a
x3 x2
x1
25
第四章 优选法基础
点x3应在点x2左侧.因为如果点x3在点
x2的右侧,那么当x3是好点, x2是差点时,要
舍去区间[a, x2],而它的长度与上次舍去的
区间( x1, b]的长度相同, 违背成比例舍去的
原则.于是, 不论点x3(或点x2)是好点还是 差点, 被舍去的区间长度都等于x1 - x2.按
A
C ED
B
10
第四章 优选法基础
注意
这个方法色要点是每个试点都去在因 素范围的中点,将因素范围对分为两半, 所以这个方法就称为对分法.用这种方法 做试验的优化速度最快,每次可以去掉 一半.
11
第四章 优选法基础
平分法的作法
平分法的作法为:总是在试验范围的中点 安排试验,中点公式为:
中点= a+b 2
18
第四章 优选法基础
例如,假设因素区间为[0, 1],取两个试点 2/10、1/10,那么对峰值在(0, 1/10)中的单峰函 数,两次试验便去掉了长度为4/5的区间(图1); 但对于峰值在(2/10, 1)的函数,只能去掉长度为 1/10的区间(图2),试验效率就不理想了。
19
第四章 优选法基础
34
第四章 优选法基础
下面我们通过例子来说明它的 具体操作方法.
案例:炼钢时通过加入含有特定化学 元素的材料,使炼出的钢满足一定的 指标要求.假设为了炼出某种特定用途 的钢,每吨需要加入某种元素的量在 1000g到2000g之间,问如何通过实验 的方法找到它的最优加入量?
35
第四章 优选法基础
最朴素的想法就是以1g为间隔, 从1001开始一直到1999,把 1000~2000g间所有的可能性都做一遍 试验,就一定能找到最优值.这种方法 称为均分法.但这样要做1000次试验, 在时间、人力和物力上都是一种浪费. 用0.618法,可以更快、更有效地找出 最佳点.具体操作方法如下: