线方程为x a +y-a =1,即x -y =a .代入点(-3,5),得a =-8. 即直线方程为x -y +8=0. 答案:y =-53x 或x -y +8=08.直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________. 解析:当a =-1时,直线l 的倾斜角为90°,符合要求;当a ≠-1时,直线l 的斜率为-aa +1,只要-a a +1>1或-a a +1<0即可,解得-1<a <-12或a <-1或a >0. 综上可知,实数a 的取值范围是⎝ ⎛⎭⎪⎫-∞,-12∪(0,+∞).答案:⎝ ⎛⎭⎪⎫-∞,-12∪(0,+∞)三、解答题9.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k-3,3k+4,由已知,得(3k +4)⎝ ⎛⎭⎪⎫4k+3=±6,解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.10.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解:由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32, 所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.[冲击名校]1.在等腰三角形AOB 中,AO =AB ,点O (0,0),A (1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)解析:选D 因为AO =AB ,所以直线AB 的斜率与直线AO 的斜率互为相反数,所以k AB=-k OA =-3,所以直线AB 的点斜式方程为:y -3=-3(x -1).2.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A .1B .2C .4D .8解析:选C ∵直线ax +by =ab (a >0,b >0)过点(1,1),∴a +b =ab ,即1a +1b=1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥2+2b a ·ab=4, 当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.3.若ab >0,且A (a,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________. 解析:根据A (a,0),B (0,b )确定直线的方程为x a +y b=1,又C (-2,-2)在该直线上,故-2a +-2b=1,所以-2(a +b )=ab .又ab >0,故a <0,b <0.根据基本(均值)不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号.即ab 的最小值为16.答案:164.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率为________.解析:直线PQ 的斜率为-3,则直线PQ 的倾斜角为120°,所求直线的倾斜角为60°,tan 60°= 3.答案: 35.已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________. 解析:直线AB 的方程为x 3+y4=1,设P (x ,y ),则x =3-34y ,∴xy =3y -34y 2=34(-y 2+4y )=34[-(y -2)2+4]≤3. 即当P 点坐标为⎝ ⎛⎭⎪⎫32,2时,xy 取最大值3. 答案:36.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________.解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值. ∴b 的取值范围是[-2,2]. 答案:[-2,2]第二节 两直线的位置关系考纲要求:1.能根据两条直线的斜率判断这两条直线平行或垂直. 2.能用解方程组的方法求两条相交直线的交点坐标.3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离. 1.两条直线平行与垂直的判定 (1)两条直线平行①对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2; ②当不重合的两条直线l 1,l 2的斜率都不存在时,l 1与l 2的关系为平行. (2)两条直线垂直①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则l 1⊥l 2⇔k 1k 2=-1;②如果l 1,l 2中有一条直线的斜率不存在,另一条直线的斜率为0时,l 1与l 2的关系为垂直.2.两条直线的交点 3.三种距离|P 1P 2|=x 2-x 12+y 2-y 121.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( )(3)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( )(4)l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,当k 1≠k 2时,l 1与l 2相交.( )(5)过l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ).( )(6)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.( ) (7)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 答案:(1)× (2)× (3)√ (4)√ (5)× (6)× (7)√ 2.已知直线l 过点P (1,2),直线l 1:2x +y -10=0. (1)若l ∥l 1,则直线l 的方程为________;(2)若l ⊥l 1,则直线l 的方程为________. 答案:(1)2x +y -4=0 (2)x -2y +3=03.经过两直线2x +y -8=0与x -2y +1=0的交点,且平行于直线4x -3y -7=0的直线方程为____________.答案:4x -3y -6=04.原点到直线x +2y -5=0的距离是________. 答案: 55.已知直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,则直线l 1与l 2的距离为________.答案:32[典题1] (1)已知过点A (-2,m )和点B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为________.(2)已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.①l 1⊥l 2,且l 1过点(-3,-1);②l 1∥l 2,且坐标原点到这两条直线的距离相等.[听前试做] (1)∵l 1∥l 2,∴k AB =4-m m +2=-2,解得m =-8.又∵l 2⊥l 3,∴⎝ ⎛⎭⎪⎫-1n ×(-2)=-1.解得n =-2,∴m +n =-10.(2)①由已知可得l 2的斜率存在,∴k 2=1-a . 若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,直线l 1的斜率k 1必不存在,即b =0. 又∵l 1过点(-3,-1), ∴-3a +4=0,即a =43(矛盾),∴此种情况不存在,∴k 2≠0, 即k 1,k 2都存在.∵k 2=1-a ,k 1=a b,l 1⊥l 2, ∴k 1k 2=-1,即a b(1-a )=-1.(*) 又∵l 1过点(-3,-1), ∴-3a +b +4=0.(**)由(*)(**)联立,解得a =2,b =2. ②∵l 2的斜率存在,l 1∥l 2, ∴直线l 1的斜率存在,k 1=k 2,即ab=1-a .(ⅰ)又∵坐标原点到这两条直线的距离相等,且l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b=b .(ⅱ)联立(ⅰ)(ⅱ),解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.∴a =2,b =-2或a =23,b =2.答案:(1)-10(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x 、y 的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. [典题2] 经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________________.[听前试做] 法一:由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即P (0,2).∵l ⊥l 3,∴直线l 的斜率k 1=-43,∴直线l 的方程为y -2=-43x ,即4x +3y -6=0.法二:∵直线l 过直线l 1和l 2的交点,∴可设直线l 的方程为x -2y +4+λ(x +y -2)=0, 即(1+λ)x +(λ-2)y +4-2λ=0. ∵l 与l 3垂直,∴3(1+λ)+(-4)(λ-2)=0,∴λ=11,∴直线l 的方程为12x +9y -18=0,即4x +3y -6=0. 答案:4x +3y -6=0[探究] 若将本例中的“垂直”改为“平行”,如何求解?解:法一:由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即P (0,2).∵l ∥l 3,∴直线l 的斜率k 1=34,∴直线l 的方程为y -2=34x ,即3x -4y +8=0.法二:∵直线l 过直线l 1和l 2的交点,∴可设直线l 的方程为x -2y +4+λ(x +y -2)=0, 即(1+λ)x +(λ-2)y +4-2λ=0. ∵l 与l 3平行,∴3(λ-2)-(-4)(1+λ)=0,且(-4)(4-2λ)≠5(λ-2),∴λ=27,∴直线l 的方程为3x -4y +8=0. (1)两直线交点的求法求两直线的交点坐标,就是解由两直线方程组成的方程组,以方程组的解为坐标的点即为交点.(2)常见的三大直线系方程①与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ).②与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R ).③过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.[典题3] 已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程.(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.[听前试做] (1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2. 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图. 由l ⊥OP ,得k l k OP =-1,所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.利用距离公式应注意:(1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |; (2)两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.1.已知两条平行直线l 1:mx +8y +n =0与l 2:2x +my -1=0间的距离为5,则直线l 1的方程为_________________________________________.解析:∵l 1∥l 2,∴m 2=8m ≠n-1,∴⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.①当m =4时,直线l 1的方程为4x +8y +n =0, 把l 2的方程写成4x +8y -2=0, ∴|n +2|16+64=5,解得n =-22或18.故所求直线l 1的方程为2x +4y -11=0或2x +4y +9=0. ②当m =-4时,直线l 1的方程为4x -8y -n =0, 把l 2的方程写成为4x -8y -2=0, ∴|-n +2|16+64=5,解得n =-18或22.故所求直线l 1的方程为2x -4y +9=0或2x -4y -11=0. 答案:2x ±4y +9=0或2x ±4y -11=02.直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析:法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.法二:当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1. 答案:x +3y -5=0或x =-1对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型,且主要有以下几个命题角度:角度一:点关于点的中心对称问题[典题4] 过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.[听前试做] 设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.答案:x +4y -4=0角度二:点关于直线的对称问题[典题5] 已知直线l :2x -3y +1=0,点A (-1,-2),则点A 关于直线l 的对称点A ′的坐标为________.[听前试做] 设A ′(x ,y ),由已知得⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,故A ′⎝ ⎛⎭⎪⎫-3313,413.答案:⎝ ⎛⎭⎪⎫-3313,413 角度三:直线关于直线的对称问题[典题6] 已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.[听前试做] 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设对称点M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎪⎨⎪⎧a =613,b =3013,∴M ′⎝ ⎛⎭⎪⎫613,3013. 设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0. 角度四:对称问题的应用[典题7] 在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 反射后又回到点P (如图).若光线QR 经过△ABC 的重心,则AP 等于________.[听前试做] 以AB 、AC 所在直线分别为x 轴、y 轴建立如图所示平面直角坐标系,则A (0,0),B (4,0),C (0,4),得△ABC 的重心D ⎝ ⎛⎭⎪⎫43,43,设AP =x ,P (x,0),x ∈(0,4),由光的反射定理,知点P 关于直线BC 、AC 的对称点P 1(4,4-x )、P 2(-x,0),与△ABC 的重心D 43,43共线,所以4343+x =43-4-x 43-4,求得x =43,AP =43.答案:43(1)点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .(如角度一)(2)解决点关于直线对称问题要把握两点,点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直.(如角度二)(3)若直线l 1、l 2关于直线l 对称,则有如下性质:①若直线l 1与l 2相交,则交点在直线l 上;②若点B 在直线l 1上,则其关于直线l 的对称点B ′在直线l 2上.(如角度三)(4)解决中心对称问题的关键在于运用中点坐标公式,而解决轴对称问题,一般是转化为求对称点的问题,在求对称点时,关键是抓住两点:一是两对称点的连线与对称轴垂直;二是两对称点的中心在对称轴上,即抓住“垂直平分”,由“垂直”列出一个方程,由“平分”列出一个方程,联立求解.(如角度四)——————————[课堂归纳——感悟提升]————————————————[方法技巧]1.两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l 1,l 2,l 1∥l 2⇔k 1=k 2;l 1⊥l 2⇔k 1·k 2=-1.2.与已知直线垂直及平行的直线系的设法与直线Ax +By +C =0(A 2+B 2≠0)垂直和平行的直线方程可设为: (1)垂直:Bx -Ay +m =0; (2)平行:Ax +By +n =0.3.直线l 1:A 1x +B 1y +C 1=0(A 21+B 21≠0),l 2:A 2x +B 2y +C 2=0(A 22+B 22≠0),则: (1)l 1⊥l 2⇔A 1A 2+B 1B 2=0; (2)l 1∥l 2⇔A 1A 2=B 1B 2≠C 1C 2(A 2B 2C 2≠0); (3)l 1与l 2相交⇔A 1A 2≠B 1B 2(A 2B 2≠0); (4)l 1与l 2重合⇔A 1A 2=B 1B 2=C 1C 2(A 2B 2C 2≠0).4.对称问题一般是将线与线的对称转化为点与点的对称,利用坐标转移法.[易错防范]1.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑;2.运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2的前提是将两方程中的x ,y 的系数化为对应相等.[全盘巩固]一、选择题1.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B 解方程组⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k ,得交点为⎝⎛⎭⎪⎫k k -1,2k -1k -1.因为0<k <12,所以kk -1<0,2k -1k -1>0.故交点在第二象限. 2.若直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +a 2-1=0垂直,则实数a =( )A.23 B .-1 C .2 D .-1或2 解析:选A ∵a ×1+(a -1)×2=0,∴a =23.3.若直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离是5,则m +n =( )A .0B .1C .-1D .2解析:选A ∵直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离为5,∴⎩⎪⎨⎪⎧n =-2,|m +3|5=5,∴n =-2,m =2(负值舍去).∴m +n =0.4.已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =-x 对称,则直线l 2的斜率为( ) A.12 B .-12C .2D .-2 解析:选A 因为l 1,l 2关于直线y =-x 对称,所以l 2的方程为-x =-2y +3,即y =12x +32,即直线l 2的斜率为12. 5.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且AB 线段的中点为P ⎝⎛⎭⎪⎫0,10a ,则线段AB 的长为( )A .11B .10C .9D .8解析:选B 依题意,a =2,P (0,5),设A (x,2x ),B (-2y ,y ),故⎩⎪⎨⎪⎧x -2y =0,2x +y =10,则A (4,8),B (-4,2),∴|AB |=4+42+8-22=10.二、填空题6.已知直线l 1:(3+m )x +4y =5-3m ,l 2:2x +(5+m )y =8, l 1∥l 2,则实数m 的值为________.解析:由(3+m )(5+m )-4×2=0,得m =-1或m =-7, 当m =-1时,直线l 1与l 2重合,舍去; 当m =-7时,5-3m 4=132≠85+m ,两直线平行.答案:-77.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 解析:由⎩⎪⎨⎪⎧y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9. 答案:-98.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是__________________________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x-1),即x +2y -3=0.答案:x +2y -3=0 三、解答题9.正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程.解:点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5), 则点C 到直线x +3y +m =0的距离d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0. 10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1),∴l AC 为2x +y -11=0,联立l AC ,l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴C (4,3).设B (x 0,y 0),AB 的中点M 为⎝⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0,∴⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.[冲击名校]1.若动点P 1(x 1,y 1),P 2(x 2,y 2)分别在直线l 1:x -y -5=0,l 2:x -y -15=0上移动,则P 1P 2的中点P 到原点的距离的最小值是( )A.522 B .5 2 C.1522D .15 2 解析:选B 由题意得P 1P 2的中点P 的轨迹方程是x -y -10=0,则原点到直线x -y -10=0的距离为d =102=5 2.2.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A .(0,4) B .(0,2) C .(-2,4) D .(4,-2)解析:选B 直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2).又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2恒过定点(0,2).3.设A ,B 是x 轴上的两点,点P 的横坐标为3,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程是( )A .x +y -5=0B .2x -y -1=0C .x -2y +4=0D .x +y -7=0解析:选D 由|PA |=|PB |知点P 在AB 的垂直平分线上.由点P 的横坐标为3,且PA 的方程为x -y +1=0,得P (3,4).直线PA ,PB 关于直线x =3对称,直线PA 上的点(0,1)关于直线x =3的对称点(6,1)在直线PB 上,∴直线PB 的方程为x +y -7=0.4.若在平面直角坐标系内过点P (1,3),且与原点的距离为d 的直线有两条,则d 的取值范围为________.解析:因为原点到点P 的距离为2,所以过点P 的直线与原点的距离都不大于2,故d ∈(0,2).答案:(0,2)5.如图,已知A (-2,0),B (2,0),C (0,2),E (-1,0),F (1,0),一束光线从F 点出发射到BC 上的D 点,经BC 反射后,再经AC 反射,落到线段AE 上(不含端点),则直线FD 的斜率的取值范围为________.解析:从特殊位置考虑.如图,∵点A (-2,0)关于直线BC :x +y =2的对称点为A 1(2,4),∴kA 1F =4.又点E (-1,0)关于直线AC :y =x +2的对称点为E 1(-2,1),点E 1(-2,1)关于直线BC :x +y =2的对称点为E 2(1,4),此时直线E 2F 的斜率不存在,∴k FD >kA 1F ,即k FD∈(4,+∞).答案:(4,+∞)6.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立);当P 与A 或B重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:5第三节 圆 的 方 程考纲要求:1.掌握确定圆的几何要素. 2.掌握圆的标准方程与一般方程. 1.圆的定义及方程(1)理论依据:点与圆心的距离与半径的大小关系. (2)三种情况圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0), ①(x 0-a )2+(y 0-b )2=r 2⇔点在圆上; ②(x 0-a )2+(y 0-b )2>r 2⇔点在圆外; ③(x 0-a )2+(y 0-b )2<r 2⇔点在圆内.[自我查验]1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)确定圆的几何要素是圆心与半径.( )(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( )(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4F >0.( )(4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( ) (5)已知圆的方程为x 2+y 2-2y =0,过点A (1,2)作该圆的切线只有一条.( ) 答案:(1)√ (2)√ (3)× (4)√ (5)×2.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是( )A .(-∞,-2)∪⎝ ⎛⎭⎪⎫23,+∞ B.⎝ ⎛⎭⎪⎫-23,0 C .(-2,0) D.⎝⎛⎭⎪⎫-2,23解析:选D 由题意知a 2+4a 2-4(2a 2+a -1)>0,解得-2<a <23.3.将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0 D .x -y +3=0解析:选C 要使直线平分圆,只要直线经过圆的圆心即可,圆心坐标为(1,2).A ,B ,C ,D 四个选项中,只有C 选项中的直线经过圆心.4.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是________. 解析:因为点(1,1)在圆(x -a )2+(y +a )2=4的内部,所以(1-a )2+(1+a )2<4. 即a 2<1,故-1<a <1. 答案:(-1,1)5.经过三点(2,-1)、(5,0)、(6,1)的圆的一般方程为________________. 解析:设所求方程为x 2+y 2+Dx +Ey +F =0, 则⎩⎪⎨⎪⎧22+-12+2D -E +F =0,52+02+5D +0+F =0,62+12+6D +E +F =0,解得⎩⎪⎨⎪⎧D =-4,E =-8,F =-5,故所求圆的一般方程为x 2+y 2-4x -8y -5=0. 答案:x 2+y 2-4x -8y -5=0[典题1] 根据下列条件,求圆的方程.(1)经过点A (5,2),B (3,-2),且圆心在直线2x -y -3=0上; (2)经过P (-2,4)、Q (3,-1)两点,并且在x 轴上截得的弦长等于6; (3)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2). [听前试做] (1)法一:由题意知k AB =2,AB 的中点为(4,0),设圆心为C (a ,b ), ∵圆过A (5,2),B (3,-2)两点, ∴圆心一定在线段AB 的垂直平分线上.则⎩⎪⎨⎪⎧b a -4=-12,2a -b -3=0,解得⎩⎪⎨⎪⎧a =2,b =1,∴C (2,1),∴r =|CA |=5-22+2-12=10.∴所求圆的方程为(x -2)2+(y -1)2=10. 法二:设圆的方程为(x -a )2+(y -b )2=r 2, 则⎩⎪⎨⎪⎧2a -b -3=0,5-a 2+2-b 2=r 2,3-a 2+-2-b 2=r 2,解得⎩⎨⎧a=2,b =1,r =10,故圆的方程为(x -2)2+(y -1)2=10.法三:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 则⎩⎪⎨⎪⎧25+4+5D +2E +F =0,9+4+3D -2E +F =0,2×⎝ ⎛⎭⎪⎫-D 2+E 2-3=0,解得⎩⎪⎨⎪⎧D =-4,E =-2,F =-5,∴所求圆的方程为x 2+y 2-4x -2y -5=0. (2)设圆的方程为x 2+y 2+Dx +Ey +F =0,将P 、Q 两点的坐标分别代入得⎩⎪⎨⎪⎧ 2D -4E -F =20,3D -E +F =-10.①②又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根, 由|x 1-x 2|=6有D 2-4F =36,④ 由①、②、④解得D =-2,E =-4,F =-8,或D =-6,E =-8,F =0.故所求圆的方程为x 2+y 2-2x -4y -8=0,或x 2+y 2-6x -8y =0. (3)法一:如图,设圆心(x 0,-4x 0),依题意得4x 0-23-x 0=1,∴x 0=1,即圆心坐标为(1,-4),半径r =22,故圆的方程为(x -1)2+(y +4)2=8. 法二:设所求方程为(x -x 0)2+(y -y 0)2=r 2,根据已知条件得⎩⎪⎨⎪⎧y 0=-4x 0,3-x 02+-2-y02=r 2,|x 0+y 0-1|2=r ,解得⎩⎨⎧x0=1,y 0=-4,r =2 2.因此所求圆的方程为(x -1)2+(y +4)2=8.求圆的方程的方法(1)方程选择原则求圆的方程时,如果由已知条件易求得圆心坐标、半径或需要用圆心坐标列方程,常选用标准方程;如果已知条件与圆心坐标、半径无直接关系,常选用一般方程.(2)求圆的方程的方法和步骤确定圆的方程的主要方法是待定系数法,大致步骤如下: ①根据题意,选择标准方程或一般方程;②根据条件列出关于a ,b ,r 或D ,E ,F 的方程组; ③解出a ,b ,r 或D ,E ,F 代入标准方程或一般方程.(2015·江苏高考)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________________.解析:直线mx -y -2m -1=0经过定点(2,-1).当圆与直线相切于点(2,-1)时,圆的半径最大,此时半径r 满足r 2=(1-2)2+(0+1)2=2.答案:(x -1)2+y 2=2与圆有关的最值问题也是命题的热点内容,它着重考查数形结合与转化思想.归纳起来常见的命题角度有:角度一:斜率型最值问题[典题2] 已知实数x ,y 满足方程x 2+y 2-4x +1=0,则y x的最大值为________,最小值为________.[听前试做] 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆.y x的几何意义是圆上一点与原点连线的斜率,所以设y x=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值(如图),此时|2k -0|k 2+1=3,解得k =±3,所以y x 的最大值为3,最小值为- 3.答案: 3 - 3 角度二:截距型最值问题[典题3] 在典题2条件下,求y -x 的最大值.[听前试做] 原方程可化为(x -2)2+y 2=3,表示圆心为(2,0),半径r = 3 的圆. 设y -x =b ,y -x 可看作是直线y =x +b 在y 轴上的截距,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2± 6.。
(全国通用版)2019版高考数学大一轮复习第九章平面解析几何第6节双曲线学案理新人教B版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考数学大一轮复习第九章平面解析几何第6节双曲线学案理新人教B版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考数学大一轮复习第九章平面解析几何第6节双曲线学案理新人教B版的全部内容。
第6节双曲线最新考纲了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).知识梳理1。
双曲线的定义平面内与两个定点F1,F2的距离差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹叫双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫焦距.其数学表达式:集合P ={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a〉0,c〉0:(1)若a〈c时,则集合P为双曲线;(2)若a=c时,则集合P为两条射线;(3)若a>c时,则集合P为空集。
2.双曲线的标准方程和几何性质标准方程x2a2-错误!=1(a>0,b>0)错误!-错误!=1(a>0,b〉0)图形性质范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±错误!x y=±错误!x离心率e=错误!,e∈(1,+∞)[常用结论与微点提醒]1.过双曲线的一个焦点且与实轴垂直的弦的长为2b2 a.2。
第九章 平面解析几何1. (原创)设m 为常数,则过点A (2,-1),B (2,m )的直线的倾斜角是 W. 答案:90°解析:因为过点A (2,-1),B (2,m )的直线x =2垂直于x 轴,故其倾斜角为90°. 2. (必修2P 80练习1改编)若过点M (-2,m ),N (m ,4)的直线的斜率等于1,则m 的值为 W.答案:1解析:由1=4-mm +2,得m +2=4-m ,解得m =1.3. (原创)若直线l 的斜率k 的变化范围是[-1,3],则它的倾斜角的变化范围是 W.答案:⎣⎢⎡⎦⎥⎤0,π3∪⎣⎢⎡⎭⎪⎫3π4,π 解析:由-1≤k≤3,即-1≤tan α≤3,∴ α∈⎣⎢⎡⎦⎥⎤0,π3∪⎣⎢⎡⎭⎪⎫3π4,π.4. (必修2P 80练习6改编)已知两点A (4,0),B (0,3),点C (8,a )在直线AB 上,则a = W.答案:-3解析:由k AB =k BC 得3-4=a -38,解得a =-3.5. (必修2P 80练习4改编)若直线l 沿x 轴的负方向平移2个单位,再沿y 轴的正方向平移3个单位后,又回到原来的位置,则直线l 的斜率为 W.答案:-32解析:设直线上任一点为(x ,y ),平移后的点为(x -2,y +3),利用斜率公式得直线l 的斜率为-32.1. 直线倾斜角的定义 在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴所在的直线绕着交点按逆时针方向旋转至和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角,并规定:与x 轴平行或重合的直线的倾斜角为0°;直线的倾斜角α的取值范围是[0,π)W.2. 直线斜率的定义倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率.直线的斜率常用k 表示,即k =tan α.由正切函数的单调性可知,倾斜角不同的直线其斜率也不同.3. 过两点的斜率公式过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线,当x 1≠x 2时,斜率公式为k =tan α=y 2-y 1x 2-x 1,该公式与两点的顺序无关;当x 1=x 2时,直线的斜率不存在,此时直线的倾斜角为90°W.[备课札记], 1 直线的倾斜角和斜率之间的关系), 1) 如果三条直线l 1,l 2,l 3的倾斜角分别为α1,α2,α3,其中l 1:x-y =0,l 2:x +2y =0,l 3:x +3y =0,则α1,α2,α3从小到大的排列顺序为 W.答案:α1<α2<α3解析:由tan α1=k 1=1>0,所以α1∈⎝ ⎛⎭⎪⎫0,π2.tan α2=k 2=-12<0,所以α2∈⎝ ⎛⎭⎪⎫π2,π,α2>α1.tan α3=k 3=-13<0,所以α3∈⎝ ⎛⎭⎪⎫π2,π,α3>α1,而-12<-13,正切函数在⎝ ⎛⎭⎪⎫π2,π上单调递增,所以α3>α2.综上,α1<α2<α3.变式训练已知经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 的值为 W.答案:-3解析:由2y +1-(-3)4-2=2y +42=y +2=tan 3π4,得y +2=-1,所以y =-3., 2 求直线的倾斜角和斜率) , 2) 已知两点A (-1,-5),B (3,-2),直线l 的倾斜角是直线AB倾斜角的一半,求直线l 的斜率.解:设直线l 的倾斜角为α,则直线AB 的倾斜角为2α,由题意可知tan 2α=34,∴ 2tan α1-tan 2α=34. 整理得3tan 2α+8tan α-3=0,解得tan α=13或tan α=-3.∵ tan 2α=34>0,∴ 0°<2α<90°,∴ 0°<α<45°,∴ tan α>0,故直线l 的斜率为13.变式训练如图,已知直线l 1的倾斜角α1=30°,直线l 1⊥l 2,求直线l 1,l 2的斜率.解:直线l 1的斜率k 1=tan α1=tan 30°=33. ∵ 直线l 2的倾斜角α2=90°+30°=120°,∴ 直线l 2的斜率k 2=tan 120°=tan (180°-60°)=-tan 60°=- 3. , 3 求直线的倾斜角和斜率的取值范围) , 3) 已知两点A (-3,4),B (3,2),过点P (1,0)的直线l 与线段AB 有公共点.(1) 求直线l 的斜率k 的取值范围; (2) 求直线l 的倾斜角α的取值范围. 解:如图,由题意可知,k PA =4-0-3-1=-1,k PB =2-03-1=1.(1) 要使直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是(-∞,-1]∪[1,+∞).(2) 由题意可知,直线l 的倾斜角介于直线PB 与PA 的倾斜角之间. 又PB 的倾斜角是45°,PA 的倾斜角是135°, 所以α的取值范围是[45°,135°]. 变式训练若直线mx +y +1=0与连结点A (-3,2),B (2,3)的线段相交,求实数m 的取值范围.解:直线的斜率为k =-m ,且直线经过定点P (0,-1),因为直线PA ,PB 的斜率分别为-1,2,所以斜率k 的取值范围是(-∞,-1]∪[2,+∞),即实数m 的取值范围是(-∞,-2]∪[1,+∞).1. 已知A (-1,23),B (0,3a ),C (a ,0)三点共线,则此三点所在直线的倾斜角α的大小是 W.答案:120°解析:若a =0,则点B ,C 重合,不合题意.由A ,B ,C 三点共线得k AB =k BC ,即3a -230+1=0-3a a -0,解得a =1,所以B (0,3).此三点所在直线的斜率k AB =3-230+1=-3,即tan α=- 3.又0°≤α<180°,所以α=120°.2. 直线xcos α+3y +2=0的倾斜角的取值范围是 .答案:⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π 解析:由直线的方程可知其斜率k =-cos α3∈⎣⎢⎡⎦⎥⎤-33,33.设直线的倾斜角为θ,则tan θ∈⎣⎢⎡⎦⎥⎤-33,33,且θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π. 3. 已知实数x ,y 满足y =-2x +8,且2≤x≤3,求yx的最大值和最小值.解:如图,由于点(x ,y )满足关系式2x +y =8,且2≤x≤3可知,点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别为A (2,4),B (3,2).由于y x 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以y x 的最大值为2,最小值为23.4. 已知直线kx +y -k =0与射线3x -4y +5=0(x≥-1)有交点,求实数k 的取值范围.解:kx +y -k =0⇒k (x -1)+y =0,直线过定点(1,0)⇒由题意作图可得:由题意可看出: k∈⎝ ⎛⎭⎪⎫-∞,-34∪⎣⎢⎡⎭⎪⎫14,+∞.(或者由两直线方程联立,消去y 得x =4k -53+4k ≥-1,即4k -14k +3≥0⇒k ≥14或k <-34)1. 已知x 轴上的点P 与点Q (-3,1)连线所成直线的倾斜角为30°,则点P 的坐标为 W.答案:(-23,0)解析:设P (x ,0),由题意得k PQ =tan 30°=33,即1-3-x =33,解得x =-23,故点P 的坐标为(-23,0).2. 如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则它们的大小关系为 W.答案:k 1<k 3<k 2 解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.3. 已知函数f (x )=asin x -bcos x.若f ⎝ ⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x ,则直线ax -by +c =0的倾斜角为 W.答案:3π4解析:由f ⎝ ⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x 知,函数f (x )的图象关于直线x =π4对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π2,所以-b =a ,所以直线ax -by +c =0的斜率为a b =-1.设直线ax -by +c =0的倾斜角为α,则tan α=-1,因为α∈[0,π),所以α=3π4,即直线ax -by +c =0的倾斜角为3π4.4. 若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是 W.答案:⎝ ⎛⎭⎪⎫π6,π2 解析:如图,直线l :y =kx -3过定点P (0,-3).又A (3,0),所以k PA =0-(-3)3-0=33,所以直线l 的斜率范围为⎝ ⎛⎭⎪⎫33,+∞,由于直线的倾斜角的取值范围为[0,π),所以满足条件的直线l 的倾斜角的范围是⎝ ⎛⎭⎪⎫π6,π2.1. 求斜率要熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2. 要正确理解倾斜角的定义,明确倾斜角的取值范围,倾斜角与斜率的关系是k =tanα(α≠90°),其中α为倾斜角,因此求倾斜角的取值范围通常需从斜率的范围入手,而求斜率的范围则常需考虑倾斜角的取值范围,但都需要利用正切函数的性质,借助图象或单位圆数形结合,注意直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k∈(-∞,0).第2课时 直线的方程(对应学生用书(文)123~124页、(理)128~129页)1. (必修2P 82练习1(1)~(4)改编)过点P (-2,0),且斜率为3的直线的方程是 W.答案:y =3x +6解析:设所求直线方程为y =3x +b ,由题意可知3×(-2)+b =0,∴ b =6,故y =3x +6.2. (必修2P 87练习4改编)如果ax +by +c =0表示的直线是y 轴,则系数a ,b ,c 满足条件 W.答案:a≠0且b =c =0解析:ax +by +c =0表示的直线是y 轴,即x =0,∴ b =c =0,a ≠0.3. (必修2P 87练习1改编)直线x 3-y4=1在两坐标轴上的截距之和为 W.答案:-1解析:令x =0,得y =-4;令y =0,得x =3. 故直线在两坐标轴上的截距之和为-4+3=-1.4. (必修2P 85练习4改编)下列说法中正确的是 W.(填序号) ① 经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示; ② 经过定点A (0,b )的直线都可以用方程y =kx +b 表示;③ 不经过原点的直线都可以用方程x a +yb=1表示;④ 经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.答案:④解析:对于①②,斜率有可能不存在,对于③,截距也有可能为0. 5. (必修2P 85练习2(2)(3)改编)若一直线经过点P (1,2),且在y 轴上的截距与直线2x +y +1=0在y 轴上的截距相等,则该直线的方程是 W.答案:3x -y -1=0解析:直线2x +y +1=0在y 轴上的截距为-1,由题意,所求直线过点(0,-1),又所求直线过点P (1,2),故由两点式得直线方程为y +12+1=x -01-0,即3x -y -1=0.1. 直线方程的五种形式111222(1) 当x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1W. (2) 当x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1W. (3) 当x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为x =0W. (4) 当x 1≠x 2,且y 1=y 2=0时,直线即为x 轴,方程为y =0W. (5) 直线的斜率k 与倾斜角α之间的关系如下表:若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式., 1 求直线方程), 1) 已知直线l 过点P (5,2),分别求满足下列条件的直线方程. (1) 直线l 在x 轴上的截距是在y 轴上的截距的2倍;(2) 直线l 与两坐标轴围成的三角形面积为52.解:(1) 当直线l 过原点时,直线l 的斜率为25,∴ 直线方程为y =25x ,即2x -5y =0;当直线l 不过原点时,设直线方程为x 2a +y a =1,将x =5,y =2代入得a =92,∴ 直线方程为x +2y -9=0.综上,直线l 的方程为2x -5y =0或x +2y -9=0. (2) 显然直线与坐标轴不垂直. ∵ 直线l 经过点P (5,2),且能与坐标轴围成三角形,∴ 可设直线l 的方程为y -2=k (x -5)(k≠0),则直线在x 轴上的截距为5-2k,在y 轴上的截距为2-5k ,由题意,得12|5-2k |·|2-5k|=52,即(5k -2)2=5|k|.当k>0时,原方程可化为(5k -2)2=5k ,解得k =15或k =45;当k<0时,原方程可化为(5k -2)2=-5k ,此方程无实数解;故直线l 的方程为y -2=15(x -5)或y -2=45(x -5),即x -5y +5=0或4x -5y -10=0.变式训练求过点(-3,4),且在两坐标轴上的截距之和为12的直线方程.解:由题设知截距不为0,设直线方程为x a +y 12-a =1,又直线过点(-3,4),从而-3a+412-a=1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. , 2 含参直线方程问题), 2) 已知直线l :kx -y +1+2k =0 (k∈R ). (1) 求证:直线l 过定点;(2) 若直线不经过第四象限,求k 的取值范围;(3) 若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,△AOB 的面积为S ,求S 的最小值并求此时直线l 的方程.(1) 证明:直线l 的方程是k (x +2)+(1-y )=0, 令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1, ∴ 无论k 取何值,直线l 总经过定点(-2,1).(2) 解:由方程知,当k≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k≥1,解得k>0;当k =0时,直线为y =1,符合题意,故k≥0.(3) 解:由l 的方程,得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k>0,解得k>0.∵ S =12·OA ·OB =12·⎪⎪⎪⎪⎪⎪-1+2k k ·|1+2k|=12·(1+2k )2k =12·⎝⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4,“=”成立的条件是k>0且4k =1k ,即k =12,∴ S min =4,此时l :x -2y +4=0. 变式训练已知直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y +6-2m =0. (1) 求实数m 的取值范围;(2) 若直线l 的斜率不存在,求实数m 的值;(3) 若直线l 在x 轴上的截距为-3,求实数m 的值; (4) 若直线l 的倾斜角是45°,求实数m 的值. 解:(1) 当x ,y 的系数不同时为零时,方程表示一条直线,令m 2-2m -3=0,解得m =-1或m =3;令2m 2+m -1=0解得m =-1或m =12.所以实数m 的取值范围是(-∞,-1)∪(-1,+∞).(2) 由(1)易知,当m =12时,方程表示的直线的斜率不存在.(3) 依题意,有2m -6m 2-2m -3=-3,所以3m 2-4m -15=0,所以m =3或m =-53,由(1)知所求m =-53.(4) 因为直线l 的倾斜角是45°,所以斜率为1.由-m 2-2m -32m 2+m -1=1,解得m =43或m =-1(舍去).所以当直线l 的倾斜角为45°时,m =43., 3 直线方程的综合应用), 3) 为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪(如图),另外△EFA 内部有一文物保护区不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大?解:如图,建立平面直角坐标系,则E (30,0),F (0,20),∴ 线段EF 的方程为x 30+y20=1(0≤x≤30).在线段EF 上取点P (m ,n ),作PQ⊥BC 于点Q ,PR ⊥CD 于点R , 设矩形PQCR 的面积为S , 则S =PQ·PR=(100-m )(80-n ).又m 30+n 20=1(0≤m≤30),∴ n =20⎝ ⎛⎭⎪⎫1-m 30.∴ S =(100-m )⎝⎛⎭⎪⎫80-20+23m =-23(m -5)2+18 0503(0≤m≤30).∴ 当m =5时,S 有最大值,∴ 当矩形草坪的两边在BC ,CD 上,一个顶点在线段EF 上,且这个顶点距AD 边5 m 时,草坪面积最大.备选变式(教师专享)如图,互相垂直的两条道路l 1,l 2相交于点O ,点P 与l 1,l 2的距离分别为2千米、3千米,过点P 建一条直线道路AB ,与l 1,l 2分别交于A ,B 两点.(1) 当∠BAO=45°时,试求OA 的长;(2) 若使△AOB 的面积最小,试求OA ,OB 的长.解:以l 1为x 轴,l 2为y 轴,建立平面直角坐标系,则O (0,0),P (3,2). (1) 由∠BAO=45°知,OA =OB ,可设A (a ,0),B (0,a )(a >0),直线l 的方程为x a +ya=1.∵ 直线l 过点P (3,2),∴ 3a +2a=1⇒a =5,即OA =5千米. (2) 设A (a ,0),B (0,b )(a >0,b >0),则直线l 的方程为x a +yb=1.∵ 直线l 过点P (3,2),∴ 3a +2b =1,b =2aa -3(a >3).从而S △ABO =12a ·b =12a ·2a a -3=a 2a -3,令a -3=t ,t >0,则a 2=(t +3)2=t 2+6t +9,故有S △ABO =t 2+6t +9t =t +9t +6(t >0).设f (t )=t +9t+6,可证f (t )在(0,3)上单调递减,在(3,+∞)上单调递增,∴ 当t =3时,f (t )min =f (3)=12,此时a =6,b =4,直线l 的方程为x 6+y4=1,即OA =6千米,OB =4千米.1. 若直线(2m 2+m -3)x +(m 2-m )y =4m -1 在x 轴上的截距为1,则实数m 的值是 W.答案:2或-12解析:令y =0,则(2m 2+m -3)x =4m -1,∴ x =4m -12m 2+m -3=1,∴ m =2或-12.2. 若方程(a 2-a -2)x +(a 2+a -6)y +a +1=0表示垂直于y 轴的直线,则a 为 W.答案:-1解析:因为方程表示垂直于y 轴的直线,所以a 2-a -2=0且a 2+a -6≠0,解得a =-1.3. 已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.当OA +OB 取得最小值时,直线l 的方程是 W.答案:x +y -2=0解析:设A (a ,0),B (0,b )(a>0,b>0),直线l 的方程为x a +yb=1,已知直线l 过点M (1,1),则OA +OB =a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a=b =2时取等号,此时直线l 的方程为x +y -2=0.4. 已知直线l 过点(0,5),且在两坐标轴上的截距之和为2,则直线l 的方程为 W.答案:5x -3y +15=0解析:∵ 直线过点(0,5),∴ 直线在y 轴上的截距为5. ∵ 在两坐标轴上的截距之和为2, ∴ 直线在x 轴上的截距为-3.∴ 直线l 的方程为x -3+y5=1,即5x -3y +15=0.5. 已知在△ABC 中,A (1,-4),B (6,6),C (-2,0).求(1) △ABC 中平行于BC 边的中位线所在直线的一般式方程和截距式方程; (2) BC 边的中线所在直线的一般式方程和截距式方程. 解:(1) 平行于BC 边的中位线就是AB ,AC 中点的连线.因为线段AB ,AC 中点坐标为⎝ ⎛⎭⎪⎫72,1,⎝ ⎛⎭⎪⎫-12,-2,所以这条直线的方程为y +21+2=x +1272+12,整理得6x -8y -13=0, 化为截距式方程为x 136-y138=1.(2) 因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1,即7x -y -11=0,化为截距式方程为x 117-y11=1.1. 若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则实数m 满足条件 W.答案:m≠1解析:2m 2+m -3,m 2-m 不能同时为0.2. 若直线(2t -3)x +2y +t =0不经过第二象限,则t 的取值范围是 W.答案:⎣⎢⎡⎦⎥⎤0,32 解析:直线方程可化为y =⎝ ⎛⎭⎪⎫32-t x -t 2,由题意得⎩⎪⎨⎪⎧32-t≥0,-t2≤0,解得0≤t≤32.3. 不论m 取何值,直线(m -1)x -y +2m +1=0恒过定点 . 答案:(-2,3)解析:把直线方程(m -1)x -y +2m +1=0, 整理得(x +2)m -(x +y -1)=0, 则⎩⎪⎨⎪⎧x +2=0,x +y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =3. 4. 已知直线x +2y =2与x 轴、y 轴分别相交于A ,B 两点.若动点P (a ,b )在线段AB 上,则ab 的最大值为 W.答案:12解析:由题意知A (2,0),B (0,1),所以线段AB 的方程可表示为x2+y =1,x ∈[0,2].又动点P (a ,b )在线段AB 上,所以a 2+b =1,a ∈[0,2].又a 2+b≥2ab 2,所以1≥2ab2,解得0≤ab≤12,当且仅当a 2=b =12,即P ⎝ ⎛⎭⎪⎫1,12时,ab 取得最大值12. 5. 已知两直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的交点为P (2,3),求过两点Q 1(a 1,b 1),Q 2(a 2,b 2)(a 1≠a 2)的直线方程.解:由题意,知P (2,3)在已知直线上, ∴ ⎩⎪⎨⎪⎧2a 1+3b 1+1=0,2a 2+3b 2+1=0, ∴ 2(a 1-a 2)+3(b 1-b 2)=0,即b 1-b 2a 1-a 2=-23,∴ 所求直线方程为y -b 1=-23(x -a 1),∴ 2x +3y -(2a 1+3b 1)=0,即2x +3y +1=0.1. 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况;而选用两点式时不要忽视与坐标轴垂直的情况.2. 解决直线方程的综合问题时,除灵活选择方程的形式外,还要注意题目中的隐含条件,若与最值或范围相关的问题可考虑构建目标函数进行转化求最值.[备课札记]第3课时 直线与直线的位置关系(对应学生用书(文)125~126页、(理)130~131页)1. (原创)“a=3”是“直线ax +3y =1与直线x +y =1平行”的 条件. 答案:充要解析:若a =3,直线ax +3y =1与直线x +y =1显然平行;若直线ax +3y =1与直线x+y =1平行,由a 1= 31 ≠ 11,易得a =3.2. (必修2P 93练习6改编)过点P (-1,3)且垂直于直线x -2y +3=0的直线方程为 W.答案:2x +y -1=0解析:设直线方程为2x +y +c =0,又直线过点P (-1,3),则-2+3+c =0,c =-1,即所求直线方程为2x +y -1=0.3. (必修2P 95练习3改编)若三条直线2x +3y +8=0,x -y -1=0和x +ky =0相交于一点,则k = W.答案:-12解析:由⎩⎪⎨⎪⎧2x +3y +8=0,x -y -1=0,解得⎩⎪⎨⎪⎧x =-1,y =-2, ∴ 点(-1,-2)在x +ky =0上,即-1-2k =0,∴ k =-12.4.(必修2P 105练习1改编)已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a .1解析:由题意知|a -2+3|2=1,∴ |a +1|= 2.又∵ a>0,∴ a =2-1.5. (必修2P 106习题10改编)与直线7x +24y =5平行,并且距离等于3的直线方程是 W.答案:7x +24y +70=0或7x +24y -80=0解析:设直线方程为7x +24y +c =0,则d =|c +5|242+72=3,∴ c =70或-80.1. 两条直线的位置关系设两条直线的方程是l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,两条直线的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.若方程组有惟一解,则两条直线相交,此解就是交点坐标W.若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.若方程组有无数组解,则两条直线重合W.3. 几种距离(1) 两点间的距离: 平面上的两点A (x 1,y 1),B (x 2,y 2)间的距离公式:d (A ,B )=AB =(x 1-x 2)2+(y 1-y 2)2. (2) 点到直线的距离:点P (x 1,y 1)到直线l :Ax +By +C =0的距离d =|Ax 1+By 1+C|A 2+B2. (3) 两条平行线间的距离:两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B2.4. 常见的三大直线系方程(1) 与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m∈R 且m≠C). (2) 与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m∈R ).(3) 过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.5. 中心对称(1) 点关于点对称:若点M (x 1,y 1)与N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2) 直线关于点对称问题的主要解法:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用l 1∥l 2,由点斜式得到所求的直线方程.6. 轴对称(1) 点关于直线的对称若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,则线段P 1P 2的中点在对称轴l 上,且连结P 1P 2的直线垂直于对称轴l ,由方程组⎩⎪⎨⎪⎧A ⎝ ⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,A (y 1-y 2)=B (x 1-x 2),可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中A≠0,x 1≠x 2).特别地,若直线l :Ax +By +C =0满足|A|=|B|,则P 1(x 1,y 1)与P 2(x 2,y 2)坐标关系为⎩⎪⎨⎪⎧Ax 1+By 2+C =0,Ax 2+By 1+C =0.(2) 直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[备课札记], 1 两直线的平行与垂直), 1) 已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值:(1) l 1⊥l 2,且直线l 1过点(-3,-1);(2) l 1∥l 2,且坐标原点到这两条直线的距离相等. 解:(1) ∵ l 1⊥l 2,∴ a (a -1)-b =0. ∵ 直线l 1过点(-3,-1),∴ -3a +b +4=0.故a =2,b =2. (2) ∵ 直线l 2的斜率存在,l 1∥l 2,∴ 直线l 1的斜率存在.∴ k 1=k 2,即ab=1-a.∵ 坐标原点到这两条直线的距离相等,∴ l 1,l 2在y 轴上的截距互为相反数,即4b=b.故a =2,b =-2或a =23,b =2.变式训练已知直线l 1经过点A (3,a ),B (a -1,2),直线l 2经过点C (1,2),D (-2,a +2),分别在下列条件下求a 的值:(1) l 1∥l 2; (2) l 1⊥l 2.解:设直线l 2的斜率为k 2,则k 2=2-(a +2)1-(-2)=-a3.(1) 若l 1∥l 2,则直线l 1的斜率k 1=-a3.又k 1=2-a a -4,则2-a a -4=-a 3,解得a =1或a =6.经检验,当a =1或a =6时,l 1∥l 2. (2) 若l 1⊥l 2.① 当k 2=0时,此时a =0,k 1=-12,不符合题意.② 当k 2≠0时,直线l 2的斜率存在,此时k 1=2-aa -4.由k 2k 1=-1,得-a 3·2-aa -4=-1,解得a =3或a =-4.经检验,当a =3或a =-4时,l 1⊥l 2. , 2 两直线的交点) , 2) 已知△ABC 的顶点B (3,4),AB 边上的高CE 所在直线方程为2x +3y -16=0,BC 边上的中线AD 所在直线方程为2x -3y +1=0,求AC 的长.解:∵ k CE = -23,AB ⊥CE ,∴ k AB =32, ∴ 直线AB 的方程为3x -2y -1=0.由⎩⎪⎨⎪⎧3x -2y -1=0,2x -3y +1=0,解得A (1,1), 设C (a ,b ), 则D ⎝ ⎛⎭⎪⎫3+a 2,4+b 2,∵ C 点在CE 上,BC 的中点D 在AD 上, ∴ ⎩⎪⎨⎪⎧2a +3b -16=0,2·3+a 2-3·4+b2+1=0,得C (5,2), 由两点间距离公式得AC 的长为17. 变式训练已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1),∴ l AC :2x +y -11=0.联立l AC ,l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴ C (4,3).设B (x 0,y 0),则AB 的中点M 为⎝ ⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0, ∴ ⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴ B (-1,-3), ∴ k BC =65,∴ 直线BC 的方程为y -3=65(x -4),即6x -5y -9=0., 3 点到直线及两平行直线之间的距离) , 3) 已知点P (2,-1).(1) 求过P 点且与原点距离为2的直线l 的方程;(2) 求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?(3) 是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1) 过P 点的直线l 与原点距离为2,而P 点坐标为(2,-1), 可见,过P (2,-1)且垂直于x 轴的直线满足条件. 此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知,得|-2k -1|k 2+1=2,解得k =34. 此时l 的方程为3x -4y -10=0.综上,直线l 的方程为x =2或3x -4y -10=0.(2) 过P 点与原点O 距离最大的直线是过P 点且与OP 垂直的直线,由l⊥OP,得k l k OP =-1,所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.即直线2x -y -5=0是过P 点且与原点O 距离最大的直线,最大距离为|-5|5= 5.(3) 不存在.理由:由(2)可知,过P 点不存在到原点距离大于5的直线,因此不存在过P 点且到原点距离为6的直线.备选变式(教师专享)已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点. (1) 若点A (5,0)到l 的距离为3,求直线l 的方程; (2) 求点A (5,0)到直线l 的距离的最大值. 解:(1) 由直线l 经过直线l 1与l 2交点知,其直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.∵ 点A (5,0)到直线l 的距离为3,∴ |10+5λ-5|(2+λ)2+(1-2λ)2=3, 即2λ2-5λ+2=0,∴ λ=2或λ=12,∴ 直线l 的方程为x =2或4x -3y -5=0.(2) 设直线l 1与l 2的交为P ,由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得P (2,1),如图,过点P 作任一直线l ,设d 为点A 到l 的距离,则d≤PA(当l⊥PA 时等号成立).∴ d max =PA =(5-2)2+(0-1)2=10., 4 对称问题), 4) 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1) 点A 关于直线l 的对称点A′的坐标;(2) 直线m :3x -2y -6=0关于直线l 的对称直线m′的方程; (3) 直线l 关于点A (-1,-2)对称的直线l′的方程. 解:(1) 设A′(x ,y ),由已知得 ⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.∴ A ′⎝ ⎛⎭⎪⎫-3313,413. (2) 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m′上.设对称点为M′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,解得M′⎝ ⎛⎭⎪⎫613,3013. 设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,解得N (4,3).∵ m ′经过点N (4,3),∴ 由两点式得直线m′的方程为9x -46y +102=0.(3) 设P (x ,y )为l′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P′(-2-x ,-4-y ).∵ P ′在直线l 上,∴ 2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0. 备选变式(教师专享) 光线通过点A (2,3),在直线l :x +y +1=0上反射,反射光线经过点B (1,1),试求入射光线和反射光线所在直线的方程.解:设点A (2,3)关于直线l 的对称点为A′(x 0,y 0),则⎩⎪⎨⎪⎧2+x 02+3+y 02+1=0,y 0-3x 0-2=1,解得A′(-4,-3).由于反射光线经过点A′(-4,-3)和B (1,1),所以反射光线所在直线的方程为y -1-3-1=x -1-4-1,即4x -5y +1=0.解方程组⎩⎪⎨⎪⎧4x -5y +1=0,x +y +1=0,得反射点P ⎝ ⎛⎭⎪⎫-23,-13.所以入射光线所在直线的方程为y -3-13-3=x -2-23-2,即5x -4y +2=0.1. (2016·上海卷文)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2.解析:利用两平行线间距离公式得d =|-1-1|22+12=255. 2. 将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(m ,n )重合,则m +n 的值是 W.答案:345解析:点(0,2)与点(4,0)关于y -1=2(x -2)对称,则点(7,3)与点(m ,n )也关于y -1=2(x -2)对称,则⎩⎪⎨⎪⎧n +32-1=2⎝ ⎛⎭⎪⎫m +72-2,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315.∴ m +n =345.3. 已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,直线l 1的方程是 .答案:x +2y -3=0解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x-1),即x +2y -3=0.4. 在平面直角坐标系中,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是 W.答案:(2,4) 解析:设P 为平面上一点,则由三角形两边之和大于第三边知PA +PC≥AC,PB +PD≥BD,所以四边形ABCD 对角线的交点到四点距离之和最小,直线AC 的方程为y -2=2(x -1),直线BD 的方程为y -5=-(x -1),由⎩⎪⎨⎪⎧y -2=2(x -1),y -5=-(x -1),得交点坐标为(2,4).5. △ABC 的两条高所在直线的方程分别为2x -3y +1=0和x +y =0,顶点A 的坐标为(1,2),求BC 边所在直线的方程.解:可以判断A 不在所给的两条高所在的直线上,则可设AB ,AC 边上的高所在直线的方程分别为2x -3y +1=0,x +y =0,则可求得AB ,AC 边所在直线的方程分别为y -2=-32(x -1),y -2=x -1,即3x +2y -7=0,x -y +1=0. 由⎩⎪⎨⎪⎧3x +2y -7=0,x +y =0,得B (7,-7), 由⎩⎪⎨⎪⎧x -y +1=0,2x -3y +1=0,得C (-2,-1), 所以BC 边所在直线的方程为2x +3y +7=0.1. 在平面直角坐标系xOy 中,直线l :(2k -1)x +ky +1=0,则当实数k 变化时,原点O 到直线l 的距离的最大值为 W.答案: 5解析:直线l 过定点P (1,-2),原点O 到直线l 的距离的最大值即为OP =12+(-2)2= 5.2. 若过点P (1,2)作一直线l ,使点M (2,3)和点N (4,-1)到直线l 的距离相等,则直线l 的方程为 W.答案:2x +y -4=0或x +2y -5=0解析:当直线l 经过MN 的中点时,其方程为x +2y -5=0;当过M ,N 两点的直线平行于直线l 时,直线l 的方程为2x +y -4=0.3. 已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是 W.答案:⎝ ⎛⎭⎪⎫-16,12解析:由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴ 交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.∵ 交点位于第一象限,∴ ⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.∴ 实数k 的取值范围是⎝ ⎛⎭⎪⎫-16,12. 4. 已知直线l 1:2x -y -2=0和直线l 2:x +2y -1=0关于直线l 对称,则直线l 的斜率为 W.答案:-3或13解析:(解法1)在直线l 上任取一点P (x ,y ),点P 到直线l 1和直线l 2的距离相等.|2x -y -2|22+(-1)2=|x +2y -1|12+22,整理得,直线l 的方程为3x +y -3=0或x -3y -1=0,所以直线l 的斜率为-3或13.(解法2)设l 1的倾斜角为α.因为l 1⊥l 2,所以l 的倾斜角为α±π4,所以直线l 的斜率为tan ⎝⎛⎭⎪⎫α±π4. 因为tan α=2,所以tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tanπ41-tan αtanπ4=-3,tan ⎝⎛⎭⎪⎫α-π4=tan α-tanπ41+tan αtanπ4=13, 所以直线l 的斜率为-3或13.1. 在两条直线的位置关系中,讨论最多的还是平行与垂直,它们是两条直线的特殊位置关系.解题时认真画出图形,有助于快速准确地解决问题.判断两直线平行与垂直时,不要忘记考虑斜率不存在的情形,利用一般式则可避免分类讨论.2. 运用公式d =|C 1-C 2|A 2+B2求两平行直线间的距离时,一定要把x ,y 项系数化为相等的系数.3. 对称思想是高考热点,主要分为中心对称和轴对称两种,关键要把握对称问题的本质,必要情况下可与函数的对称轴建立联系.[备课札记]第4课时 圆 的 方 程(对应学生用书(文)127~128页、(理)132~133页)1. (必修2P 111练习4改编)圆x 2+y 2-4x +6y =0的圆心坐标是 W. 答案:(2,-3)解析:由(x -2)2+(y +3)2=13知,圆心坐标为(2,-3). 2. (必修2P 111习题7改编)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的标准方程为 W.答案:(x -2)2+y 2=10解析:设圆心坐标为(a ,0),易知(a -5)2+(-1)2=(a -1)2+(-3)2,解得a =2,∴ 圆心为(2,0),半径为10,∴ 圆C 的标准方程为(x -2)2+y 2=10.3. (必修2P 111练习6改编)经过三点A (1,-1),B (1,4),C (4,-2)的圆的一般方程为 W.答案:x 2+y 2-7x -3y +2=0解析:设圆的一般方程为x 2+y 2+Dx +Ey +F =0.将A ,B ,C 三点代入,整理得方程组⎩⎪⎨⎪⎧D -E +F =-2,D +4E +F =-17,4D -2E +F =-20,解得⎩⎪⎨⎪⎧D =-7,E =-3,F =2,∴ 所求圆的一般方程为x 2+y 2-7x -3y +2=0.4. 已知点P (1,1)在圆x 2+y 2-ax +2ay -4=0的内部,则a 的取值范围是 W. 答案:(-∞,2)解析:由圆的一般方程知a∈R ,因为点P 在圆内,所以1+1-a +2a -4<0,解得a<2.5. (原创)已知实数x ,y 满足x 2+(y +3)2=4,则(x -3)2+(y -1)2的最大值为 W.答案:49解析:(x -3)2+(y -1)2表示圆x 2+(y +3)2=4上一动点P (x ,y )到点(3,1)的距离d 的平方,因为圆心(0,-3)到点(3,1)的距离为5,所以d 的最大值为5+2=7,所以d 2的最大值为49.1. 圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径W.2. 圆的标准方程(1) 以(a ,b )为圆心,r (r>0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2W.(2) 特殊的,x 2+y 2=r 2(r>0)的圆心为(0,0),半径为r W. 3. 圆的一般方程方程x 2+y 2+Dx +Ey +F =0变形为⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F 4. (1) 当D 2+E 2-4F>0时,该方程表示以⎝ ⎛⎭⎪⎫-D 2,-E 22(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝ ⎛⎭⎪⎫-D 2,-E 2;(3) 当D 2+E 2-4F <0时,该方程不表示任何图形.4. 点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系:(1) 若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2W.(2) 若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2W.(3) 若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2W. [备课札记]1 确定圆的方程) 1) 求经过点A (-2,-4),且与直线l :x +3y -26=0相切于点B (8,6)的圆的方程.解:(解法1)设圆心为C ,所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心C ⎝ ⎛⎭⎪⎫-D2,-E 2,∴ k CB =6+E 28+D 2.∵ 圆C 与直线l 相切,∴ k CB ·k l =-1,即6+E 28+D 2·⎝ ⎛⎭⎪⎫-13=-1 ①.又有(-2)2+(-4)2-2D -4E +F =0 ②,又82+62+8D +6E +F =0 ③.联立①②③,可得D =-11,E =3,F =-30,∴ 所求圆的方程为x 2+y 2-11x +3y -30=0. (解法2)设圆的圆心为C ,则CB⊥l, 可得CB 所在直线的方程为y -6=3(x -8),即3x -y -18=0 ①. 由A (-2,-4),B (8,6),得AB 的中点坐标为(3,1).又k AB =6+48+2=1,∴ AB 的垂直平分线的方程为y -1=-(x -3), 即x +y -4=0 ②.由①②联立,解得⎩⎪⎨⎪⎧x =112,y =-32.即圆心坐标为⎝ ⎛⎭⎪⎫112,-32.∴ 所求圆的半径r =⎝ ⎛⎭⎪⎫112-82+⎝ ⎛⎭⎪⎫-32-62=1252, ∴ 所求圆的方程为⎝⎛⎭⎪⎫x -1122+⎝ ⎛⎭⎪⎫y +322=1252.变式训练圆经过点A (2,-3)和B (-2,-5). (1) 若圆的面积最小,求圆的方程;(2) 若圆心在直线x -2y -3=0上,求圆的方程. 解:(1) 要使圆的面积最小,则AB 为圆的直径,圆心C (0,-4),半径r =12AB =5,所以所求圆的方程为x 2+(y +4)2=5.(2) 因为k AB =12,AB 中点为(0,-4),所以AB 中垂线方程为y +4=-2x ,即2x +y +4=0,解方程组⎩⎪⎨⎪⎧2x +y +4=0,x -2y -3=0,得⎩⎪⎨⎪⎧x =-1,y =-2.所以圆心为(-1,-2).根据两点间的距离公式,得半径r =10,因此,所求的圆的方程为(x +1)2+(y +2)2=10.备选变式(教师专享) 已知一圆的圆心在原点,且圆周被直线3x +4y +15=0分成1∶2两部分,求圆的方程. 解:如图,因为圆周被直线3x +4y +15=0分成1∶2两部分,所以∠AOB=120°,而圆心O (0,0)到直线3x +4y +15=0的距离d =1532+42=3,在△AOB 中,可求得OA =6,所以所求圆的方程为x 2+y 2=36., 2 与参数有关的圆方程问题), 2) 已知圆C 的方程x 2+y 2-2ax +2y +a +1=0.(1) 若圆C 上任意点A 关于l :x +2y -5=0的对称点也在圆上,求实数a 的值;(2) 求圆心C 到直线ax +y -a 2=0的距离的取值范围.解:(1) 将圆C 的方程配方得(x -a )2+(y +1)2=a 2-a.由题意知圆心C (a ,-1)在直线l :x +2y -5=0上,即a -2-5=0,所以a =7.(2) 由圆方程可知, a 2-a >0,解得a >1或a <0.由方程得圆心C (a ,-1)到直线ax +y -a 2=0的距离d =|a 2-1-a 2|a 2+1=1a 2+1.因为a >1或a <0,所以a 2+1>1,所以0<d <1,所以所求距离的取值范围为(0,1).变式训练已知圆C :(x -a )2+(y -b )2=1,设平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为 W. 答案:37解析:作出可行域,如图,由题意知,圆心为C (a ,b ),半径r =1,且圆C 与x 轴相切,所以b =1.而直线y =1与可行域边界的交点为A (6,1),B (-2,1),目标函数z =a 2+b 2表示点C 到原点距离的平方,所以当点C 与点A 重合时,z 取到最大值,z max =37.备选变式(教师专享)设△ABC 顶点坐标为A (0,a ),B (-3a ,0),C (3a ,0),其中a>0,圆M 为△ABC 的外接圆.(1) 求圆M 的方程;(2) 当a 变化时,圆M 是否过某一定点,请说明理由.解:(1) 设圆M 的方程为x 2+y 2+Dx +Ey +F =0. ∵ 圆M 过点A (0,a ),B (-3a ,0),C (3a ,0)∴ ⎩⎨⎧a 2+aE +F =0,3a -3aD +F =0,3a +3aD +F =0,解得⎩⎪⎨⎪⎧D =0,E =3-a ,F =-3a ,∴ 圆M 的方程为x 2+y 2+(3-a )y -3a =0.(2) 圆M 的方程可化为(3+y )a -(x 2+y 2+3y )=0. 由⎩⎪⎨⎪⎧3+y =0,x 2+y 2+3y =0,解得⎩⎪⎨⎪⎧x =0,y =-3. ∴ 圆M 过定点(0,-3)., 3 圆方程的应用), 3) 如图,某市有一条东西走向的公路l ,现欲经过公路l 上的O 处铺设一条南北走向的公路m.在施工过程中发现在O 处的正北1百米的A 处有一汉代古迹.为了保护古迹,该市决定以A 为圆心,1百米为半径设立一个圆形保护区.为了连通公路l ,m ,欲再新建一条公路PQ ,点P ,Q 分别在公路l ,m 上(点P ,Q 分别在点O 的正东,正北方向上),且要求PQ 与圆A 相切.(1) 当点P 距O 处2百米时,求OQ 的长; (2) 当公路PQ 长最短时,求OQ 的长.。
专题探究课五高考导航 1.圆锥曲线是平面解析几何的核心部分,也是高考必考知识,主要以一个小题一个大题的形式呈现,难度中等偏上;2.高考中的选择题或填空题主要考查圆锥曲线的基本性质,高考中的解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高.热点一 定点定值问题(教材VS 高考)定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.命题角度1 圆锥曲线中定点问题【例1-1】 (满分12分)(2017·全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.教材探源 本题第(1)问源于教材选修2-1P40例1,主要考查利用待定系数法及方程思想求曲线方程.本题第(2)问源于教材选修2-1P41例3,主要考查利用坐标法研究几何问题,充分考查学生解决综合问题的能力.满分解答 (1)解 由于点P 3,P 4关于y 轴对称,由题设知C 必过P 3,P 4.又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.1分 (得分点1)因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.3分 (得分点2)故C 的方程为x 24+y 2=1.5分 (得分点3)(2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2. 如果直线l 的斜率不存在,l 垂直于x 轴. 设l :x =m ,A (m ,y A ),B (m ,-y A ),k 1+k 2=y A -1m +-y A -1m =-2m=-1,得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足. 6分 (得分点4)从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0.7分 (得分点5)由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.8分 (得分点6)则k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. ∴(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.10分 (得分点7)解之得m =-2k -1,此时Δ=32(m +1)>0,方程有解, ∴当且仅当m >-1时,Δ>0,11分 (得分点8) ∴直线l 的方程为y =kx -2k -1,即y +1=k (x -2). 当x =2时,y =-1,所以l 过定点(2,-1). 12分 (得分点9)❶得步骤分:抓住得分点的解题步骤,“步步为赢”,在第(1)问中,分析隐含信息,列出方程组,求出方程.在第(2)问中,分类讨论设出直线方程→联立方程→写出根与系数的关系→利用公式化简求解.❷得关键分:(1)列出方程组.(2)直线方程.(3)韦达定理.(4)斜率公式.都是不可少的过程,有则给分,无则没分.❸得计算分:解题过程中的计算准确是得满分的根本保证,如(得分点3),(得分点5),(得分点7).解答圆锥曲线中的定点问题的一般步骤第一步:研究特殊情形,从问题的特殊情形出发,得到目标关系所要探求的定点. 第二步:探究一般情况.探究一般情形下的目标结论. 第三步:下结论,综合上面两种情况定结论. 命题角度2 圆锥曲线中的定值问题【例1-2】 (2017·唐山一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点Q ⎝ ⎛⎭⎪⎫b ,a b 在椭圆上,O 为坐标原点. (1)求椭圆C 的方程;(2)已知点P ,M ,N 为椭圆C 上的三点,若四边形OPMN 为平行四边形,证明四边形OPMN 的面积S 为定值,并求该定值.(1)解 ∵椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,∴e 2=c 2a 2=a 2-b 2a 2=12,得a 2=2b 2,①又点Q ⎝⎛⎭⎪⎫b ,a b在椭圆C 上,∴b 2a 2+a 2b4=1,② 联立①、②得a 2=8,且b 2=4. ∴椭圆C 的方程为x 28+y 24=1.(2)证明 当直线PN 的斜率k 不存在时,PN 方程为x =2或x =-2,从而有|PN |=23, 所以S =12|PN |·|OM |=12×23×22=26;当直线PN 的斜率k 存在时,设直线PN 方程为y =kx +m (m ≠0),P (x 1,y 1),N (x 2,y 2), 将PN 的方程代入椭圆C 的方程, 整理得(1+2k 2)x 2+4kmx +2m 2-8=0,所以x 1+x 2=-4km 1+2k 2,x 1·x 2=2m 2-81+2k2,y 1+y 2=k (x 1+x 2)+2m =2m1+2k2, 由OM →=OP →+ON →,得M ⎝ ⎛⎭⎪⎫-4km 1+2k 2,2m 1+2k 2. 将M 点坐标代入椭圆C 方程得m 2=1+2k 2. 又点O 到直线PN 的距离为d =|m |1+k2,|PN |=1+k 2|x 1-x 2|,所以S =d ·|PN |=|m |·|x 1-x 2|=1+2k 2·(x 1+x 2)2-4x 1x 2=48k 2+242k 2+1=2 6. 综上,平行四边形OPMN 的面积S 为定值2 6. 探究提高 1.求定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.【训练1】 (2017·菏泽调研)已知焦距为22的椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点为A ,直线y =43与椭圆C 交于P ,Q 两点(P 在Q 的左边),Q 在x 轴上的射影为B ,且四边形ABPQ是平行四边形. (1)求椭圆C 的方程;(2)斜率为k 的直线l 与椭圆C 交于两个不同的点M ,N .若M 是椭圆的左顶点,D 是直线MN 上一点,且DA ⊥AM .点G 是x 轴上异于点M 的点,且以DN 为直径的圆恒过直线AN 和DG 的交点,求证:点G 是定点. (1)解 设坐标原点为O ,∵四边形ABPQ 是平行四边形,∴|AB →|=|PQ →|,∵|PQ →|=2|OB →|,∴|AB →|=2|OB →|,则点B 的横坐标为a 3,∴点Q 的坐标为⎝ ⎛⎭⎪⎫a 3,43,代入椭圆C 的方程得b 2=2,又c 2=2,∴a 2=4,即椭圆C 的方程为x 24+y 22=1.(2)证明 设直线MN 的方程为y =k (x +2),N (x 0,y 0),DA ⊥AM ,∴D (2,4k ).由⎩⎪⎨⎪⎧x 24+y 22=1,y =k (x +2),消去y 得(1+2k 2)x 2+8k 2x +8k 2-4=0, 则-2x 0=8k 2-41+2k 2,即x 0=2-4k 21+2k2,∴y 0=k (x 0+2)=4k 1+2k 2,则N ⎝ ⎛⎭⎪⎫2-4k 21+2k 2,4k 1+2k 2,设G (t ,0),则t ≠-2,若以DN 为直径的圆恒过直线AN 和DG 的交点,则DG ⊥AN ,∴GD →·AN →=0恒成立.∵GD →=(2-t ,4k ),AN →=⎝ ⎛⎭⎪⎫-8k 21+2k 2,4k 1+2k 2,∴GD →·AN →=(2-t )·-8k 21+2k 2+4k ·4k 1+2k 2=0恒成立,即8k 2t1+2k2=0恒成立, ∴t =0,∴点G 是定点(0,0).热点二 圆锥曲线中的范围(最值)问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.【例2】 (2018·石家庄质检)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,且长轴长为8,T 为椭圆上一点,直线TA ,TB 的斜率之积为-34.(1)求椭圆C 的方程;(2)设O 为原点,过点M (0,2)的动直线与椭圆C 交于P ,Q 两点,求OP →·OQ →+MP →·MQ →的取值范围.解 (1)设T (x ,y ),则当x ≠±4时,直线TA 的斜率为k 1=y x +4,直线TB 的斜率为k 2=yx -4.于是由k 1k 2=-34,得y x +4·y x -4=-34,整理得x 216+y212=1,而点(-4,0)和(4,0)也满足此方程,故椭圆C 的方程为x 216+y 212=1. (2)当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +2,点P ,Q 的坐标分别为(x 1,y 1),(x 2,y 2),直线PQ 与椭圆方程联立⎩⎪⎨⎪⎧x 216+y 212=1,y =kx +2消去y 得(4k 2+3)x 2+16kx -32=0,则x 1+x 2=-16k 4k 2+3,x 1x 2=-324k 2+3,从而OP →·OQ →+MP →·MQ →=x 1x 2+y 1y 2+[x 1x 2+(y 1-2)·(y 2-2)]=2(1+k 2)x 1x 2+2k (x 1+x 2)+4=-80k 2-524k 2+3=-20+84k 2+3, ∴-20<OP →·OQ →+MP →·MQ →≤-523,当直线PQ 斜率不存在时,OP →·OQ →+MP →·MQ →的值为-20. 综上所述OP →·OQ →+MP →·MQ →的取值范围为⎣⎢⎡⎦⎥⎤-20,-523. 探究提高 求圆锥曲线中范围、最值的主要方法:(1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形性质数形结合求解.(2)代数法:若题目中的条件和结论能体现一种明确的函数关系,或者不等关系,或者已知参数与新参数之间的等量关系等,则利用代数法求参数的范围.【训练2】 (2018·合肥质检)设直线l 与抛物线x 2=2y 交于A ,B 两点,与椭圆x 24+y 23=1交于C ,D 两点,直线OA ,OB ,OC ,OD (O 为坐标原点)的斜率分别为k 1,k 2,k 3,k 4.若OA ⊥OB . (1)是否存在实数t ,满足k 1+k 2=t (k 3+k 4),并说明理由; (2)求△OCD 面积的最大值. 解 设直线l 的方程为y =kx +b ,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4).联立⎩⎪⎨⎪⎧y =kx +b ,x 2=2y ,得x 2-2kx -2b =0,则x 1+x 2=2k ,x 1x 2=-2b ,Δ1=4k 2+8b >0. 因为OA ⊥OB ,所以x 1x 2+y 1y 2=0,得b =2.联立⎩⎪⎨⎪⎧y =kx +2,3x 2+4y 2=12得(3+4k 2)x 2+16kx +4=0,所以x 3+x 4=-16k 3+4k 2,x 3x 4=43+4k2,由Δ2=192k 2-48>0得k 2>14.(1)存在实数t .因为k 1+k 2=y 1x 1+y 2x 2=k ,k 3+k 4=y 3x 3+y 4x 4=-6k , 所以k 1+k 2k 3+k 4=-16,即t =-16. (2)根据弦长公式|CD |=1+k 2|x 3-x 4|得 |CD |=43·1+k 2·4k 2-13+4k2,根据点O 到直线CD 的距离公式得d =21+k2,所以S △OCD =12|CD |·d =43·4k 2-13+4k 2,设4k 2-1=m >0,则S △OCD =43m m 2+4≤3,所以当m =2,即k =±52时,S △OCD 有最大值 3. 热点三 圆锥曲线中的探索性问题圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.【例3】 (2018·沈阳调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且过点P ⎝ ⎛⎭⎪⎫1,32,F 为其右焦点.(1)求椭圆C 的方程;(2)设过点A (4,0)的直线l 与椭圆相交于M ,N 两点(点M 在A ,N 两点之间),是否存在直线l 使△AMF 与△MFN 的面积相等?若存在,试求直线l 的方程;若不存在,请说明理由.解 (1)因为c a =12,所以a =2c ,b =3c ,设椭圆方程x 24c 2+y 23c2=1,又点P ⎝ ⎛⎭⎪⎫1,32在椭圆上,所以14c 2+34c 2=1, 解得c 2=1,a 2=4,b 2=3, 所以椭圆方程为x 24+y 23=1.(2)易知直线l 的斜率存在,设l 的方程为y =k (x -4),由⎩⎪⎨⎪⎧y =k (x -4),x 24+y 23=1,消去y 得(3+4k 2)x 2-32k 2x +64k 2-12=0,由题意知Δ=(32k 2)2-4(3+4k 2)(64k 2-12)>0, 解得-12<k <12.设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=32k23+4k 2,①x 1x 2=64k 2-123+4k2.②因为△AMF 与△MFN 的面积相等, 所以|AM |=|MN |,所以2x 1=x 2+4.③ 由①③消去x 2得x 1=4+16k23+4k2.④将x 2=2x 1-4代入②,得x 1(2x 1-4)=64k 2-123+4k 2.⑤将④代入到⑤式,整理化简得36k 2=5. ∴k =±56,经检验满足题设 故直线l 的方程为y =56(x -4)或y =-56(x -4). 探究提高 1.此类问题一般分为探究条件、探究结论两种.若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,不成立则不存在;若探究结论,则应先求出结论的表达式,再针对其表达式进行讨论,往往涉及对参数的讨论.2.求解步骤:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在,否则,元素(点、直线、曲线或参数)不存在.【训练3】 (2018·衡水联考)在平面直角坐标系xOy 中,过点C (2,0)的直线与抛物线y 2=4x 相交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2). (1)(一题多解)求证:y 1y 2为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长;如果不存在,说明理由. (1)证明 法一 当直线AB 垂直于x 轴时,y 1=22,y 2=-2 2.因此y 1y 2=-8(定值). 当直线AB 不垂直于x 轴时, 设直线AB 的方程为y =k (x -2),由⎩⎪⎨⎪⎧y =k (x -2),y 2=4x ,得ky 2-4y -8k =0. ∴y 1y 2=-8.因此有y 1y 2=-8为定值.法二 设直线AB 的方程为my =x -2,由⎩⎪⎨⎪⎧my =x -2,y 2=4x ,得y 2-4my -8=0. ∴y 1y 2=-8.因此有y 1y 2=-8为定值.(2)解 设存在直线l :x =a 满足条件, 则AC 的中点E ⎝⎛⎭⎪⎫x 1+22,y 12,|AC |=(x 1-2)2+y 21. 因此以AC 为直径的圆的半径r =12|AC |=12(x 1-2)2+y 21=12x 21+4, 又点E 到直线x =a 的距离d =⎪⎪⎪⎪⎪⎪x 1+22-a故所截弦长为2r 2-d 2=214(x 21+4)-⎝⎛⎭⎪⎫x 1+22-a 2 =x 21+4-(x 1+2-2a )2=-4(1-a )x 1+8a -4a 2.当1-a =0,即a =1时,弦长为定值2,这时直线方程为x =1.1.在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 解 (1)由题设可得M (2a ,a ),N (-2a ,a ), 或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a(x -2a ), 即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a . 从而k 1+k 2=y 1-b x 1+y 2-bx 2 =2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a. 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.2.(2018·东北三省四校联考)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 解 (1)设F (c ,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2).将y =kx -2代入x 24+y 2=1, 得(1+4k 2)x 2-16kx +12=0.当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1. 从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1. 又点O 到直线PQ 的距离d =2k 2+1. 所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1. 设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t. 因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0. 所以当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 3.(2018·新乡模拟)已知抛物线C :x 2=2py (p >0)的焦点为F ,直线2x -y +2=0交抛物线C于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q .(1)D 是抛物线C 上的动点,点E (-1,3),若直线AB 过焦点F ,求|DF |+|DE |的最小值;(2)是否存在实数p ,使|2QA →+QB →|=|2QA →-QB →|?若存在,求出p 的值;若不存在,说明理由.解 (1)∵直线2x -y +2=0与y 轴的交点为(0,2),∴F (0,2),则抛物线C 的方程为x 2=8y ,准线l :y =-2.设过D 作DG ⊥l 于G ,则|DF |+|DE |=|DG |+|DE |,当E ,D ,G 三点共线时,|DF |+|DE |取最小值2+3=5.(2)假设存在,抛物线x 2=2py 与直线y =2x +2联立方程组得: x 2-4px -4p =0,设A (x 1,y 1),B (x 2,y 2),Δ=(4p )2+16p =16(p 2+p )>0,则x 1+x 2=4p ,x 1x 2=-4p ,∴Q (2p ,2p ).∵|2QA →+QB →|=|2QA →-QB →|.则QA →·QB →=0,得(x 1-2p )(x 2-2p )+(y 1-2p )(y 2-2p )=(x 1-2p )(x 2-2p )+(2x 1+2-2p )(2x 2+2-2p )=5x 1x 2+(4-6p )(x 1+x 2)+8p 2-8p +4=0,代入得4p 2+3p -1=0,解得p =14或p =-1(舍去). 因此存在实数p =14,且满足Δ>0,使得|2QA →+QB →|=|2QA →-QB →|成立. 4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,四个顶点构成的菱形的面积是4,圆M :(x +1)2+y 2=r 2(0<r <1).过椭圆C 的上顶点A 作圆M 的两条切线分别与椭圆C 相交于B ,D 两点(不同于点A ),直线AB ,AD 的斜率分别为k 1,k 2.(1)求椭圆C 的方程;(2)当r 变化时,①求k 1·k 2的值;②试问直线BD 是否过某个定点?若是,求出该定点;若不是,请说明理由.解 (1)由题设知,ca =32,12×2a ×2b =4,又a 2-b 2=c 2,解得a =2,b =1. 故所求椭圆C 的方程是x 24+y 2=1. (2)AB :y =k 1x +1,则有|k 1-1|1+k 21=r ,化简得(1-r 2)k 21-2k 1+1-r 2=0. 对于直线AD :y =k 2x +1,同理有(1-r 2)k 22-2k 2+1-r 2=0,于是k 1,k 2是方程(1-r 2)k 2-2k +1-r 2=0的两实根,故k 1·k 2=1.考虑到r →1时,D 是椭圆的下顶点,B 趋近于椭圆的上顶点,故BD 若过定点,则猜想定点在y 轴上. 由⎩⎪⎨⎪⎧y =k 1x +1,x 24+y 2=1,得(4k 21+1)x 2+8k 1x =0, 于是有B ⎝ ⎛⎭⎪⎫-8k 14k 21+1,-4k 21+14k 21+1, D ⎝ ⎛⎭⎪⎫-8k 24k 22+1,-4k 22+14k 22+1. 直线BD 的斜率为k BD =k 1+k 2-3,直线BD 的方程为y --4k 21+14k 21+1=k 1+k 2-3⎝ ⎛⎭⎪⎫x --8k 14k 21+1, 令x =0,得y =-4k 21+14k 21+1+k 1+k 2-3·8k 14k 21+1=20k 21+5-3(4k 21+1)=-53. 故直线BD 过定点⎝ ⎛⎭⎪⎫0,-53. 5.(2018·临沂质检)已知圆x 2+y 2=1过椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点,与椭圆有且仅有两个公共点,直线l :y =kx +m 与圆x 2+y 2=1相切,与椭圆x 2a 2+y 2b 2=1相交于A ,B 两点.记λ=OA →·OB →,且23≤λ≤34. (1)求椭圆的方程;(2)求k 的取值范围;(3)求△OAB 的面积S 的取值范围.解 (1)由题意知2c =2,所以c =1.因为圆与椭圆有且只有两个公共点,从而b =1,故a =2,所以所求椭圆方程为x 22+y 2=1. (2)因为直线l :y =kx +m 与圆x 2+y 2=1相切,所以原点O 到直线l 的距离为|m |12+k 2=1,即m 2=k 2+1.由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1, 得(1+2k 2)x 2+4kmx +2m 2-2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k 2. λ=OA →·OB →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=k 2+11+2k 2,由23≤λ≤34,得12≤k 2≤1, 即k 的取值范围是⎣⎢⎡⎦⎥⎤-1,-22∪⎣⎢⎡⎦⎥⎤22,1. (3)|AB |2=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2-2(2k 2+1)2, 由12≤k 2≤1,得62≤|AB |≤43. 设△OAB 的AB 边上的高为d ,则S =12|AB |d =12|AB |,所以64≤S ≤23. 即△OAB 的面积S 的取值范围是⎣⎢⎡⎦⎥⎤64,23. 6.(2018·大连双基测试)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点F 1与抛物线y 2= -4x 的焦点重合,椭圆E 的离心率为22,过点M (m ,0)作斜率存在且不为0的直线l ,交椭圆E 于A ,C 两点,点P ⎝ ⎛⎭⎪⎫54,0,且PA →·PC →为定值. (1)求椭圆E 的方程;(2)求m 的值.解 (1)设F 1(-c ,0),由抛物线y 2=-4x 的焦点坐标(-1,0),且椭圆E 的左焦点F 1与抛物线y 2=-4x 的焦点重合,所以c =1.又椭圆E 的离心率为e =22,得a =2, 于是有b 2=a 2-c 2=1,故椭圆E 的方程为x 22+y 2=1. (2)设直线l 方程为y =k (x -m ),A (x 1,y 1),C (x 2,y 2), 由⎩⎪⎨⎪⎧x 22+y 2=1,y =k (x -m )消y 整理得(1+2k 2)x 2-4mk 2x +2k 2m 2-2=0,x 1+x 2=4mk 21+2k 2,x 1·x 2=2m 2k 2-21+2k2. PA →·PC →=⎝ ⎛⎭⎪⎫x 1-54⎝ ⎛⎭⎪⎫x 2-54+y 1y 2 =⎝ ⎛⎭⎪⎫x 1-54⎝ ⎛⎭⎪⎫x 2-54+k 2(x 1-m )(x 2-m )=(1+k 2)x 1x 2-⎝ ⎛⎭⎪⎫54+mk 2(x 1+x 2)+2516+k 2m 2=(3m 2-5m -2)k 2-21+2k 2+2516. 要使PA →·PC →为定值,则3m 2-5m -2=-4,即3m 2-5m +2=0,解得m =1或23,此时点M (m ,0)在椭圆E 内部,故m 的值为1或23.。