八年级数学《线段垂直平分线角平分线》练习题
- 格式:doc
- 大小:283.50 KB
- 文档页数:4
2020-2021学年八年级数学下册期末综合复习专题提优训练(北师大版)专题02 垂直平分线与角平分线【典型例题】1.如图,△ABC 中,△ABC =25°,△ACB =55°,DE ,FG 分别为AB ,AC 的垂直平分线,E ,G 分别为垂足; (1)直接写出△BAC 的度数;(2)求△DAF 的度数;(3)若BC 的长为30,求△DAF 的周长.【答案】(1)100BAC ∠=︒;(2)20DAF ∠=︒;(3)30DAF C =【分析】 (1)由题意直接根据三角形内角和定理计算,得到答案;(2)由题意根据线段垂直平分线的性质、等腰三角形的性质计算;(3)根据线段垂直平分线的性质、三角形的周长公式计算,得到答案.【详解】解:(1)△△ABC +△ACB +△BAC =180°,△△BAC =180°﹣25°﹣55°=100°;(2)△DE 是线段AB 的垂直平分线,△DA =DB ,△△DAB =△ABC =25°,△FG 是线段AC 的垂直平分线,△AF =CF ,△△F AC =△ACB =55°,△△DAF =△BAC ﹣△DAB ﹣△F AC =100°﹣25°﹣55°=20°;(3)△BC =30,由(2)可知, AD =BD ,F A =FC ,△C △DAF =AD +DF +F A =BD +DF +FC =BC =30.【点睛】本题考查的是线段的垂直平分线的性质以及三角形内角和定理,等腰三角形性质,熟练掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.【专题训练】一、选择题1.如图,在Rt ABC 中,90,B AD ∠=︒平分BAC ∠,交BC 于点D ,DE AC ⊥,垂足为点E ,若1BD =,则DE 的长为( )A .12B .1C .2D .6【答案】B【分析】根据△B =90°,AD 平分△BAC ,DE △AC ,再根据角平分线的性质得到DE =BD =1.【详解】△90B ∠=︒,△DB AB ⊥,又△AD 平分BAC ∠,DA AC ⊥,△由角平分线的性质得1DE BD ==. 故选:B【点睛】本题主要考查了角平分线的性质,灵活运用角平分线的性质处理问题.2.如图,在ABC 中,直线ED 是线段BC 的垂直平分线,直线ED 分别交BC 、AB 于点D 、点E ,已知BD =3,ABC 的周长为20,则AEC 的周长为( )A .14B .20C .16D .12【答案】A【分析】 根据线段的垂直平分线的性质得到EC =EB ,BC =2BD =6,根据三角形的周长公式计算即可.【详解】△ED 是线段BC 的垂直平分线,△EC =EB ,BC =2BD =6,△△ABC 的周长为20,△AB +AC +BC =20,△AB +AC =14,△△AEC 的周长=AC +AE +EC =AC +AE +EB =AC +AB =14,故选:A .【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.3.如图,在ABC 中,AD BC ⊥,垂足为D ,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,BD DE =,若ABC 的周长为26cm ,5AF =cm ,则DC =( )A .8cmB .7cmC .10cmD .9cm【答案】A【分析】根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,能推出2DE+2EC=16,即可求解.【详解】解:△AD△BC,BD=DE,EF垂直平分AC△AB=AE=EC△△ABC周长是26cm,AF=5cm△AC=10cm△AB+BC=16cm△AB+BE+EC=16cm即2DE+2EC=16cm△DE+EC=8cm△DC=DE+EC=8cm故选A.【点睛】本题主要考查了等腰三角形的性质,线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端的距离相等时解题的关键.4.如图,在Rt△ABC中,△ACB=90°,AC=3,BC=4,BE平分△ABC,CD△AB于D,BE与CD相交于F,则CF的长是()A.1B.43C.53D.2【答案】B【分析】过点E作EG△AB于点G,由EG△AB,CD△AB,可得EG△CD,由平行线的性质可得△GEB=△EFC;在Rt△ABC 中,由勾股定理求得AB的值;由HL判定Rt△EBC△Rt△EBG,由全等三角形的性质可得△CEB=△EFC及AG 的值,进而可判定CF=CE.设CF=EG=EC=x,则AE=3-x,在Rt△AEG中,由勾股定理得关于x的方程,解得x 的值即为CF 的长.【详解】解:过点E 作EG △AB 于点G ,如图:△CD △AB 于D ,△EG △CD ,△△GEB =△EFC ,△在Rt △ABC 中,△ACB =90°,△EC △CB ,又△BE 平分△ABC ,EG △AB ,△EG =EC .在Rt △ABC 中,△ACB =90°,AC =3,BC =4,△AB =5.在Rt △EBC 和Rt △EBG 中,EB EB EC EG=⎧⎨=⎩, △Rt △EBC △Rt △EBG (HL ),△CEB =△GEB ,BG =BC =4,△△CEB =△EFC ,AG =AB ﹣BG =5﹣4=1,△CF =CE .设CF =EG =EC =x ,则AE =3﹣x ,在Rt △AEG 中,由勾股定理得:(3﹣x )2=x 2+12,解得x =43△CF 的长是43.故选:B.【点睛】本题考查了勾股定理、角平分线的性质定理及等腰三角形的判定等知识点,数形结合并熟练掌握相关性质及定理是解题的关键.5.如图,在△ABC中,△B=15°,△C=30°,MN是AB的垂直平分线,PQ是AC的垂直平分线,已知S△ANQ则BC的长为()A B.3C.3D.2+【答案】B【分析】根据线段垂直平分线的性质得出AQ=CQ,BN=AN,根据等腰三角形的性质和已知条件得出△BAN=△B=15°,△CAQ=△C=30°,根据三角形外角性质得出△ANQ=△B+△BAN=30°,△AQN=△C+△CAQ=60°,求出△NAQ=90°,再根据三角形的面积求出AQ,最后求出BC即可.【详解】解:△MN是AB的垂直平分线,PQ是AC的垂直平分线,△AQ=CQ,BN=AN,△△B=15°,△C=30°,△△BAN=△B=15°,△CAQ=△C=30°,△△ANQ=△B+△BAN=15°+15°=30°,△AQN=△C+△CAQ=30°+30°=60°,△△NAQ=180°﹣△ANQ﹣△AQN=90°,△NQ=2AQ,AN==,△S△ANQ=,2△12⨯AQ 解得:AQ =1(负数舍去),即CQ =AQ =1,AN =BN NQ =2AQ =2,△BC =BN +NQ +CQ 2+1=3故选:B .【点睛】本题考查了含30°角的直角三角形的性质,线段垂直平分线的性质,勾股定理,三角形的面积,三角形的外角性质,等腰三角形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键.二、填空题6.如图,在△ABC 中,△C =90°,AP 平分△CAB ,且PC =3,PB =5,则点P 到边AB 的距离是 ______________【答案】3【分析】作PH △AB 于H .直接根据角平分线的性质求解即可.【详解】解:作PH △AB 于H ,如图,△AP 平分△CAB ,且△C =90°,△3PH PC ==,即点P 到边AB 的距离是3.故答案为3.【点睛】此题主要考查了角平分线的性质,熟练掌握角平分线性质定理是解答此题的关键.7.如图,在△ABC 中,△C =90°,DE 垂直平分斜边AB ,分别交AB 、BC 于D 、E ,若△CAB =△B +28°,则△CAE=__.【答案】28︒【分析】先根据直角三角形的两锐角互余可得31,59B CAB ∠=︒∠=︒,再根据垂直平分线的性质可得AE BE =,然后根据等腰三角形的性质可得31B BAE ∠=∠=︒,最后根据角的和差即可得.【详解】解:△在ABC 中,90C ∠=︒,△90CAB B ∠+∠=︒,又△28CAB B ∠=∠+︒,△31,59B CAB ∠=︒∠=︒,△DE 垂直平分斜边AB ,△AE BE =,△31BAE B ∠=∠=︒,△593128CAE CAB BAE ∠=∠-∠=︒-︒=︒,故答案为:28︒.【点睛】本题考查了直角三角形的两锐角互余、等腰三角形的性质、线段垂直平分线的性质等知识点,熟练掌握等腰三角形的性质和线段垂直平分线的性质是解题关键.8.如图,在△ABC 中,AB =6,AC =8,BC =11,AB 的垂直平分线分别交AB ,BC 于点D 、E ,AC 的垂直平分线分别交AC ,BC 于点F 、G ,则△AEG 的周长为__.【答案】11.【分析】根据线段垂直平分线的性质可得EA=EB,GA=GC,所以可求出△AEG的周长.【详解】解△DE是线段AB的垂直平分线,△EA=EB,同理,GA=GC,△△AEG的周长=AE+EG+GA=EB+EG+GC=BC=11,故答案为:11.【点睛】本题考查了线段垂直平分线的性质.线段垂直平分线上的点到线段两端点的距离相等.9.如图,在四边形ABCD中,△A=90°,AD= 6,连接BD,BD△CD,△ADB=△C.若P是BC边上一动点,则DP长的最小值为__________.【答案】6【分析】根据垂线段最短得出当DP△BC时,DP的长度最小,求出△ABD=△CBD,根据角平分线的性质得出AD=DP=6,即可得出选项.【详解】解:△BD△CD,△△BDC=90°,△△C+△CBD=90°,△△A=90°△△ABD+△ADB=90°,△△ADB=△C,△△ABD=△CBD,当DP△BC时,DP的长度最小,△AD△AB,△DP=AD,△AD=6,△DP的最小值是6,故答案为:6.【点睛】本题考查了角平分线的性质,三角形内角和定理和垂线段最短等知识点,能知道当DP△BC时,DP的长度最小是解此题的关键.10.如图,等腰三角形ABC的面积为24,底边BC为12,点P在边BC上,且BP:PC=3:1,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDP周长的最小值为___________.【答案】8.【分析】如图作AH△BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DP+DC=AD+DP,可得当A、D、P共线时,DP+DC的值最小,最小值就是线段AP的长,此时,△CDP周长的最小,求出AP的长即可.【详解】解:如图作AH△BC于H,连接AD.△EG垂直平分线段AC,△DA=DC,△DP+DC=AD+DP,△当A、D、P共线时,DP+DC的值最小,最小值就是线段AP的长,△12×12•AH=24,△AH=4,△AB=AC,AH△BC,△BH=CH=6,△BP:PC=3:1,△CP=PH=3,△AP5,△DP+DC的最小值为5.△△CDP周长的最小值为5+3=8;故答案为:8.【点睛】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质、勾股定理等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.三、解答题11.如图,在△ABC中,AB=AC,BE平分△ABC,DE△BC,交AB于点D,交AC于点E.(1)求证:BD=DE;(2)若△DEB=30°且DE=3,求AD的长度.【答案】(1)见解析;(2)3.【分析】(1)由BE平分△ABC,DE△BC可得△DBE=△DEB,可得结论;(2)通过证明△ADE为等边三角形,可得AD=DE=3.【详解】证明:(1)△BE平分△ABC,△△ABE=△EBC,△DE△BC,△△DEB=△EBC,△△DBE=△DEB,△BD=DE;(2)△△DEB=△DBE=30°=△EBC,△△ABC=60°,△AB=AC,△△ABC是等边三角形,△△ABC=△ACB=△A=60°,△DE△BC,△△ADE=△ABC=60°,△AED=△C=60°,△△ADE是等边三角形,△AD=DE=3.【点睛】本题考查了等腰三角形的性质,角平分线的性质,平行线的性质,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.,的垂直平分线交于点P.12.如图,ABC中,边AB BC==.(1)求证:PA PB PC(2)点P是否也在边AC的垂直平分线上?请说明理由.【答案】(1)见解析;(2)在,理由见解析【分析】(1)根据线段的垂直平分线的性质可求得,P A=PB,PB=PC,则P A=PB=PC.(2)根据线段的垂直平分线的性质的逆定理,可得点P在边AC的垂直平分线上.【详解】解:(1)证明:△边AB、BC的垂直平分线交于点P,△P A=PB,PB=PC.△P A=PB=PC.(2)△P A=PC,△点P 在边AC 的垂直平分线上.【点睛】此题主要考查线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.13.如图,AD 为△ABC 的角平分线,DE △AB 于点E ,DF △AC 于点F ,连接EF 交AD 于点O .(1)求证:△DEF =△DFE ;(2)求证:AD 垂直平分EF .【答案】(1)见解析;(2)见解析【分析】(1)根据角平分线的性质证明即可得解;(2)根据已知条件证明Rt △AED △Rt △AFD (HL )和△△DEO DFO ≅即可得解;【详解】(1)△AD 为△ABC 的角平分线,DE △AB ,DF △AC ,△DE =DF ,△△DEF =△DFE ;(2)根据已知条件可得△AED =△AFD =90°,在Rt △AED 和Rt △AFD 中,DE DF AD AD=⎧⎨=⎩, △Rt △AED △Rt △AFD (HL ),△△ADE =△ADF ;在△DEO 和△DFO 中, DEO DFO DE DFEDO FDO ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△△DEO DFO ≅,△EO FO =,EOD FOD ∠=∠,△∠EOD +∠FOD =180°,△∠EOD =∠FOD =90°,△AD 垂直平分EF .【点睛】本题主要考查了角平分线的垂直平分线的判定与性质,结合等三角形证明是解题的关键.14.如图,在ABC 中,AB AC =,AB 的垂直平分线交AB 于M ,交AC 于N .(1)若70ABC ∠=︒,求A ∠的度数;(2)连接NB ,若8cm AB =,NBC 的周长是14cm ,求BC 的长.【答案】(1)40°;(2)6cm【分析】(1)由AB =AC 可得△C =△ABC =70°,由三角形内角和可得△A =40°;(2)由(1)可知BN =AN ,由此可得BN +NC =AN +NC =AC =AB =8cm ,再由C △BNC =BN +CN +BC =14cm ,可得BC =14-8=6(cm ).【详解】解:(1)△AB =AC ,△△ABC =△ACB =70°,△△A =180°-70°-70°=40°;(2)MN 是AB 的垂直平分线,△AN =BN ,△BN +CN =AN +CN =AC ,△AB =AC =8cm ,△BN +CN =8cm ,△C △BNC =BN +CN +BC =14(cm ),△BC =14﹣8=6(cm ).【点睛】本题考查等腰三角形性质,三角形内角和,线段垂直平分线性质,三角形周长,掌握等腰三角形性质,三角形内角和,线段垂直平分线性质,三角形周长是解题关键.15.如图,△ABC 中,AD 平分△BAC ,DG △BC 且平分BC ,DE △AB 于E ,DF △AC 于F .(1)求证:BE =CF ;(2)如果AB =8,AC =6,求AE ,BE 的长.【答案】(1)证明见解析,(2)AE =7,BE =1.【分析】(1)连接DB 、DC ,先由角平分线的性质就可以得出DE =DF ,再证明△DBE △△DCF 就可以得出结论; (2)由条件可以得出△ADE △△ADF 就可以得出AE =AF ,进而就可以求出结论.【详解】解:(1)证明:连接DB 、DC ,△DG △BC 且平分BC ,△DB =DC .△AD 为△BAC 的平分线,DE △AB ,DF △AC ,△DE =DF .在Rt △DBE 和Rt △DCF 中DB DC DE DF =⎧⎨=⎩, Rt △DBE △Rt △DCF (HL ),△BE =CF .(2)在Rt △ADE 和Rt △ADF 中AD AD DE DF =⎧⎨=⎩,△Rt△ADE△Rt△ADF(HL).△AE=AF.△AC+CF=AF,△AE=AC+CF.△AE=AB﹣BE,△AC+CF=AB﹣BE,△AB=8,AC=6,△6+BE=8﹣BE,△BE=1,△AE=8﹣1=7.即AE=7,BE=1.【点睛】本题考查了角平分线的性质的运用,中垂线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.16.如图,已知Rt△ABC中,△ACB=90°,CD△AB于点D,△BAC的平分线分别交BC,CD于点E、F.(1)试说明△CEF是等腰三角形;(2)若点E恰好在线段AB的垂直平分线上,猜想:线段AC与线段AB的数量关系,并说明理由;(3)在(2)的条件下,若AC=2.5,求△ABE的面积.【答案】(1)见解析;(2)AB=2AC,理由见解析;(3)12【分析】(1)求出△B=△ACD,根据三角形的外角性质求出△CFE=△CEF,根据等腰三角形的判定得出即可;(2)求出△B=△CAE=△BAE,根据三角形内角和定理求出△B=30°,再求出答案即可;(3)求出高EM的长,求出AB的长,再根据三角形的面积公式求出即可.【详解】解:(1)△CD△AB,△△CDB=90°,△△B+△BCD=90°,△△ACB=90°,△△ACD+△BCD=90°,△△ACD=△B,△AE平分△BAC,△△CAE=△BAE,△△ACD+△CAE=△B+△BAE,即△CFE=△CEF,△CF=CE,即△CEF是等腰三角形;(2)AB=2AC,理由是:△E在线段AB的垂直平分线上,△AE=BE,△△B=△BAE,△△CAE=△BAE,△ACB=90°,△3△B=90°,△△B=30°,△AB=2AC;(3)△AC=2.5,△AB=2AC=5,由(2)得,△CAB=60°,△AE平分△CAB,△△CEA =30°,设CE 为x ,则AE 为2x ,AC ,x ,过E 作EM △AB 于M ,△EM =CE =6,△△ABE 的面积S =12AB EM ⋅=12⨯5. 【点睛】本题考查勾股定理、等腰三角形的判定、含30°角的直角三角形的性质,解题关键是熟练运用所学知识,整合已知条件,解决综合问题.17.如图1,在△ABC 中,AD △BC ,垂足为D ,E 为AC 上一点,BE 交AD 于点F ,△ABC =45°,FD =CD . (1)请写出BE 与AC 的位置关系,并说明理由;(2)如图2,连接DE ,求证:△BED =△DEC ;(3)若AD =4,CD =2,在直线BC 上方的平面内是否存在点P ,使得△BFP 为等腰直角三角形.若存在,请直接写出点P 到直线BC 的距离.【答案】(1)BE △AC ,见解析;(2)见解析;(3)存在,4或6或3【分析】(1)证明△BDF △△ADC ,得到△DBF =△DAC ,由△BFD =△AFE 证得△BDF =△AEF =90°,即可得到结论;(2)过点D 作DM △AC ,DN △BE ,根据△BDF △△ADC ,得到BF =AC ,BDF ADC SS =,推出DM =DN ,证得ED 平分△BEC ,由此得到结论;(3)根据勾股定理求出AC 由△BDF △△ADC ,得到BF =AC =DF =DC =2,BD =AD =4,分三种情况:当△PBF =90°,BP =BF 时, 当△P ′FB =90°,P ′F =BF 时, 当△BP ″F =90°,BP ″=FP ″时, 根据等腰直角三角形的性质解答即可.【详解】(1)证明:如图①中,△AD △BC ,△△ADB =90°,△△ABC =45°,△△ABD =△BAD =45°,△BD =DA ,△DF =DC ,△BDF =△ADC =90°,△△BDF △△ADC (SAS ).△△DAC =△CBE ,△△BFD =△AFE ,△△BDF =△AEF =90°,△BE △AC .(2)解:如图,过点D 作DM △AC ,DN △BE ,△△BDF △△ADC ,△BF =AC ,BDF ADC SS =,△DM =DN ,△ED 平分△BEC ,△△BED =△DEC ;(3)解:如图2-1中,满足条件的点P 有3个.在Rt △ADC 中,△AD =4,CD =2,△AC ,△△BDF △△ADC ,△BF =AC =DF =DC =2,BD =AD =4,当△PBF =90°,BP =BF 时,作PM △CB 交CB 的延长线于M . 易证△PMB △△BDF ,△PM =BD =4,△点P 到直线BC 的距离为4;当△P ′FB =90°,P ′F =BF 时,作P ′H △BC 于H ,FG △P ′H 于G . 易证:P ′G =BD =4,GH =DF =2,△P ′H =4+2=6,△P ′到直线BC 的距离为6;当△BP ″F =90°,BP ″=FP ″时,作P ″N △BC 于N .易证P ″N =2PM DF +=3,△P″到直线BC的距离为3,综上所述,满足条件的点P到直线BC的距离为4或6或3.【点睛】此题考查全等三角形的判定及性质,等腰直角三角形的性质,勾股定理,角平分线的判定及性质,熟记各定理并熟练应用解决问题是解题的关键.18.在△ABC中,若AD是△BAC的角平分线,点E和点F分别在AB和AC上,且DE△AB,垂足为E,DF△AC,垂足为F(如图(1)),则可以得到以下两个结论:①△AED+△AFD=180°;②DE=DF.那么在△ABC中,仍然有条件“AD是△BAC的角平分线,点E和点F,分别在AB和AC上”,请探究以下两个问题:(1)若△AED+△AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.(2)若DE=DF,则△AED+△AFD=180°是否成立?(只写出结论,不证明)【答案】(1)DE=DF,理由见解析;(2)不一定成立【分析】(1)过点D作DM△AB于M,DN△AC于N,DM=DN,△DME△△DNF,DE=DF;(2)如图,若DE、DF在点D到角的两边的垂线段与顶点A的同侧则一定不成立;【详解】(1)DE=DF.理由如下:过点D作DM△AB于M,DN△AC于N,△AD平分△BAC,DM△AB,DN△AC,△DM=DN,△△AED+△AFD=180°,△AFD+△DFN=180°,△△DFN=△AED,△△DME△△DNF(AAS),△DE=DF;(2)不一定成立.如图,若DE、DF在点D到角的两边的垂线段与顶点A的同侧则一定不成立,经过(1)的证明,若在垂线段上或两侧则成立,所以不一定成立..【点睛】本题主要考查角平分线的性质,难点在于熟练和灵活的应用角平分线要点;19.根据图片回答下列问题.(1)如图①,AD平分△BAC,△B+△C=180°,△B=90°,易知:DB____DC.(2) 如图②,AD平分△BAC,△ABD+△ACD=180°,△ABD<90°,求证:DB=DC.(3)如图③,四边形ABCD中,△B=45°△C=135°,DB=DC AB−AC=________.【答案】(1)=;(2)见解析;(3)【分析】(1)利用HL判断出△ADC△△ADC,即可得出结论;(2)先构造出△ACD△△AED,得出DC=DE,△AED=△C,在判断出DE=DB,即可得出结论;(3)利用(2)结论得出DE=DB,再判断出△BDE=90°,利用勾股定理求出BE即可得出结论.【详解】解:证明:(1)△△B+△C=180°,△B=90°,△△C=90°,△AD平分△BAC,△△DAC=△BAD,△AD=AD,△△ACD△△ABD(AAS),△BD=CD;(2)如图②,在AB边上取点E,使AC=AE,△AD平分△BAC,△△CAD=△EAD,△AD=AD,AC=AE,△△ACD△△AED(SAS),△DC=DE,△AED=△C,△△C+△B=180°,△AED+△DEB=180°,△△DEB=△B,△DE=DB,△DB=DC;(3)如图③,连接AD,在AB上取一点E使AE=AC,同(2)的方法得,AE =AC ,CD =DE =BD =2,△△DEB =△B =45°,△△BDE =90°,根据勾股定理得,BE =,△AB -AC =BE =故答案为:【点睛】本题是四边形综合题,考查全等三角形的判定和性质,角平分线的性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.20.如图①,△ABC 中,△ABC ,△ACB 的平分线交于O 点,过O 点作BC 平行线交AB ,AC 于E ,F . (1)试说明:EO =BE ;(2)探究图①中线段EF 与BE ,CF 间的关系,并说明理由;(3)探究图②,△ABC 中若△ABC 的平分线与△ABC 的外角平分线交于O ,过点O 作BC 的平行线交AB 于E ,交AC 于F ,这时EF 与BE ,CF 的关系又如何?请直接写出关系,不需要说明理由.【答案】(1)证明见解析;(2)EF BE CF =+,理由见解析;(3)EF BE CF =-【分析】(1)由题意易得△EOB =△EBO ,△ABO =△OBC ,则有△EOB =△ABO ,进而问题得证;(2)由题意易得△FOC =△OCB ,△FCO =△OCB ,则有△FCO =△FOC ,然后可得CF =OF ,由(1)得BE =OE ,进而问题可求解;(3)同理(1)(2)可得:BE=OE,CF=OF,然后问题可求解.【详解】证明:(1)△EF△BC,△△EOB=△EBO,△BO平分△ABC,△△ABO=△OBC,△△EOB=△ABO,△BE=OE;=+,理由如下:(2)解:EF BE CF△EF△BC,△△FOC=△OCB,△CO平分△ACB,△△FCO=△OCB,△△FCO=△FOC,△CF=OF,由(1)得:BE=OE,△EF=BE+CF;(3)解:EF=BE-CF,理由如下:同理(1)(2)可得:BE=OE,CF=OF,△EF=OE-OF=BE-CF.【点睛】本题主要考查角平分线的定义及平行线的性质,熟练掌握角平分线的定义及平行线的性质是解题的关键,也要熟练掌握“双平等腰”模型.。
线段的垂直平分线第1课时线段垂直平分线的性质定理及其逆定理1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.已知线段PA=3 cm,则线段PB的长为()A.6 cm B.5 cmC.4 cm D.3 cm第1题图第2题图2.如图,AB是CD的垂直平分线.若AC=2.3 cm,BD=1.6 cm,则四边形ACBD的周长是()A.3.9 cm B.7.8 cmC.4 cm D.4.6 cm3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.若BC=6,AC =5,则△ACE的周长为()A.8 B.11C.16 D.17第3题图第4题图4.如图,在△ABC中,AC的垂直平分线交AB于点D,DC平分∠ACB.若∠A=50°,则∠B的度数为.5.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.6.如图,AC=AD,BC=BD,则有()A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB第6题图第7题图7.如图,已知△ABC,AB>AC>BC,边AB上存在一点P,使得PA+PC=AB.下列描述正确的是()A.P是AC的垂直平分线与AB的交点B.P是BC的垂直平分线与AB的交点C.P是∠ACB的平分线与AB的交点D.P是以点B为圆心,AC长为半径的弧与边AB的交点8.如图,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交AC于点D.求证:点D在AB的垂直平分线上.9.在△ABC中,AB=AC,边AB的垂直平分线与边AC所在的直线相交所得的锐角为50°,则∠C的度数为.10.下列说法:①若直线PE是线段AB的垂直平分线,则EA=EB;②若PA=PB,EA=EB,则直线PE是线段AB的垂直平分线;③若EA=EB,则直线EP是线段AB的垂直平分线;④若PA=PB,则点P在线段AB的垂直平分线上.其中正确的有()A.1个B.2个C.3个D.4个11.如图,在△ABC中,DE是AC的垂直平分线,AC=6 cm,且△ABD的周长为13 cm,则△ABC的周长为()A.13 cm B.19 cmC.10 cm D.16 cm第11题图第12题图12.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=.13.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.第13题图第14题图14.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=39°,则∠AOC=.15.如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,E是BD的垂直平分线与AB的交点,DE交AC于点F.求证:点E在AF的垂直平分线上.16.如图1,在△ABC中,AB=AC,点D是△ABC外的一点(点D与点A分别在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD垂直平分BC;(2)请从A,B两题中任选一题作答,我选择________题.A:如图1,当点E在线段AB上且不与点B重合时,求证:DE=AE;B:如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE之间的等量关系,并证明你的结论.第2课时三角形三边的垂直平分线1.三角形纸片ABC上有一点P,量得PA=3 cm,PB=3 cm,则点P一定()A.是边AB的中点B.在边AB的中线上C.在边AB的高上D.在边AB的垂直平分线上2.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点3.如果三角形中两条边的垂直平分线的交点在第三条边上,那么这个三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形D.直角三角形4.如图,已知直线MN为△ABC的边BC的垂直平分线.若AB,AC两边的垂直平分线相交于点O,当顶点A的位置移动时,点O始终在()A.直线MN上B.直线MN的左侧C.直线MN的右侧D.直线MN的左侧或右侧5.下列作图语句正确的是()A.过点P作线段AB的垂直平分线B.在线段AB的延长线上取一点C,使AB=ACC.过直线a和直线b外一点P作直线MN,使MN∥a∥bD .过点P 作直线AB 的垂线6.如图,点E ,F ,G ,Q ,H 在一条直线上,且EF =GH ,我们知道按如图所作的直线l 为线段FG 的垂直平分线.下列说法正确的是( )A .l 是线段EH 的垂直平分线B .l 是线段EQ 的垂直平分线C .l 是线段FH 的垂直平分线D .EH 是l 的垂直平分线第6题图 第7题图7.如图,在Rt △ABC 中,∠B =90°,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,连接MN ,分别与AC ,BC 交于点D ,E ,连接AE ,则:(1)∠ADE = ;(2)AE EC ;(填“=”“>”或“<”)(3)当AB =3,AC =5时,△ABE 的周长等于 .8.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P ,使P 到该镇A 村、B 村、C 村所属的村委会所在地的距离都相等(A ,B ,C 不在同一直线上,地理位置如图),请你用尺规作图的方法确定点P 的位置.要求:写出已知、求作,不写作法,保留作图痕迹.A 村 ·B 村 ·C 村·9.在平面内,到三点A,B,C距离相等的点()A.只有一个B.有两个C.有三个或三个以上D.有一个或没有10.如图,在△ABC中,∠BAC=90°,AB>AC.按下列步骤作图:①分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;②作直线MN,与边AB相交于点D,连接CD.下列说法不一定正确的是()A.∠BDN=∠CDN B.∠ADC=2∠BC.∠ACD=∠DCB D.2∠B+∠ACD=90°11.等腰三角形的底角为40°,两腰的垂直平分线交于点P,则()A.点P在三角形内B.点P在三角形外C.点P在三角形底边上D.点P的位置与三角形的边长有关12.如图,由于水资源缺乏,B,C两地不得不从黄河上的扬水站A引水,这就需要A,B,C之间铺设地下输水管道,有人设计了三种铺设方案:如图①②③,图中实线表示管道铺设线路,在图②中,AD垂直BC于点D;在图③中,OA=OB=OC.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短,已知△ABC恰好是一个边长为a的等边三角形,那么通过计算,你认为最好的铺设方案是方案.13.如图所示,已知线段a,b,求作等腰三角形,使高为a,腰长为b(a<b,尺规作图,保留作图痕迹).14.如图,在△ABC中,DM,EN分别垂直平分AC和BC,交AB于M,N两点,DM与EN相交于点F.(1)若∠ACB=120°,求∠MCN的度数;(2)若△CMN的周长为15 cm,求AB的长;(3)若∠MFN=70°,求∠MCN的度数.【变式】如图,在△ABC中,∠BAC=80°,若MP和NQ分别垂直平分AB和AC.(1)求∠PAQ的度数;(2)若△APQ周长为12,BC长为8,求PQ的长.参考答案:第1课时线段垂直平分线的性质定理及其逆定理1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.已知线段PA=3 cm,则线段PB的长为(D)A.6 cm B.5 cmC.4 cm D.3 cm第1题图第2题图2.如图,AB是CD的垂直平分线.若AC=2.3 cm,BD=1.6 cm,则四边形ACBD的周长是(B)A.3.9 cm B.7.8 cmC.4 cm D.4.6 cm3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.若BC=6,AC =5,则△ACE的周长为(B)A.8 B.11C.16 D.17第3题图第4题图4.如图,在△ABC中,AC的垂直平分线交AB于点D,DC平分∠ACB.若∠A=50°,则∠B的度数为30°.5.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.证明:∵DE是AB的垂直平分线,∴EA=EB.∴∠EAB=∠B.∵∠C=90°,∴∠CAB+∠B=90°.又∵∠AED+∠EAB=90°,∴∠CAB=∠AED.6.如图,AC=AD,BC=BD,则有(A)A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB第6题图第7题图7.如图,已知△ABC,AB>AC>BC,边AB上存在一点P,使得PA+PC=AB.下列描述正确的是(B)A.P是AC的垂直平分线与AB的交点B .P 是BC 的垂直平分线与AB 的交点 C .P 是∠ACB 的平分线与AB 的交点D .P 是以点B 为圆心,AC 长为半径的弧与边AB 的交点8.如图,在△ABC 中,∠C =90°,∠A =30°,BD 平分∠ABC 交AC 于点D.求证:点D 在AB 的垂直平分线上.证明:∵∠C =90°,∠A =30°, ∴∠ABC =90°-30°=60°. ∵BD 平分∠ABC , ∴∠ABD =12∠ABC =30°.∴∠A =∠ABD. ∴DA =DB.∴点D 在AB 的垂直平分线上.9.在△ABC 中,AB =AC ,边AB 的垂直平分线与边AC 所在的直线相交所得的锐角为50°,则∠C 的度数为20°或70°.10.下列说法:①若直线PE 是线段AB 的垂直平分线,则EA =EB ;②若PA =PB ,EA =EB ,则直线PE 是线段AB 的垂直平分线;③若EA =EB ,则直线EP 是线段AB 的垂直平分线;④若PA =PB ,则点P 在线段AB 的垂直平分线上.其中正确的有(C)A .1个B .2个C .3个D .4个11.如图,在△ABC 中,DE 是AC 的垂直平分线,AC =6 cm ,且△ABD 的周长为13 cm ,则△ABC 的周长为(B)A .13 cmB .19 cmC .10 cmD .16 cm第11题图 第12题图12.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,将AB 边沿AD 折叠,发现B 点的对应点E 正好在AC 的垂直平分线上,则∠C =30°.13.如图,在Rt △ABC 中,∠ACB =90°,BC =3,AC =4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为76.第13题图 第14题图14.(2020·南京)如图,线段AB ,BC 的垂直平分线l 1,l 2相交于点O.若∠1=39°,则∠AOC =78°.15.如图,在△ABC 中,∠ACB =90°,D 是BC 延长线上一点,E 是BD 的垂直平分线与AB 的交点,DE 交AC 于点F.求证:点E 在AF 的垂直平分线上.证明:∵E 是BD 的垂直平分线上的一点, ∴EB =ED. ∴∠B =∠D. ∵∠ACB =90°,∴∠A=90°-∠B,∠CFD=90°-∠D.∴∠CFD=∠A.又∵∠AFE=∠CFD,∴∠AFE=∠A.∴EF=EA.∴点E在AF的垂直平分线上.16.如图1,在△ABC中,AB=AC,点D是△ABC外的一点(点D与点A分别在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD垂直平分BC;(2)请从A,B两题中任选一题作答,我选择________题.A:如图1,当点E在线段AB上且不与点B重合时,求证:DE=AE;B:如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE之间的等量关系,并证明你的结论.解:(1)证明:∵AB=AC,∴点A在线段BC的垂直平分线上.∵DB=DC,∴点D在线段BC的垂直平分线上.∴AD垂直平分BC.(2)选择A,证明:由(1),得AD⊥BC,又∵AB=AC,∴∠BAF=∠CAF.∵DE∥AC,∴∠CAF=∠ADE.∴∠BAF=∠ADE.∴DE=AE.选择B,线段DE,AC,BE之间的等量关系为DE=BE+AC.证明:由(1),得AF⊥BC,又∵AB=AC,∴∠BAF=∠CAF.∵DE∥AC,∴∠EDA=∠CAF.∴∠BAF=∠EDA.∴AE=DE.∵AE=EB+AB,AB=AC,∴DE=BE+AC.第2课时三角形三边的垂直平分线1.三角形纸片ABC上有一点P,量得PA=3 cm,PB=3 cm,则点P一定(D)A.是边AB的中点B.在边AB的中线上C.在边AB的高上D.在边AB的垂直平分线上2.在三角形的内部,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形(C)A.三条中线的交点B.三条角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点3.如果三角形中两条边的垂直平分线的交点在第三条边上,那么这个三角形一定是(D) A.锐角三角形B.钝角三角形C.等边三角形D.直角三角形4.如图,已知直线MN为△ABC的边BC的垂直平分线.若AB,AC两边的垂直平分线相交于点O,当顶点A的位置移动时,点O始终在(A)A.直线MN上B.直线MN的左侧C.直线MN的右侧D.直线MN的左侧或右侧5.下列作图语句正确的是(D)A.过点P作线段AB的垂直平分线B.在线段AB的延长线上取一点C,使AB=ACC.过直线a和直线b外一点P作直线MN,使MN∥a∥bD.过点P作直线AB的垂线6.如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是(A)A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线第6题图 第7题图7.如图,在Rt △ABC 中,∠B =90°,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,连接MN ,分别与AC ,BC 交于点D ,E ,连接AE ,则:(1)∠ADE =90°;(2)AE =EC ;(填“=”“>”或“<”) (3)当AB =3,AC =5时,△ABE 的周长等于7.8.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P ,使P 到该镇A 村、B 村、C 村所属的村委会所在地的距离都相等(A ,B ,C 不在同一直线上,地理位置如图),请你用尺规作图的方法确定点P 的位置.要求:写出已知、求作,不写作法,保留作图痕迹.解:已知:A ,B ,C 三点不在同一直线上. 求作:作一点P ,使PA =PB =PC. 如图所示,点P 即为所求的点.9.在平面内,到三点A ,B ,C 距离相等的点(D) A .只有一个B .有两个C .有三个或三个以上D .有一个或没有10.如图,在△ABC 中,∠BAC =90°,AB >AC.按下列步骤作图:①分别以点B 和点C 为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M 和点N;②作直线MN,与边AB相交于点D,连接CD.下列说法不一定正确的是(C)A.∠BDN=∠CDN B.∠ADC=2∠BC.∠ACD=∠DCB D.2∠B+∠ACD=90°11.等腰三角形的底角为40°,两腰的垂直平分线交于点P,则(B)A.点P在三角形内B.点P在三角形外C.点P在三角形底边上D.点P的位置与三角形的边长有关12.如图,由于水资源缺乏,B,C两地不得不从黄河上的扬水站A引水,这就需要A,B,C之间铺设地下输水管道,有人设计了三种铺设方案:如图①②③,图中实线表示管道铺设线路,在图②中,AD垂直BC于点D;在图③中,OA=OB=OC.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短,已知△ABC恰好是一个边长为a的等边三角形,那么通过计算,你认为最好的铺设方案是方案③.13.如图所示,已知线段a,b,求作等腰三角形,使高为a,腰长为b(a<b,尺规作图,保留作图痕迹).解:作法:(1)作线段AD=a;(2)过点D作直线MN⊥AD于点D;(3)以点A为圆心,b为半径画弧,交MN于B,C两点,连接AB,AC,△ABC即为所求,如图所示.14.如图,在△ABC中,DM,EN分别垂直平分AC和BC,交AB于M,N两点,DM与EN相交于点F.(1)若∠ACB=120°,求∠MCN的度数;(2)若△CMN的周长为15 cm,求AB的长;(3)若∠MFN=70°,求∠MCN的度数.解:(1)∵DM,EN分别垂直平分AC和BC,∴AM=CM,CN=BN.∴∠A=∠ACM,∠B=∠BCN.∴∠MCN=180°-(∠CMN+∠CNM)=180°-(2∠A+2∠B)=180°-2(180°-∠ACB)=60°.(2)∵AM=CM,BN=CN,∴△CMN的周长为CM+MN+CN=AM+MN+BN=AB.∵△CMN的周长为15 cm,∴AB=15 cm.(3)∵∠MFN=70°,∴∠MNF+∠NMF=180°-70°=110°.∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠NMF+∠MNF=110°.∴∠A+∠B=90°-∠AMD+90°-∠BNE=70°.又∵∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°-2(∠A+∠B)=40°.【变式】如图,在△ABC中,∠BAC=80°,若MP和NQ分别垂直平分AB和AC.(1)求∠PAQ的度数;(2)若△APQ周长为12,BC长为8,求PQ的长.解:(1)设∠PAQ=x,∠CAP=y,∠BAQ=z,∵MP和NQ分别垂直平分AB和AC,∴AP=PB,AQ=CQ.∴∠B=∠BAP=x+z,∠C=∠CAQ=x+y.∵∠BAC=80°,∴∠B+∠C=100°,即x+y+z=80°,x+z+x+y=100°.∴x=20°.∴∠PAQ=20°.(2)∵△APQ周长为12,∴AQ+PQ+AP=12.∵AQ=CQ,AP=PB,∴CQ+PQ+PB=12,即BC+2PQ=12.∵BC=8,∴PQ=2.21。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专项12 角平分线+垂直构造全等模型综合应用角平分线+垂直构造全等模型:【典例1】(秋•袁州区校级期中)如图,∠AOB =90°,OM 是∠AOB 的平分线,将三角尺的直角顶点P 在射线OM 上滑动,两直角边分别与OA ,OB 交于点C 和D ,证明:PC =PD .【答案】略【解答】证明:过点P 点作PE ⊥OA 于E ,PF ⊥OB 于F ,如图,∴∠PEC =∠PFD =90°,∵OM 是∠AOB 的平分线,∴PE =PF ,∵∠AOB =90°,∠CPD =90°,∴∠PCE +∠PDO =360°﹣90°﹣90°=180°,而∠PDO +∠PDF =180°,∴∠PCE=∠PDF,在△PCE和△PDF中,∴△PCE≌△PDF(AAS),∴PC=PD.【变式1-1】(秋•江北区期末)如图,D是∠EAF平分线上的一点,若∠ACD+∠ABD=180°,请说明CD=DB的理由.【答案】略【解答】解:过点D分别作AE,AF的垂线,交AE于M,交AF于N则∠CMD=∠BND=90°,∵AD是∠EAF的平分线,∴DM=DN,∵∠ACD+∠ABD=180°,∠ACD+∠MCD=180°,∴∠MCD=∠NBD,在△CDM和△BDN中,∠CMD=∠BND=90°,∠MCD=∠NBD,DM=DN,∴△CDM≌△BDN,∴CD=DB.【变式1-2】(秋•百色期末)如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE ⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.【答案】(1)略(2)BE=1,AE=4.【解答】(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.【典例2】(2021秋•江岸区期末)如图,∠B=∠C=90°,点E是BC的中点,DE平分∠ADC.(1)求证:AE是∠DAB的平分线;(2)若∠DAB=60°,求证:AB=3CD.【解答】(1)证明:过点E作EF⊥AD于点F,则∠EFD=∠EFA=90°,∵DE平分∠ADC,∴EC=EF,∵点E是BC的中点,∴CE=EB,∴EF=EB,在Rt△EAB和Rt△EAF中,,∴Rt△EAB≌Rt△EAF(HL),∴∠EAF=∠EAB,∴AE是∠DAB的平分线.(2)证明:∵∠DAB=60°,∠EAF=∠EAB,∴∠DAE=∠EAB=30°,∵∠C=∠B=90°,∴AB∥CD,∴∠ADC+∠DAB=180°,∴∠ADC=120°,∵DE平分∠ADC,∴∠ADE=∠CDE=60°,∴∠DEC=30°,∠DEA=90°,∴DE=2CD,AD=2DE,∴AD=4CD,在△DEF和△DEC中,,∴△DEF≌△DEC(AAS),∴DF=DC,∴AF=AD﹣DF=4CD﹣CD=3CD,∵Rt△EAB≌Rt△EAF,∴AF=AB,∴AB=3CD.【变式2-1】(2021秋•江汉区校级月考)如图,在四边形ABCD中,CE⊥AB,已知CB=CD,AC平分∠BAD;求证:(1)∠B+∠ADC=180°;(2)AD+AB=2AE.【解答】证明:(1)如图,过C作CF⊥AD,交AD的延长线于F点,∵AC平分∠BAD,∴∠DAC=∠BAC=∠DAB.∵CE⊥AB,CF⊥AD,∴CE=CF,∵CB=CD,∠CEB=∠CFD=90°,∴Rt△CEB≌Rt△CFD(HL),∴∠B=∠CDF,EB=DF.∵∠CDF+∠ADC=180°,∴∠B+∠ADC=180°.(2)∵∠CAF=∠CAE,∠F=∠CEA=90°,AC=AC,∴△AFC≌△AEC(AAS).∴AF=AE.∵AF=AD+DF,EB=DF,∴AF=AD+EB.∵AE=AB﹣EB,∴AF+AE=AD+AB,∴AD+AB=2AE.【变式2-2】(2021秋•长沙期末)如图,射线AD平分∠CAB,点F是AD上一点,FG垂直平分BC于点G,FH⊥AB于点H,连接FC,若AB=10,BH=2,求AC.【解答】解:连接FB,过F作FI⊥AC,垂足为I,∵AD平分∠CAB,FI⊥AC,FH⊥AB,∴FH=FI,又FG垂直平分BC,∴FC=FB,在Rt△FIC与Rt△FHB中,,∴Rt△FIC≌Rt△FHB(HL),∴CI=BH,在Rt△FIA与Rt△FHA中,,∴Rt△FIA≌Rt△FHA(HL),∴AI=AH,∴AB=AH+HB=AI+BH=AC+CI+HB=AC+2BH,∵AB=10,BH=2,∴AC=6.1.(2022•任城区校级三模)如图,在△ABC中,点M是BC边上的中点,AN平分∠BAC,BN⊥AN于点N,若AC=12,MN=2,则AB的长为( )A.4B.6C.7D.8【解答】解:如图,延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND(ASA),∴AD=AB,BN=ND,又∵M是△ABC的边BC的中点,∴MN是△BCD的中位线,∴DC=2MN=4,∴AC=AD+CD=AB+DC=12,即AB+4=12.∴AB=8.故选:D.2.(2021秋•长丰县期末)已知:如图,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且∠ADC+∠B=180°.(1)若AB=12,AD=8,则AF= .(2)若△ABC的面积是24,△ADC的面积是16,则△BEC的面积等于 .【解答】解:(1)∵AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,∴CE =CF ,∠CEB =∠F =90°,∵∠ADC +∠B =180°,∠ADC +∠CDF =180°,∴∠B =∠CDF ,在Rt △BCE 与Rt △DCF 中,,∴Rt △BCE ≌Rt △DCF (AAS ),∴DF =BE ,CE =CF ,CE ⊥AB 于E ,CF ⊥AD 于F ,在Rt △ACE 与Rt △ACF 中,,∴Rt △ACE ≌Rt △ACF (HL ),∴AF =AE ,∴AB ﹣AE =AF ﹣AD =AB ﹣AF ,∴AB +AD =2AF ,∵AB =12,AD =8,∴AF =10,故答案为:10.(2)∵Rt △BCE ≌Rt △DCF ,∴S △BCE =S △DCF ,设△BEC 的面积为x ,∵△ABC 的面积是24,△ADC 面积是16,∴24﹣x =16+x ,∴x =×(24﹣16)=4.即△BEC 的面积等于4,故答案为:4.3.(2022春•驿城区校级月考)如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为点E ,F ,BE =CF .求证:AD 平分∠BAC .【解答】证明:∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,∴△BED和△CFD都是直角三角形,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∴AD是△ABC的角平分线.4.(2021秋•东莞市校级期末)点E是BC的中点,DE平分∠ADC.(1)如图1,若∠B=∠C=90°,求证:AE平分∠DAB;(2)如图1,若∠B=∠C=90°,∠CED=35°,求∠EAB的度数;(3)如图2,若DE⊥AE,求证:AD=AB+CD.【解答】(1)证明:如图1,延长DE交AB的延长线于F,∵∠ABC=∠C=90°,∴AB∥CD,∴∠CDE=∠F,又∵E是BC的中点,∴CE=BE,∴△CDE≌△BFE(AAS),∴DE=FE,即E为DF的中点,∵DE平分∠ADC,∴∠CDE=∠ADE,∴∠ADE=∠F,∴AD=AF,∴AE平分∠DAB;(2)解:由(1)得AE平分∠DAB,∴∠EAB=∠DAB,∵∠ABC=∠C=90°,∴DC∥AB,∴∠ADC+∠DAB=180°,∵∠DEC=35°,∴∠CDE=90°﹣35°=55°,∵DE平分∠ADC,∴∠ADC=2∠CDE=110°,∴∠DAB=180°﹣110°=70°,∴∠EAB=35°;(3)证明:如图2,在DA上截取DF=DC,连接EF,∵DE平分∠ADC,∴∠CDE=∠FDE,又∵DE=DE,∴△CDE≌△FDE(SAS),∴CE=FE,∠CED=∠FED,又∵E是BC的中点,∴CE=BE,∴FE=BE,∵∠AED=90°,∴∠AEF+∠DEF=90°,∠AEB+∠DEC=90°,∴∠AEF=∠AEB,又∵AE=AE,∴△AEF≌△AEB(SAS),∴AF=AB,∴AD=AF+DF=AB+CD.6.(2021春•驿城区校级期中)如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB 于点E,点F在AC上,BD=DF.(1)求证:CF=EB.(2)若AB=20,AC=16,求AF的长.【解答】解:(1)证明:∵DE⊥AB于点E,∴∠DEB=90°,又AD平分∠BAC,∠C=90°,∴DC=DE,在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB(HL),∴CF=EB.(2)在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE.设CF=BE=x,则AE=AB﹣BE=20﹣x=AC=16,解得:x=4.∴AF=16﹣4=12.7.(2021秋•雨花区期末)如图,△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点P.(1)求∠APC的度数;(2)若AE=3,CD=4,求线段AC的长.【解答】解:(1)∵∠ABC=60°,∴∠BAC+∠BCA=120°,∵AD、CE分别平分∠BAC、∠ACB,∴∠PAC+∠PCA=(∠BAC+∠BCA)=60°,∴∠APC=120°.(2)如图,在AC上截取AF=AE,连接PF,∵AD平分∠BAC,∴∠BAD=∠CAD,在△APE和△APF中,,∴△APE≌△APF(SAS),∴∠APE=∠APF,∵∠APC=120°,∴∠APE=60°,∴∠APF=∠CPD=60°=∠CPF,∵CE平分∠ACB,∴∠ACP=∠BCP,在△CPF和△CPD中,,∴△CPF≌△CPD(ASA),∴CF=CD,∴AC=AF+CF=AE+CD=3+4=7.8.(2017秋•武昌区期中)如图,在△ABC中,DE垂直平分线段BC,AE平分∠BAC,EF ⊥AB于点F,EG⊥AC交AC的延长线于点G.(1)求证:BF=CG.(2)若AB=8,AC=6,求AF的长.【解答】(1)证明:连接BE、EC.∵BD=DC,DE⊥BC,∴EB=EC,∵EA平分∠BAC,EF⊥AB,EG⊥AC,∴EF=EG,在RT△EFB和RT△EGC中,,∴△EFB≌△EGC,∴BF=CG.(2)证明:在RT△AEF和RT△AEG中,,∴△AEF≌△AEG,∴AF=AG,∵△EFB≌△EGC,∴BF=CG,∴AB+AC=AF+BF+AG﹣CG=2AF.即2AF=AB+AC,∵AB=8,AC=6,∴AF=7.9.(2020秋•南开区校级期中)如图1,在平面直角坐标系中,直线AB分别交x轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a﹣b)2+|a﹣4t|=0,且t>0,t是常数.直线BD平分∠OBA,交x轴于D点.(1)若AB的中点为M,连接OM交BD于N,求证:ON=OD;(2)如图2,过点A作AE⊥BD,垂足为E,猜想AE与BD间的数量关系,并证明你的猜想;(3)如图3,在x轴上有一个动点P(在A点的右侧),连接PB,并作等腰Rt△BPF,其中∠BPF=90°,连接FA并延长交y轴于G点,当P点在运动时,OG的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.【解答】(1)证明:∵直线AB分别交x轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a﹣b)2+|a﹣4t|=0,且t>0,∴a=b=4t,∴点A、B的坐标是A(4t,0),B(0,4t),∴△AOB是等腰直角三角形,∵点M是AB的中点,∴OM⊥AB,∴∠MOA=45°,∵直线BD平分∠OBA,∴∠ABD=∠ABO=22.5°,∴∠OND=∠BNM=90°﹣∠ABD=90°﹣22.5°=67.5°,∠ODB=∠ABD+∠BAD=22.5°+45°=67.5°,∴∠OND=∠ODB,∴ON=OD(等角对等边);(2)答:BD=2AE.理由如下:延长AE交BO于C,∵BD平分∠OBA,∴∠ABD=∠CBD,∵AE⊥BD于点E,∴∠AEB=∠CEB=90°,在△ABE≌△CBE中,,∴△ABE≌△CBE(ASA),∴AE=CE,∴AC=2AE,∵AE⊥BD,∴∠OAC+∠ADE=90°,又∠OBD+∠BDO=90°,∠ADE=∠BDO(对顶角相等),∴∠OAC=∠OBD,在△OAC与△OBD中,,∴△OAC≌△OBD(ASA),∴BD=AC,∴BD=2AE;(3)OG的长不变,且OG=4t.过F作FH⊥OP,垂足为H,∴∠FPH+∠PFH=90°,∵∠BPF=90°,∴∠BPO+∠FPH=90°,∴∠FPH=∠BPO,∵△BPF是等腰直角三角形,∴BP=FP,在△OBP与△HPF中,,∴△OBP≌△HPF(AAS),∴FH=OP,PH=OB=4t,∵AH=PH+AP=OB+AP,OA=OB,∴AH=OA+AP=OP,∴FH=AH,∴∠GAO=∠FAH=45°,∴△AOG是等腰直角三角形,∴OG=OA=4t.。
八年级数学《线段垂直平分线角平分线》课后习题1. 选择题1. 以下哪个图形中的$\overline{AB}$既是线段$AC$的垂直平分线,也是∠$ACD$的角平分线?A. B. C. D. 2. 在直角三角形$ABC$中,$\overline{AC}$是∠$C$的角平分线,则∠$BAC$与∠$BCA$分别是$\underline{\qquad}$.A. 锐角,钝角B. 直角,锐角C. 钝角,直角D. 直角,钝角2. 填空题3. 设$\overline{PQ}$是线段$\overline{AB}$的垂直平分线,若∠$PAC=30^\circ$,则∠$PAB=\underline{\qquad}$.4. 在平行四边形$ABCD$中,$\overline{EF}$是线段$\overline{AD}$的垂直平分线,$\overline{GH}$是∠$GBF$的角平分线,则∠$EGH=\underline{\qquad}$.3. 解答题5. 在直角三角形$ABC$中,$\overline{AD}$是∠$A$的角平分线,如图所示.已知$\overline{AD}=2cm$,$\overline{AC}=10cm$,求∠$BAC$的度数.解:由于$\overline{AD}$是∠$A$的角平分线,根据角平分线定理可知$\dfrac{BD}{CD}=\dfrac{AB}{AC}$.设$\overline{BD}=x$,则$\overline{CD}=x$.根据勾股定理可得:$$(10+x)^2+x^2=4^2$$解得$x=\dfrac{48}{5}$.所以,$\overline{BD}=\dfrac{48}{5}$.根据正切函数的性质可得:$$\tan(\angleBAD)=\dfrac{BD}{AD}=\dfrac{\frac{48}{5}}{2}=\dfrac{24}{5}.$$因为∠$BAC=90^\circ$,所以∠$BAD=45^\circ$,所以∠$BAC=45^\circ$.答:∠$BAC$的度数是$45^\circ$.4. 应用题6. 请用尺规作图的方法,画一条线段的垂直平分线和角平分线,并标出垂足和角平分点.解:步骤:1. 以线段的一个端点为圆心,在纸上画一个与线段等长的圆.2. 以线段的另一个端点为圆心,画一个与上一个圆等大的圆.3. 连接两圆的交点和线段两个端点,所得的线段是原线段的垂直平分线.4. 以线段的一个端点为圆心,在纸上画一个与线段等长的圆.5. 以线段的另一个端点为圆心,画一个与上一个圆等大的圆.6. 连接两圆的交点和线段的一个端点,所得的线段是原线段的角平分线.按照上述步骤操作,即可作出线段的垂直平分线和角平分线,并标出垂足和角平分点.注意:尺规作图中只能使用直尺和圆规,无法精确度量线段长度和角度大小,所以标度不作要求.5. 拓展练7. 通过实际生活中的例子,描述线段的垂直平分线和角平分线的应用场景.解:线段的垂直平分线和角平分线在实际生活中有许多应用场景,以下是两个例子:例子1:钟面的分针和秒针当我们查看钟面上的时间时,钟面上的分针和秒针正好是指向钟面的圆心的单条线段的垂直平分线和角平分线。
知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.图1图2经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cm课堂笔记:针对性练习::1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,如果△EBC 的周长是24cm ,那么BC= 2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3) 如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28 度,那么∠EBC 是例2. 已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。
线段的垂直平分线,角平分线课前测试【题目】课前测试如图,在△ABC中,∠B=70°,DE是AC的垂直平分线,且∠BAD:∠BAC=1:3,则∠C的度数是度.【答案】44【解析】由DE垂直平分AC可得∠DAC=∠DCA;∠ADB是△ACD的外角,故∠DAC+∠DCA=∠ADB又因为∠B=70°⇒∠BAD=180°﹣∠B﹣∠BAD,由此可求得角度数.解:设∠BAD为x,则∠BAC=3x,∵DE是AC的垂直平分线,∴∠C=∠DAC=3x﹣x=2x,根据题意得:180°﹣(x+70°)=2x+2x,解得x=22°,∴∠C=∠DAC=22°×2=44°.故填44°.本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等),难度一般.考生需要注意的是角的比例关系的设法,应用列方程求解是正确解答本题的关键.【难度】3【题目】课前测试如图,在△ABC中,∠C=90°,AM是∠CAB的平分线,CM=20cm,那么M到AB的距离为.【答案】20cm.【解析】过点D作DM⊥AB于D,根据角平分线上的点到角的两边距离相等可得DM=CM.解:如图,过点D作DM⊥AB于D,∵∠C=90°,AM是∠CAB的平分线,∴DM=CM=20cm,即M到AB的距离为20cm.故答案为:20cm.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.【难度】2知识定位适用范围:北师大版,八年级知识点概述:本章重点部分是线段的垂直平分线和角平分线。
了解,掌握线段的垂直平分线的做法和性质以及角平分线的定义,性质。
能熟练的利用线段的垂直平分线和角平分线来做题适用对象:成绩中等偏下的学生注意事项:熟练掌握线段的垂直平分线以及角平分线的性质重点选讲:①线段的垂直平分线性质的几何应用②角平分线性质的几何应用③线段的垂直平分线和角平分线性质的解答题应用知识梳理知识梳理1:线段的垂直平分线线段的垂直平分线:定理:线段垂直平分线上的点到这条线段上的两个端点的距离相等。
《角平分线和线段垂直平分线》测试题一、填空题1.ΔABC中,AB-AC=2,BC的垂直平分线交AB于D点,且ΔACD的周长为14,则AB=_____,AC_____.2.ΔABC中,AB=AC,AB的垂直平分线交AC于P点.若∠A=35°,则∠BPC=_____;若AB=5 cm,BC=3 cm,则ΔPBC的周长=_____.5题4题3题2题3.∠C=90°,AD平分∠BAC,BD=2CD,若点D到AB的距离等于5cm,则BC的长为_____cm.4.在RtΔABC中,∠C=90°,沿着过点B的一条直线BE折叠ΔABC,使C点恰好落在AB边的中点D处,则∠A的度数等于_____.5.在ΔABC中,BD、CE分别平分∠ABC、∠ACB,且BD、CE交于点O,过O作OP⊥BC于P,OM⊥AB于M,ON⊥AC于N,则OP、OM、ON的大小关系为_____.6. 已知:△ABC中,∠B=90°, ∠A、∠C的平分线交于点O,则∠AOC的度数为 .7.∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,则∠DOC=_________.8.在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3 cm,BD=5 cm,则BC=_____cm.7题8题ACBEF9题9.CD为Rt△ABC的高,∠BAC的平分线分交CD、CB于点E、F,FG⊥AB,垂足为G,则CF______FG,CE________CF.10.△ABC中,∠CAB=120º,AB,AC的垂直平分线分别交BC于点E、F,则∠EAF=______二、选择题11.若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,下列结论中错误的是 ( )A.PC=PD B.OC=OD C.∠CPO=∠DPO D.OC =PC12.在RtΔABC中,∠C=90°,BD是∠ABC的平分线,交AC于D,若CD=n,AB=m,则ΔABD的面积是( )A. B. C.mn D.2mn13.直线l1,l2,l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A、1处B、2处C、3处D、4处14.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC 于D,DE⊥AB于E,且AB=6㎝,则△DEB的周长为( )A、4㎝B、6㎝C、10㎝D、不能确定第11题 第12题 第13题 第14题 15.MP⊥NP,MQ为△MNP的角平分线,MT=MP,连接TQ,下列结论中不正确的是( )A、TQ=PQB、∠MQT=∠MQPC、∠QTN=90° D、∠NQT=∠MQT第15题 第16题16.已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是( )A.① B.② C.①和② D.①②③三、解答题17.已知:△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.18.已知: CD⊥AB于D,BE⊥AC于E,CD、BE交于O,∠1=∠2.第10题求证:OB=OC.19.已知:如图9-7,A、B、C、D四点在∠MON的边上,AB=CD,P为∠MON内一点,并且△PAB的面积与△PCD的面积相等.求证:射线OP是∠MON的平分线.20.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠DAB;(2)猜想AM与DM的位置关系如何?并证明你的结论.21.已知:如图,在ΔABC中,AD是△ABC的角平分线,E、F分别是AB、AC上一点,并且有∠EDF+∠EAF=180°.试判断DE和DF 的大小关系并说明理由.。
【期末压轴题】专题04:线段的垂直平分线与角平分线综合(原卷版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在△ABC 中,CD 是AB 边上的高,BE 平分△ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积是( )A .9B .7C .10D .18 2.如图,△ABC 中,△A =△ACB ,CP 平分△ACB ,BD ,CD 分别是△ABC 的两外角的平分线,下列结论中:△CP △CD △△P =12A ∠△BC =CD △01902D A ∠=-∠△PD //AC ,其中正确的结论有( )A .1个B .2个C .3个D .4个 3.如图,ABC 中,CAB ∠和CBA ∠的角平分线交于点P ,连接P A 、PB 、PC ,若PAB △、PBC 、PAC △的面积分别为1S 、2S 、3S ,则( )A .123S S S <+B .123S S S =+C .123S S S >+D .无法确定1S 与()23S S +的大小4.如图,AD 是ABC 中BAC ∠的角平分线,DE AB ⊥于点E ,26ABC S =△,4DE =,7AB =,则AC 长是( )A .5B .6C .7D .85.如图,ΔABC 的三边AB 、BC 、CA 的长分别为20,30,40,其三条角平分线将ΔABC 分为三个三角形,则S ΔABO △S ΔBCO △S ΔAOC 等于( )A .1△1△1B .2△3△4C .1△2△3D .3△4△5 6.在下列各原命题中,逆命题是假命题的是( )A .两直线平行,同旁内角互补;B .如果两个三角形全等,那么这两个三角形的对应边相等;C .如果两个三角形全等,那么这两个三角形的对应角相等;D .两个相等的角是对顶角.7.如图,已知AF AB =,60FAB ∠=︒,AE AC =,60EAC ∠=︒,CF 和BE 交于O 点,则下列结论::△CF BE =;△120COB ∠=︒;△OA 平分FOE ∠;△OF OA OB =+.其中正确的有( )A .△△B .△△△C .△△△△D .△△△ 8.如图,点A ,B ,C 在一条直线上,ABD △,BCE 均为等边三角形,连接AE 和CD ,AE 分别交CD 、BD 于点M 、P ,CD 交BE 于点Q ,连接PQ ,BM .下列结论:△ABE DBC ≌;△60DMA ∠=︒;△BPQ 为等边三角形;△MB 平分AMC ∠.其中结论正确的有( )A .1个B .2个C .3个D .4个 9.如图,在△ABC 中,AB =AC ,△BAC =46°,△BAC 的平分线与AB 的垂直平分线OD 交于点O ,点E 在BC 上,点F 在AC 上,连接EF .将△C 沿EF 折叠,点C 与点O 恰好重合时,则△OEC 的度数( )A .90°B .92°C .95°D .98°10.如图,在△ABC 中,△BAC 和△ABC 的平分线AE ,BF 相交于点O ,AE 交BC 于E ,BF 交AC 于F ,过点O 作OD △BC 于D ,下列三个结论:△△AOB =90°+△C ;△当△C =60°时,AF +BE=AB ;△若OD=a ,AB +BC +CA =2b ,则S △ABC =ab .其中正确的个数是( )A .1个B .2个C .3个D .0个 11.如图,正ABC 和正CDE △中,B 、C 、D 共线,且3BC CD =,连接AD 和BE 相交于点F ,以下结论中正确的有( )个△60AFB ∠=︒ △连接FC ,则CF 平分BFD ∠ △3BF DF = △BF AF FC =+A .4B .3C .2D .112.如图,在ABC 中,BC AC =,90ACB ∠=︒,AD 平分BAC ∠,BE AD ⊥交AC 的延长线于F ,垂足为E .则下列结论不正确的是( )A .AD BF =B .CF CD =C .AC CD AB +=D .BE CF =二、填空题 13.如图,△ABC 的外角△DBC 、△ECB 的角平分线交于点M ,△ACB 的角平分线与BM 的反向延长线交于点N ,若在△CMN 中存在一个内角等于另一个内角的2倍,则△A 的度数为 _______14.已知:△ABC 是三边都不相等的三角形,点P 是三个内角平分线的交点,点O 是三边垂直平分线的交点,当P 、O 同时在不等边△ABC 的内部时,那么△BOC 和△BPC 的数量关系是___.15.如图,在四边形ABCD 中,//AD BC ,AB AC =,6BC =,DBC △面积为18,AB的垂直平分线MN 分别交AB ,AC 于点M ,N ,若点P 和点Q 分别是线段MN 和BC 边上的动点,则PB PQ +的最小值为______.16.如图,AB 为等腰直角ABC 的斜边,E 为AB 的中点,F 为AC 延长线上的一个动点(F 与点C 不重合),线段FB 的垂直平分线交线段CE 于点O ,D 垂足.当F 点运动时,给出下列四个结论.其中一定正确的结论有______(请填写正确序号).△点O 到ABF 三个顶点的距离相等;△⊥OF OB ;FC AB +=;△AEC BOF S S <△△ 17.如图,反比例函数k y x=的图象经过点(-1,-,点A 是该图象第一象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP .在点A 运动过程中,当BP 平分△ABC时,点A 的坐标是____________.18.如图,在ABC 中,△ACB =45°,AD △BC ,BE △AC ,AD 与BE 相交于点F ,连接并延长CF 交AB 于点G ,△AEB 的平分线交CG 的延长线于点H ,连接AH ,则下列结论:△△EBD =45°;△AH =HF ;△ABD △CFD ;△CH =AB +AH ;△BD =CD ﹣AF .其中正确的是 ___.(只填写序号)19.如图,在ABC 中,AB 、AC 的垂直平分线分别交BC 于D 、E 两点,并且相交于点F ,且70DFE ∠=︒,则DAE ∠的度数是______.20.如图,AP ,BP 分别平分△ABC 内角△CAB 和外角△CBD ,连接CP ,若△ACP =130°,则△APB =___.三、解答题21.已知,如图1,射线PE 分别与直线AB 、CD 相交于E 、F 两点,△PFD 的平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设△PFM =α,△EMF =β,且2(35)αβα-+-0=.(1)α=____ °,β=______ °;直线AB 与CD 的位置关系是_______ ;(2)如图2,若点G 是射线MA 上任意一点,且△MGH=△PNF ,试找出△FMN 与△GHF 之间存在的数量关系,并证明你的结论:(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 和点N ,时,作△PMB 的角平分线MQ 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由. 22.如图1,将线段AB 平移至CD ,使A 与D 对应,B 与C 对应,连AD 、BC .(1)填空:AB 与CD 的关系为__________,B 与D ∠的大小关系为__________. (2)如图2,若60B ∠=︒,F 、E 为BC 的延长线上的点,∠=∠EFD EDF ,DG 平分CDE ∠交BE 于G ,求FDG ∠.(3)在(2)中,若B α∠=,其它条件不变,则FDG ∠=__________.23.如图1所示,已知点E 在直线AB 上,点F ,G 在直线CD 上,且EFG FEG ∠=∠,EF 平分AEG ∠.(1)判断直线AB 与直线CD 是否平行,并说明理由.(2)如图2所示,H 是AB 上点E 右侧一动点,EGH ∠的平分线GQ 交FE 的延长线于点Q ,设Q α∠=,EHG β∠=.△若40HEG ∠=︒,20QGH ∠=︒,求Q ∠的度数.△判断:点H 在运动过程中,α和β的数量关系是否发生变化?若不变,求出α和β的数量关系;若变化,请说明理由.24.如图,已知△ABC 和△CDE 均是等边三角形,点B 、C 、E 在同一条直线上,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,连结OC 、FG ,(1)求证:BD =AE , 并求出△DOE 的度数;(2)判断△CFG的形状并说明理由;(3)求证:OA+OC=OB;(4)判断下列两个结论是否正确,若正确请说明理由:△OC平分△FOG;△CO平分△FCG.25.在平面直角坐标系中,已知点A(0,a),B(b,0),其中a,b满足:(x+b)(x +2)=x2+ax+6(a,b为常数).(1)求点A,B的坐标;(2)如图1,D为x轴负半轴上一点,C为第三象限内一点,且△ABC=△ADC=90°,AO=DO,DB平分△ADC.过点C作CE△DB于点E,求证:DE=OB;(3)如图2,P为y轴正半轴上一动点,连接BP,过点B在x轴下方作BQ△BP,且BQ=BP,连接PC,PQ,QC.在(2)的条件下,设P(0,p),求△PCQ的面积(用含p的式子表示).26.在△ABC中,AB=CD△AB于点D,CD.(1)如图1,当点D是线段AB中点时,△AC的长为;△延长AC至点E,使得CE=AC,此时CE与CB的数量关系为,△BCE与△A 的数量关系为.(2)如图2,当点D不是线段AB的中点时,画△BCE(点E与点D在直线BC的异侧),使△BCE=2△A,CE=CB,连接AE.△按要求补全图形;△求AE的长.27.如图1,已知线段AC△y轴,点B在第一象限,且AO平分△BAC,AB交y轴于点D,连接OB,OC.(1)可以判断AOD的形状为三角形(直接写答案);(2)若OE平分△AOB且△B=2△BAO,证明:AO=BE+OB;(3)如图2,若点B,C关于y轴对称,AO△BO,点M为OA上一点,且△ACM=45°,点B的坐标为(3,1),求点M的坐标.28.如图,已知点B(-2,0),C(2,0),A为y轴正半轴上一点,点D为第二象限内的一个动点,M在BD的延长线上,CD交AB于点F,且△ABD=△ACD.(1)求证:△BDC=△BAC;(2)求证:DA平分△CDM;(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,△BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出△BAC的度数?【期末压轴题】专题04:线段的垂直平分线与角平分线综合(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在△ABC中,CD是AB边上的高,BE平分△ABC,交CD于点E,BC=6,DE=3,则△BCE的面积是()A.9B.7C.10D.18【标准答案】A【思路点拨】作EH△BC于点H,根据角平分线的性质得出EH=DE,最后根据三角形的面积公式进行求解.【精准解析】如图,作EH△BC于点H,△BE平分△ABC,CD是AB边上的高,EH△BC,△EH=DE=3,△1163922BCES BC EH=⋅=⨯⨯=△.故选A.【名师指导】本题考查角平分线的性质,熟练掌握角的平分线上的点到角的两边的距离相等是解题的关键.2.如图,△ABC中,△A=△ACB,CP平分△ACB,BD,CD分别是△ABC的两外角的平分线,下列结论中:△CP△CD△△P=12A∠△BC=CD△01902D A∠=-∠△PD//AC,其中正确的结论有()A.1个B.2个C.3个D.4个【标准答案】D【思路点拨】根据邻补角平分线性质可判断△;根据三角形外角与角平分线定义列出等式2△PBG=△A+2△PCB,△PBG=△P+△PCB,可判断△,根据外角性质与角平分线定义,结合三角形内角和△BCD+△CBD=12BCF∠+12CBE∠=1902A︒+∠可判断△,利用等腰三角形性质与外角性质,可得△DBC=△A,可得△D=90°12DBC-∠,得出2△D+△DBC=180°,当△A=60°时,△D=△DBC=60°成立,可判断△,根据△DBC=△A=△ACB,利用平行线判定定理可判断△.【精准解析】解:△△BCA+△BCF=180°,CP平分△ACB,CD平分△FCB,△△PCB=12BCA∠,△DCB=12BCF∠,△△PCD=△PCB+△DCB =12BCA∠+()11118090 222BCF BCA BCF∠=∠+∠=⨯︒=︒,△CP△CD;故△正确;延长CB到G,△BD平分△CBE,△△EBD=△DBC,△△EBD=△PBA,△CBD=△PBG,△△PBA =△PBG,△△ABG=2△GBP,△△ABG=△A+△ACB,即2△PBG=△A+2△PCB,△PBG=△P+△PCB,△△PBG=12△A+△PCB,△△P=12△A,△CD 平分△BCF ,△△BCD =12BCF ∠, △DBC =12CBE ∠, △△BCD +△CBD =12BCF ∠+12CBE ∠, =()()1122A ABC A ACB ∠+∠+∠+∠, =()1122A ABC ACB A ∠+∠+∠+∠, =1902A ︒+∠, △△D=180°-(△BCD +△CBD )=180°-11909022A A ︒-∠=︒-∠, 故△正确;△AB =BC ,△△BAC =△ACB ,△2△DBC =△EBC =△A +△ACB =2△A ,△△DBC =△A ,△△D =90°12DBC -∠, △2△D +△DBC =180°,当△A =60°时,△D =△DBC =60°,△BC =CD ,故△不正确,△△DBC =△A =△ACB ,△PD△AC ,故正确的结论有4个.故选D .【名师指导】本题考查三角形内角与外角平分线,等腰三角形性质,三角形外角性质,三角形内角和,平行线判定,掌握三角形内角与外角平分线定义,等腰三角形性质,三角形外角性质,三角形内角和,平行线判定是解题关键.3.如图,ABC 中,CAB ∠和CBA ∠的角平分线交于点P ,连接PA 、PB 、PC ,若PAB △、PBC 、PAC △的面积分别为1S 、2S 、3S ,则( )A .123S S S <+B .123S S S =+C .123S S S >+D .无法确定1S 与()23S S +的大小【标准答案】A【思路点拨】过点P 分别作PD △AB ,PE △BC ,PF △AC ,垂足分别为D ,E ,F ,运用三角形面积公式,三角形三边关系定理判断即可.【精准解析】过点P 分别作PD △AB ,PE △BC ,PF △AC ,垂足分别为D ,E ,F ,△CAB ∠和CBA ∠的角平分线交于点P ,△PD =PE =PF =h ,△1S =1h 2AB ,2S =1h 2BC ,3S =1h 2AC ,△23()S S +=1h 2BC +1h 2AC =1()h 2AC BC +, △AC +BC >AB ,△23()S S +>1S ,△123S S S <+,△A 符合题意,B ,C ,D 都不符合题意,故选A .【名师指导】本题考查了角的平分线的性质定理,三角形的面积公式,三角形的三边关系定理,灵活运用角的平分线的性质和三角形三边关系定理是解题的关键.4.如图,AD 是ABC 中BAC ∠的角平分线,DE AB ⊥于点E ,26ABC S =△,4DE =,7AB =,则AC 长是( )A .5B .6C .7D .8【标准答案】B【思路点拨】 作DF △AC 于F ,如图,根据角平分线定理得到DE =DF =4,再利用三角形面积公式和S △ADB +S △ADC =S △ABC 得到12×4×7+12×4×AC =26,然后解一次方程即可.【精准解析】解:作DF △AC 于F ,如图,△AD 是△ABC 中△BAC 的角平分线,DE △AB ,DF △AC ,△DE =DF =4,△S △ADB +S △ADC =S △ABC , △12×4×7+12×4×AC =26,△AC =6,故选:B .【名师指导】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,三角形的面积公式等知识,解题的关键是学会添加常用辅助线,学会利用面积法构建方程解决问题. 5.如图,ΔABC 的三边AB 、BC 、CA 的长分别为20,30,40,其三条角平分线将ΔABC 分为三个三角形,则S ΔABO △S ΔBCO △S ΔAOC 等于( )A.1△1△1B.2△3△4C.1△2△3D.3△4△5【标准答案】B【思路点拨】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【精准解析】解:过点O作OD△AC于D,OE△AB于E,OF△BC于F,△点O是内心,△OE=OF=OD,△S△ABO:S△BCO:S△CAO=12•AB•OE:12•BC•OF:12•AC•OD=AB:BC:AC=2:3:4,故选:B.【名师指导】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高是相等的,这点是非常重要的.6.在下列各原命题中,逆命题是假命题的是()A.两直线平行,同旁内角互补;B.如果两个三角形全等,那么这两个三角形的对应边相等;C.如果两个三角形全等,那么这两个三角形的对应角相等;D.两个相等的角是对顶角.【标准答案】C【思路点拨】先写出逆命题,再根据相关性质,定义判断即可.【精准解析】解:A逆命题是同旁内角互补,两直线平行,是真命题,△A不符合题意;B 逆命题是如果两个三角形的对应边相等,那么这两个三角形全等,是真命题,△B 不符合题意;C 逆命题是如果两个三角形的对应角相等,那么这两个三角形全等,是假命题,△C 符合题意;D 逆命题是如果两个角是对顶角,那么这两个角相等,是真命题,△D 不符合题意;故选C .【名师指导】本题考查了命题,互逆命题,命题的真假,熟练确定逆命题,灵活运用相关知识判断是解题的关键.7.如图,已知AF AB =,60FAB ∠=︒,AE AC =,60EAC ∠=︒,CF 和BE 交于O 点,则下列结论::△CF BE =;△120COB ∠=︒;△OA 平分FOE ∠;△OF OA OB =+.其中正确的有( )A .△△B .△△△C .△△△△D .△△△【标准答案】C【思路点拨】 证明ABE AFC ∆≅∆,由全等三角形的性质得到BE CF =,可得AEB ACF ∠=∠,则60CON CAE MOB ∠=∠=︒=∠,得出180120BOC CON ∠=︒-∠=︒;ABE AFC S S ∆∆=,得到AP AQ =,利用角平分线的判定定理得AO 平分EOF ∠,在OF 上截取OD OB =,根据SAS 可证明FBD ABO ∆≅∆,得出DF OA =,由此可以解决问题.【精准解析】解:△AB AF =,AC AE =,60FAB EAC ∠=∠=︒,FAB BAC EAC BAC ∴∠+∠=∠+∠,即FAC BAE ∠=∠,在ABE ∆与AFC ∆中,AB AF BAE FAC AE AC =⎧⎪∠=∠⎨⎪=⎩,()ABE AFC SAS ∴∆≅∆,BE FC ∴=,AEB ACF ∠=∠,故△正确,180EAN ANE AEB ∠+∠+∠=︒,180CON CNO ACF ∠+∠+∠=︒,ANE CNO ∠=∠,60CON CAE MOB ∴∠=∠=︒=∠,180120BOC CON ∴∠=︒-∠=︒,故△正确,连接AO ,过A 分别作AP CF ⊥与P ,AM BE ⊥于Q ,如图1,ABE AFC ∆≅∆,ABE AFC S S ∆∆∴=, ∴1122CF AP BE AQ =,而CF BE =, ∴=AP AQ ,OA ∴平分FOE ∠,所以△正确,在OF 上截取OD OB =,60BOF ∠=︒,OBD ∴∆是等边三角形,BD BO ∴=,60DBO ∠=︒,FBD ABO ∴∠=∠,BF AB =,()FBD ABO SAS ∴∆≅∆,DF OA ∴=,OF DF OD OA OB ∴=+=+;故△正确;故选:C . 【名师指导】本题考查了等边三角形的性质、全等三角形的判定和性质、角平分线的判定定理等知识,利用全等三角形面积相等证明高相等是解决问题的关键.8.如图,点A ,B ,C 在一条直线上,ABD △,BCE 均为等边三角形,连接AE 和CD ,AE 分别交CD 、BD 于点M 、P ,CD 交BE 于点Q ,连接PQ ,BM .下列结论:△ABE DBC ≌;△60DMA ∠=︒;△BPQ 为等边三角形;△MB 平分AMC ∠.其中结论正确的有( )A .1个B .2个C .3个D .4个【标准答案】D【思路点拨】 由等边三角形的性质得出AB =DB ,△ABD =△CBE =60°,BE =BC ,得出△ABE =△DBC ,由SAS 即可证出△ABE △△DBC ;由△ABE △△DBC ,得出△BAE =△BDC ,根据三角形外角的性质得出△DMA =60°;由ASA 证明△ABP △△DBQ ,得出对应边相等BP =BQ ,即可得出△BPQ 为等边三角形;由△ABE △△DBC 得到△ABE 和△DBC 面积等,且AE =CD ,从而证得点B 到AE 、CD 的距离相等,利用角平分线判定定理得到点B 在角平分线上.【精准解析】解:△△ABD 、△BCE 为等边三角形,△AB =DB ,△ABD =△CBE =60°,BE =BC ,△△ABE =△DBC ,△PBQ =60°,在△ABE 和△DBC 中,AB DB ABE DBC BE BC =⎧⎪∠=∠⎨⎪=⎩△△ABE △△DBC (SAS ),△△正确;△△ABE △△DBC ,△△BAE =△BDC ,△△BDC +△BCD =180°-60°-60°=60°,△△DMA =△BAE +△BCD =△BDC +△BCD =60°,△△正确;在△ABP 和△DBQ 中,60BAP BDQ AB DB ABP DBQ ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩△△ABP △△DBQ (ASA ),△BP =BQ ,△△BPQ 为等边三角形,△△正确;△△ABE △△DBC△AE =CD ,S △ABE =S △DBC ,△点B 到AE 、CD 的距离相等,△B 点在△AMC 的平分线上,即MB 平分△AMC ;△△正确;故选:D .【名师指导】本题考查了等边三角形的性质与判定、全等三角形的判定与性质、角平分线的判定定理;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.9.如图,在△ABC 中,AB =AC ,△BAC =46°,△BAC 的平分线与AB 的垂直平分线OD 交于点O ,点E 在BC 上,点F 在AC 上,连接EF .将△C 沿EF 折叠,点C 与点O 恰好重合时,则△OEC 的度数( )A .90°B .92°C .95°D .98°【标准答案】B【思路点拨】 仔细分析题意,可连接BO ,CO ,根据角平分线性质和中垂线性质不难得到△OAB =△OBA ;然后结合三角形内角和定理以及等边对等角可得△ABC 的度数;接下来根据全等三角形的判定易得△ABO △△ACO ,进而结合全等三角形的性质可得△OCB 的度数;最后根据折叠变换的性质得出EO =EC ,由等边对等角以及三角形内角和定理的知识即可求出△OEC 的度数.【精准解析】解:连接BO ,CO ,△△BAC=46°,△BAC的平分线与AB的中垂线交于点O,△△OAB=△OAC=23°,△OD是AB的垂直平分线,△OA=OB,△OA=OB,△OAB=23°,△△OAB=△ABO=23°,△AB=AC,△△ABC=△ACB=67°,△△OBC=△ABC-△ABO=67°-23°=44°,△AB=AC,△OAB=△OAC,AO=AO,△△ABO△△ACO(SAS),△BO=CO,△△OBC=△OCB=44°,△点C沿EF折叠后与点O重合,△EO=EC,△△EOC=△OCE=44°,△△OEC=180°-△EOC-△OCE=180°-2×44°=92°,故选:B.【名师指导】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.10.如图,在△ABC中,△BAC和△ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD△BC于D,下列三个结论:△△AOB=90°+△C;△当△C=60°时,AF+BE=AB;△若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的个数是()A .1个B .2个C .3个D .0个【标准答案】B【思路点拨】 由角平分线的定义结合三角形的内角和的可求解△AOB 与△C 的关系,进而判定△;在AB 上取一点H ,使BH =BE ,证得△HBO △△EBO ,得到△BOH =△BOE =60°,再证得△HAO △△F AO ,得到AF =AH ,进而判定△正确;作OH △AC 于H ,OM △AB 于M ,根据三角形的面积可证得△正确.【精准解析】解:△△BAC 和△ABC 的平分线相交于点O ,△△OBA =12△CBA ,△OAB =12△CAB ,△△AOB =180°−△OBA −△OAB =180°−12△CBA −12△CAB=180°−12(180°−△C )=90°+12△C ,△错误;△△C =60°,△△BAC +△ABC =120°,△AE ,BF 分别是△BAC 与ABC 的平分线,△△OAB +△OBA =12(△BAC +△ABC )=60°,△△AOB =120°,△△AOF =60°,△△BOE =60°,如图,在AB 上取一点H ,使BH =BE ,△BF 是△ABC 的角平分线,△△HBO =△EBO ,在△HBO 和△EBO 中,BH BE HBO EBO BO BO =⎧⎪∠=∠⎨⎪=⎩,△△HBO △△EBO (SAS ),△△BOH =△BOE =60°,△△AOH =180°−60°−60°=60°,△△AOH =△AOF ,在△HAO 和△F AO 中,HAO FAO AO AO AOH AOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△HAO △△F AO (ASA ),△AF =AH ,△AB =BH +AH =BE +AF ,故△正确;作OH △AC 于H ,OM △AB 于M ,△△BAC 和△ABC 的平分线相交于点O ,△点O 在△C 的平分线上,△OH =OM =OD =a ,△AB +AC +BC =2b△S △ABC =12×AB ×OM +12×AC ×OH +12×BC ×OD =12(AB +AC +BC )•a =ab ,△正确. 故选:B .【名师指导】本题主要考查了三角形内角和定理,三角形外角的性质,三角形全等的性质和判定,正确作出辅助线证得△HBO △△EBO ,得到△BOH =△BOE =60°,是解决问题的关键.11.如图,正ABC 和正CDE △中,B 、C 、D 共线,且3BC CD =,连接AD 和BE 相交于点F ,以下结论中正确的有( )个△60AFB ∠=︒ △连接FC ,则CF 平分BFD ∠ △3BF DF = △BF AF FC =+A .4B .3C .2D .1【标准答案】A【思路点拨】根据“手拉手”模型证明BCE ACD ≌,从而得到CBE CAD ∠=∠,再结合三角形的外角性质即可求解60AFB ACB ∠=∠=︒,即可证明△;作CM BE ⊥于M 点,CN AD ⊥于N 点,证明CEM CDN ≌,结合角平分线的判定定理即可证明△;利用面积法表示BCF △和DCF 的面积,然后利用比值即可证明△;利用“截长补短”的思想,在AD 上取点Q ,使得FC FQ =,首先判断出FCQ 为等边三角形,再结合“手拉手”模型推出BCF ACQ ≌即可证明△.【精准解析】解:△△ABC 和CDE △均为等边三角形,△60ACB ECD ∠=∠=︒,AC BC =,EC DC =,△ACB ACE ECD ACE ∠+∠=∠+∠,△BCE ACD ∠=∠,在BCE 和ACD △中, BC AC BCE ACD EC DC =⎧⎪∠=∠⎨⎪=⎩△()BCE ACD SAS ≌,△CBE CAD ∠=∠,△AFB CBE CDA ∠=∠+∠,ACB CDA CAD ∠=∠+∠,△60AFB ACB ∠=∠=︒,故△正确;△如图所示,作CM BE ⊥于M 点,CN AD ⊥于N 点,则90CME CND ∠=∠=︒,△BCE ACD ≌,△CEM CDN ∠=∠,在CEM 和CDN △中,CME CND CEM CDN CE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩△()CEM CDN AAS ≌,△CM CN =,△CF 平分BFD ∠,故△正确;△如图所示,作FP BD ⊥于P 点, △1122BCF S BF CM BC FP ==,1122DCF S DF CN CD FP ==, △11221122BCFDCF BF CM BC FP S S DF CN CD FP ==, △CM CN =,△整理得:BF BC DF CD=, △3BC CD =,△33BF CD DF CD==, △3BF DF =,故△正确;△如图所示,在AD 上取点Q ,使得FC FQ =,△60AFB ACB ∠=∠=︒,CF 平分BFD ∠,△120BFD ∠=︒,1602CFD BFD ∠=∠=︒, △FCQ 为等边三角形,△60FCQ ∠=︒,CF CQ =,△60ACB ∠=︒,△ACB ACF FCQ ACF ∠+∠=∠+∠,△BCF ACQ ∠=∠,在BCF △和ACQ 中,BC AC BCF ACQ CF CQ =⎧⎪∠=∠⎨⎪=⎩△()BCF ACQ SAS ≌,△BF AQ =,△AQ AF FQ =+,FQ FC =,△BF AF FC =+,故△正确;综上,△△△△均正确;故选:A .【名师指导】本题考查等边三角形的判定与性质,全等三角形的判定与性质等,理解等边三角形的基本性质,掌握全等三角形中的辅助线的基本模型,包括“手拉手”模型,截长补短的思想等是解题关键.12.如图,在ABC 中,BC AC =,90ACB ∠=︒,AD 平分BAC ∠,BE AD ⊥交AC 的延长线于F ,垂足为E .则下列结论不正确的是( )A .AD BF =B .CF CD =C .AC CD AB +=D .BE CF =【标准答案】D【思路点拨】 A.根据BC AC =,90ACB ∠=︒可知45CAB ABC ∠=∠=︒,再由AD 平分BAC ∠可知22.5BAE EAF ∠=∠=︒,在Rt ACD ∆与Rt BFC ∆中,90EAF F ∠+∠=︒,90FBC F ∠+∠=︒,可求出EAF FBC ∠=∠,由BC AC =可求出Rt ADC Rt BFC ∆≅∆,故可求出AD BF =;B.由选项A中Rt ADC Rt BFC ∆≅∆可直接得出结论;C.由选项A中Rt ADC Rt BFC ∆≅∆可知,CF CD =,故AC CD AC CF AF +=+=,22.5CBF EAF ∠=∠=︒,在Rt AEF ∆中,9067.5F EAF ∠=︒-∠=︒,根据45CAB ∠=︒可知,18067.5ABF EAF CAB ∠=︒-∠-∠=︒,即可求出AF AB =,即AC CD AB +=;D.由选项C可知,ABF ∆是等腰三角形,由于BE AD ⊥,故12BE BF =,在Rt BCF ∆中,若BE CF =,则30CBF ∠=︒,与选项B中22.5CBF ∠=︒相矛盾,故BE CF ≠;【精准解析】解:A.BC AC =,90ACB ∠=︒,45CAB ABC ∴∠=∠=︒, AD 平分BAC ∠,22.5BAE EAF ∴∠=∠=︒,在Rt ACD ∆与Rt BFC ∆中,90EAF F ∠+∠=︒,90FBC F ∠+∠=︒,EAF FBC ∴∠=∠,BC AC =,EAF FBC ∠=∠,BCF AEF ∠=∠,Rt ADC Rt BFC ∴∆≅∆,AD BF ∴=;故选项A 正确; B.选项A 中Rt ADC Rt BFC ∆≅∆,CF CD ∴=,故选项B 正确; C.选项A 中Rt ADC Rt BFC ∆≅∆,CF CD ∴=,AC CD AC CF AF +=+=,22.5CBF EAF ∠=∠=︒,∴在Rt AEF ∆中,9067.5F EAF ∠=︒-∠=︒,45CAB ∠=︒,18018067.54567.5ABF F CAB ∴∠=︒-∠-∠=︒-︒-︒=︒,AF AB ∴=,即AC CD AB +=,故C 正确;D.由选项C 可知,ABF ∆是等腰三角形,BE AD ⊥,12BE BF ∴=, 在Rt BCF ∆中,若BE CF =,则30CBF ∠=︒,与选项B 中22.5CBF ∠=︒相矛盾,故BE CF ≠,故选项D 错误;故选:D .【名师指导】本题考查的是线段垂直平分线的性质及等腰三角形的判定与性质,熟知线段垂直平分线的性质及等腰三角形的判定与性质是解答此题的关键.二、填空题13.如图,△ABC 的外角△DBC 、△ECB 的角平分线交于点M ,△ACB 的角平分线与BM 的反向延长线交于点N ,若在△CMN 中存在一个内角等于另一个内角的2倍,则△A 的度数为 _______【标准答案】60︒或90︒或120︒【思路点拨】根据ECB ∠,DBC ∠的角平分线交于点M ,可求得1902M A ∠=︒-∠,延长 CB 至F ,根据BM 为ABC ∆的外角DBC ∠的角平分线,可得 BN 是ABC ∆的外角ABF ∠的平分线, 根据CN 平分 ACB ∠,得到2ACB NCB ∠=∠,则有NBF NCB N ∠=∠+∠,可得 2ABF ACB N ∠=∠+∠,可求得12N A ∠=∠;再根据NCM NCF BCM ∠=∠+∠1122ACB BCE =∠+∠90=︒,分四种情况:△290MCN N ∠=∠=︒;△ 290MCN M ∠=∠=︒;△2M N ∠=∠;△2N M ∠=∠,分别讨论求解即可. 【精准解析】 解:外角ECB ∠,DBC ∠的角平分线交于点 M ,()12MCB MBC ECB DBC ∴∠+∠=∠+∠ ()11801802ACB ABC =︒-∠+︒-∠ ()13602ACB ABC =︒-∠-∠ ()13601802A =︒-︒+∠⎡⎤⎣⎦ ()11802A =︒+∠ 1902A =+∠︒△()11180180909022M MCB MBC A A ⎛⎫∠=︒-∠+∠=︒-︒+∠=︒-∠ ⎪⎝⎭; 如图示,延长CB 至F ,BM 为ABC ∆的外角DBC ∠的角平分线,BN ∴是ABC ∆的外角ABF ∠的平分线,2ABF NBF ∴∠=∠, CN 平分ACB ∠,2ACB NCB ∴∠=∠,NBF NCB N ∠=∠+∠,222NBF NCB N ∴∠=∠+∠,即2ABF ACB N ∠=∠+∠,又ABF ACB A ∠=∠+∠,△2ACB N ACB A ∠+∠=∠+∠2A N ∴∠=∠,即12N A ∠=∠; NCM NCF BCM ∠=∠+∠1122ACB BCE =∠+∠ 11802=⨯︒ 90=︒;如果CMN ∆中,存在一个内角等于另一个内角的2倍,那么分四种情况:△290MCN N ∠=∠=︒,则45N ∠=︒, 290A N ∠=∠=︒;△290MCN M ∠=∠=︒,则45M ∠=︒, 45N ∠=︒,290A N ∠=∠=︒;△2M N ∠=∠,则1190222A A ︒-∠=⨯∠,解得 60A ∠=︒;△2N M ∠=∠,则1129022A A ⎛⎫∠=︒-∠ ⎪⎝⎭,解得 120A ∠=︒. 综上所述,A ∠的度数是60︒或90︒或120︒.【名师指导】本题是三角形综合题,考查了三角形内角和定理、外角的性质,角平分线定义等知识;灵活运用三角形的内角和定理、外角的性质进行分类讨论是解题的关键.14.已知:△ABC 是三边都不相等的三角形,点P 是三个内角平分线的交点,点O 是三边垂直平分线的交点,当P 、O 同时在不等边△ABC 的内部时,那么△BOC 和△BPC 的数量关系是___.【标准答案】4360BPC ∠-︒【思路点拨】根据三角形角平分线的性质以及三角形内角和定理,即可得到2180BAC BPC ∠=∠-︒;再根据三角形垂直平分线的性质以及三角形内角和定理,即可得到2BOC BAC ∠=∠,进而得出BOC ∠和BPC ∠的数量关系.【精准解析】解:BP 平分ABC ∠,CP 平分ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠180(=︒-11)22ABC ACB ∠+∠ 1180()2ABC ACB =︒-∠+∠ 1180(180)2BAC =︒-︒-∠ 1902BAC =︒+∠, 即2180BAC BPC ∠=∠-︒;如图,连接AO .点O 是这个三角形三边垂直平分线的交点,OA OB OC ∴==,OAB OBA ∴∠=∠,OAC OCA ∠=∠,OBC OCB ∠=∠,1802AOB OAB ∴∠=︒-∠,1802AOC OAC ∠=︒-∠,360()BOC AOB AOC ∴∠=︒-∠+∠360(18021802)OAB OAC =︒-︒-∠+︒-∠,22OAB OAC =∠+∠2BAC =∠2(2180)BPC =∠-︒4360BPC =∠-︒,故答案为:4360BPC ∠-︒.【名师指导】本题考查了三角形的垂直平分线与角平分线,熟练掌握三角形的垂直平分线与角平分线的性质是解题的关键.15.如图,在四边形ABCD 中,//AD BC ,AB AC =,6BC =,DBC △面积为18,AB 的垂直平分线MN 分别交AB ,AC 于点M ,N ,若点P 和点Q 分别是线段MN 和BC 边上的动点,则PB PQ +的最小值为______.【标准答案】6【思路点拨】连接AQ ,过点D 作DH BC ⊥于H .利用三角形的面积公式求出DH ,由题意得: PB PQ AP PQ AQ +=+≥,求出AQ 的最小值,AQ 最小值是与DH 相等,也就是AQ BC ⊥时,根据面积公式求出DH 的长度即可得到结论.【精准解析】解:连接AQ ,过点D 作DH BC ⊥于H .△DBC △面积为18,BC =6, △1182BC DH =, △6DH =,△MN 垂直平分线段AB ,△PA PB =,△PB PQ AP PQ AQ +=+≥,△当AQ 的值最小时,PB PQ +的值最小,根据垂线段最短可知,当AQ BC ⊥时,AQ 的值最小,△//AD BC ,△AQ =DH =6,△PB PQ +的最小值为6.故答案为:6.【名师指导】本题考查轴对称最短问题,平行线的性质,三角形的面积,线段的垂直平分线的性质等知识,把最短问题转化为垂线段最短是解题关键.16.如图,AB 为等腰直角ABC 的斜边,E 为AB 的中点,F 为AC 延长线上的一个动点(F 与点C 不重合),线段FB 的垂直平分线交线段CE 于点O ,D 垂足.当F 点运动时,给出下列四个结论.其中一定正确的结论有______(请填写正确序号).△点O 到ABF 三个顶点的距离相等;△⊥OF OB ;FC AB +=;△AEC BOF S S <△△【标准答案】△△△【思路点拨】如图,连接AO ,根据等腰三角形的性质得到CE △AB ,求得OA =OB ,根据线段垂直平分线的性质得到OF =OB ,得到点O 到△ABF 三个顶点的距离相等,故△正确;设BC 交OF 于J ,根据全等三角形的性质得到△CAO =△CBO ,求得△CAO =△CFJ ,得到△JOB =△JCF =90°,根据垂直的定义得到OF △OB ,故△CE =AC ,AC +CF =AF ,显然AF不一定等于AB 、故△错误;根据等腰直角三角形的性质得到AE =CE =BE =12AB ,CE △AB ,求得△ACE 面积为12AE •CE =12BE 2,得到△BOF 面积为12OF •OB =12OB 2,于是得到S △AEC <S △BOF ,故△正确.【精准解析】解:如图,连接AO ,△CA =CB ,AE =EB ,△CE △AB ,△OA =OB ,△OD 垂直平分线段BF ,△OF =OB ,△OA =OF =OB ,△点O 到△ABF 三个顶点的距离相等,故△正确;设BC 交OF 于J ,在△ACO 与△BCO 中,AC BC CO CO AO BO =⎧⎪=⎨⎪=⎩, △△ACO △△BCO (SSS ),△△CAO =△CBO ,△OA =OF ,△△CAO =△CFJ ,△△CFJ =△OBJ ,△△CJF =△OJB ,△△JOB =△JCF =90°,△OF △OB ,故△正确;CE =AC ,AC +CF =AF ,显然AF 不一定等于AB 、故△错误;△△ABC 为等腰直角三角形,E 为AB 中点,△AE =CE =BE =12AB ,CE △AB ,△△ACE 面积为12AE •CE =12BE 2,△OF △OB ,OF =OB ,△△BOF 面积为12OF •OB =12OB 2,在Rt △OBE 中,OB 为斜边,BE 为直角边,△OB >BE , △12BE 2<12OB 2,△S △AEC <S △BOF ,故△正确.故答案为:△△△.【名师指导】本题考查了全等三角形的判定和性质,线段垂直平分线的性质,三角形的面积公式,正确的识别图形是解题的关键.17.如图,反比例函数k y x =的图象经过点(-1,-),点A 是该图象第一象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP .在点A 运动过程中,当BP 平分△ABC 时,点A 的坐标是____________.【标准答案】)2 【思路点拨】把点(-1,-)代入反比例函数k y x=,求出k . 连接OC ,过点A 作AE △x 轴于E ,过点C 作CF △x 轴于F ,则有△AOE △△OCF ,进而可得出AE =OF 、OE =CF ,根据角平分线的性质及三角形面积可得出AP CP =,易证APE CPF ,利用三角形性质可得出CF AE =即OE AE =A 的坐标为(a (a >0),由OE AE =可求出a 值,进而得到点A 的坐标.【精准解析】解:把点(-1,-k y x=得: k=−1×(-△y = 连接OC ,过点A 作AE △x 轴于E ,过点C 作CF △x 轴于F ,如图所示.△△ABC 为等腰直角三角形,△OA =OC ,OC △AB ,△△AOE +△COF =90°.△△COF +△OCF =90°,△△AOE =△OCF .在△AOE 和△OCF 中,90AEO OFC AOE OCF OA OC ∠∠︒⎧⎪∠∠⎨⎪⎩==== , △△AOE △△OCF (AAS ),△AE =OF ,OE =CF .设点P 到AB 的距离为h ,△BP 平分△ABC ,△h PC =,△1·21·2ABP CBP h AB S AP AB CP S BC PC BC ==== △,APE CPF AEP CFP ∠=∠∠=∠,△APECPF , △CF CP AE AP ==, △OE AE =. 设点A的坐标为(a , 解得:a或a =(舍去),2=, △点A的坐标为)2, 故答案为:)2.【名师指导】本题考查了反比例函数图象上点的坐标特征、全等三角形的判定与性质、角平分线的性质、三角形的面积、相似三角形的判定与性质以及等腰直角三角形,构造全等三角形,利用全等三角形的对应边相等是解题的关键.18.如图,在ABC 中,△ACB =45°,AD △BC ,BE △AC ,AD 与BE 相交于点F ,连接并延长CF 交AB 于点G ,△AEB 的平分线交CG 的延长线于点H ,连接AH ,则下列结论:△△EBD =45°;△AH =HF ;△ABD △CFD ;△CH =AB +AH ;△BD =CD ﹣AF .其中正确的是 ___.(只填写序号)【标准答案】△△△△△【思路点拨】△根据45ACB ∠=︒,BE AC ⊥,即可得解;△先证明EH 是AF 的垂直平分线,根据垂直平分线的性质即可得结论;△根据“边角边”即可证明ABD CFD ≌;△根据ABD CFD ≌可得AB CF =,再结合CH CF FH =+进而可以判断CH AB AH =+; △由DF AD AF =-结合△即可得结论.【精准解析】解:△△BE AC ⊥,90BEA BEC ∴∠=∠=︒,45ACB =︒∠,9045EBD ACB ∴∠=︒-∠=︒,故△正确;△EH 是AEB ∠的角平分线,1452HEB HEA AEB ∴∠=∠=∠=︒, 45HEB EBC ∴∠=∠=︒,//EH BC ∴,AD BC ⊥,AD EH ∴⊥,90AOE FOE ∴∠=∠=︒,9045OAE HEA ∴∠=︒-∠=︒,9045OFE HEB ∠=︒-∠=︒,45OAE OFE ∴∠=∠=︒,AE FE ∴=,又EH 平分AEB ∠,EH ∴是AF 的垂直平分线,AH HF ∴=,故△正确;。
角平分线和线段垂直平分线【要点梳理】知识点1. 角的平分线的性质及判定定理:1.如图∵OP 平分∠AOB ,点P 在射线OP 上,PC ⊥OA 于C ,PD ⊥OB 于D∴ ( )2.∵PC ⊥OA 于C ,PD ⊥OB 于D ,PC = PD ,∴ ( ) 答案:PC=PD (角平分线上的点到角两边的距离相等) OP 平分∠AOB (到角两边距离相等的点在角的平分线上)知识点2. 线段的垂直平分线的性质及判定定理:1.线段垂直平分线性质:线段垂直平分线上的点与这条线段两个端点的 .2.线段垂直平分线的判定:与一条线段两个端点 的点,在这条线段的垂直平分线上.3.线段的垂直平分线是到这条线段两端点距离相等的点的集合.答案:1、距离相等 2、距离相等知识点3. 角的平分线和线段的垂直平分线的应用:1.三角形的三条 交于一点,并且这一点到三条边的距离相等。
2.三角形的 交于一点,这点到三角形三个顶点的距离相等。
3.如图,321l l l 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )A 、一处B 、二处C 、三处D 、四处4.如图,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .下列推理中正确的个数是 .①AD 上任意一点到点C ,B 的距离相等;②AD 上任意一点到AC ,AB 的距离相等;③BD =CD ,AD ⊥BC ;④∠BDE =∠CDF答案:1、角平分线2、三条边的垂直平分线3、A 4、4【例题选析】例1 如图4,AB=AD ,BC=CD ,AC 、BD 相交于点E .由这些条件可以得出若干结论,请你写出其中三个正确结论(不要添加字母和辅助线,不要求证明).答案:∠DAE=∠BAE;DE=BE; ∠DCE=∠BCEl 3l 2l 1P D C BOA F D E CB AG NC FB D E A例2.如图,∠A =∠B =90°,M 是AB 的中点,DM 平分∠ADC ,求证:CM 平分∠BCDMDB C A答案:如图:过点M 作MN 与CD 垂直,先用AAS 证明△AMD 与△NMD 全等,得MN=AM,由M 为AB 中点可知,AM=BM,所以BM=NM ,又因为CM 是公共边,根据HL 可证明△MBC 与△MNC 全等,所以CM 平分∠BCD 。
【拔尖特训】2024-2025学年八年级数学上册尖子生培优必刷题(人教版)专题13.2线段的垂直平分线专题(限时满分培优训练)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分100分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•防城港期末)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长是()A.8B.6C.4D.22.(2022秋•东宝区期末)和三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点3.(2022秋•黄石港区期末)如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AB,AC于点M,N,△BCN的周长是7cm,则BC的长为()A.4cm B.3 cm C.2cm D.1cm4.(2022秋•长安区校级期末)某地兴建的幸福小区的三个出口A、B、C的位置如图所示,物业公司计划在不妨碍小区规划的建设下,想在小区内修建一个电动车充电桩,以方便业主,要求到三个出口的距离都相等,则充电桩应该在△ABC()A.三条高线的交点处B.三条中线的交点处C.三个角的平分线的交点处D.三条边的垂直平分线的交点处5.(易错题)(2023秋•青秀区校级月考)已知:△ABC是三边都不相等的三角形,点P是三个内角平分线的交点,点O是三边垂直平分线的交点,当P、O同时在不等边△ABC的内部时,那么∠BOC和∠BPC 的数量关系是()A.2∠BOC+∠BPC=360°B.∠BOC+2∠BPC=360°C.3∠BOC﹣∠BPC=360°D.4∠BPC﹣∠BOC=360°6.(易错题)(2022秋•汉南区校级期末)如图,锐角三角形ABC中,O为三条边的垂直平分线的交点,I 为三个角的平分线的交点,若∠BOC的度数为x,∠BIC的度数为y,则x、y之间的数量关系是()A.x+y=90°B.x﹣2y=90°C.x+180°=2y D.4y﹣x=360°7.(易错题)(2022秋•东阿县校级期末)如图,线段AB,BC的垂直平分线l1、l2相交于点O.若∠OEB =46°,则∠AOC=()A.92°B.88°C.46°D.86°8.(易错题)(2022春•雅安期末)如图所示,在△ABC中,DM,EN分别垂直平分AB和AC,交BC于点D,E,若∠DAE=40°,则∠BAC=()A.105°B.100°C.110°D.140°9.(培优题)(2022春•舞钢市期末)如图,四边形ABCD中,DE和DF恰好分别垂直平分AB和BC,则以下结论不正确的是()A.AD=CD B.∠B=∠A+∠CC.∠EDF=∠ADE+∠CDF D.BE=BF10.(培优题)(2022春•周村区期末)如图,在△ABC中,∠BAC=80°,边AB的垂直平分线交AB于点D,交BC于点E,边AC的垂直平分线交AC于点F,交BC于点G,连接AE,AG.则∠EAG的度数为()A.35°B.30°C.25°D.20°二.填空题(共6小题)11.(2022秋•句容市期末)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长.12.(2022秋•德城区校级期末)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线DE交BC于点E,交AC于点D,∠B=70°,∠F AE=19°,则∠C=°.13.(易错题)(2023春•甘州区校级期末)如图,在△ABC中,AC的垂直平分线与AC,BC分别交于点E,D,CE=4,△ABC的周长是25,则△ABD的周长为.14.(易错题)(2023春•荔湾区期末)在平面直角坐标系中,已知A(8,0),B(0,4),作AB的垂直平分线交x轴于点C,则点C坐标为.15.(2023春•振兴区校级期中)如图,AE是∠CAM的角平分线,点B在射线AM上,DE是线段BC的中垂线交AE于E,过点E作AM的垂线交AM于点F.若∠ACB=26°,∠EBD=25°,则∠AED=.16.(2023春•振兴区校级期中)如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,这两条垂直平分线分别交BC于点D、E.已知△ADE的周长为11cm,分别连接OA、OB、OC,若△OBC的周长为23cm,则OA的长为.三.解答题(共7小题)17.(2023•渭南一模)如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,求证:AD 垂直平分EF.18.(2022春•合浦县期中)如图,已知点D是BC上一点,DE⊥AB,DF⊥AC,垂足分别为E、F,连接AD,若AD垂直平分EF,求证:AD是△ABC的角平分线.19.(易错题)(2023春•新民市期中)如图,在△ABC中,∠C=90°,点P在AC上运动,点D在AB上,PD始终保持与P A相等,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断DE与DP的位置关系,并说明理由;(2)若AC=6,BC=8,P A=2,求线段DE的长.20.(易错题)(2023春•丰城市期末)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.(1)若BC=9,求△AEG的周长.(2)若∠BAC=130°,求∠EAG的度数.21.(培优题)(2023春•榆林期末)如图,在△ABC中,AC边的垂直平分线分别交BC、AC于点E、F,连接AE,作AD⊥BC于点D,且D为BE的中点.(1)试说明:AB=CE;(2)若∠C=32°,求∠BAC的度数.22.(培优题)(2023春•定边县校级期末)已知,如图,AD是△ABC的高线,AD的垂直平分线分别交AB,AC于点E,F.(1)若∠B=40°,求∠AEF的度数;(2)求证:∠B=12∠AED.23.(培优题)(2023春•兴庆区校级期末)如图,△ABC中,D、E在AB上,且D、E分别是AC、BC的垂直平分线上一点.(1)若△CDE的周长为4,求AB的长;(2)若∠ACB=100°,求∠DCE的度数;(3)若∠ACB=a(90°<a<180°),则∠DCE=.。
1。
3线段的垂直平分线一、选择题1. 已知MN是线段AB的垂直平分线,C,D是MN上任意两点,则∠CAD和∠CBD之间的大小关系是( )A。
∠CAD<∠CBD B。
∠CAD=∠CBD C. ∠CAD>∠CBD D. 无法判断【答案】B【解析】试题解析:∵MN是线段AB的垂直平分线,C,D是MN上任意两点,∴AC=BC,AD=BD,∴∠DAB=∠CBA,∠DAB=∠DBA,如图1,∠CAD=∠CAB+∠DAB,∠CBD=∠CBA+∠DBA,∴∠CAD=∠CBD;如图2,∠CAD=∠CAB—∠DAB,∠CBD=∠CBA-∠DBA,∴∠CAD=∠CBD.故选B.考点:线段垂直平分线的性质.2. 如图所示,在△ABC中,AD垂直平分BC,AC=EC,点B,D,C,E在同一条直线上,则AB+DB与DE之间的数量关系是( )A. AB+DB〉DEB. AB+DB〈DE C。
AB+DB=DE D。
无法判断【答案】C【解析】∵AD垂直平分BC,∵AB=AC,BD=CD,又∵AC=EC,∴AB=AC=CE,∴AB+BD=CE+CD=DE.故选C.3。
已知在△ABC中,AB=AC,AB的垂直平分线交线段AC于D,若△ABC和△DBC的周长分别是60 cm和38 cm,则△ABC的腰长和底边BC的长分别是 ( )A. 24 cm和12 cmB. 16 cm和22 cmC. 20 cm和16 cm D。
22 cm和16 cm【答案】D【解析】∵AB的垂直平分线交AC于D,∴AD=BD,∴△DBC的周长=BD+CD+BC=AD+CD+BC=AC+BC,∵△ABC和△DBC的周长分别是60cm和38cm,∴AB=60﹣38=22cm,∴BC=38﹣22=16cm,即△ABC的腰和底边长分别为22cm和16cm,故选D.4。
如图所示,A,B是直线l外两点,在l上求作一点P,使PA+PB最小,其作法是()A. 连接BA并延长与l的交点为PB。
专题训练(二) 线段垂直平分线和角平分线的相关证明1.已知:AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,BD =CD ,求证:∠B =∠C.证明:∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∠DEB =∠DFC =90 °.在Rt △DEB 和Rt △DFC 中,⎩⎪⎨⎪⎧DE =DF ,BD =CD , ∴Rt △DEB ≌Rt △DFC(HL).∴∠B =∠C.2.如图,已知:OA 平分∠BAC ,∠1=∠2.求证:△ABC 是等腰三角形.证明:过点O 作OD ⊥AB 于点D ,OE ⊥AC 于点E ,则△BOD 和△COE 都是直角三角形.∵OA 平分∠BAC ,OD ⊥AB ,OE ⊥AC ,∴OD =OE.∵∠1=∠2,∴OB =OC.∴Rt △BO D ≌Rt △COE(HL).∴∠ABO =∠ACO.∴∠ABC =∠ACB.∴AB =AC.∴△ABC 是等腰三角形.3.如图,△ABC 中,∠ACB =90°,∠B =30°,AD 平分∠CAB ,延长AC 至E ,使CE =AC.(1)求证:DE =DB ;(2)连接BE ,试判断△ABE 的形状,并说明理由.解:(1)证明:∵∠ACB =90 °,∠ABC =30 °,∴∠CAB =180 °-∠ACB -∠ABC =60 °.∵AD 平分∠CAB ,∴∠DAB =12∠CAB =30 °=∠ABC.∴DA =DB.∵CE =AC ,BC ⊥AE ,∴BC 是线段AE 的垂直平分线.∴DE =DA.∴DE =DB.(2)△ABE 是等边三角形.理由如下:∵BC 是线段A E 的垂直平分线,∴BA =BE ,即△ABE 是等腰三角形.又∵∠CAB =60 °,∴△ABE 是等边三角形.4.如图,已知△ABE ,AB ,AE 边上的垂直平分线m 1,m 2交BE 分别为点C ,D ,且BC =CD =DE.(1)求证:△ACD 是等边三角形;(2)求∠BAE 的度数.解:(1)证明:∵m 1、m 2分别为AB 、AE 边上的垂直平分线,∴AC =BC ,AD =DE.∵BC =CD =DE ,∴AC =AD =CD.∴△ACD 是等边三角形.(2)∵△ACD 是等边三角形,∴∠CAD =∠ACD =∠ADC =60 °.∵AC =BC ,AD =DE ,∴∠ABC =∠BAC ,∠DEA =∠DAE.∴∠BAC =12∠ACD ∠EAD =12∠ADC 12×60 °=30 °.∴∠BAE =∠BAC +∠CAD +∠EAD =30 °+60 °+30 °=120 °. 文本仅供参考,感谢下载!。
1.3《线段的垂直平分线》一、选择题1.如图,在△ABC 中,∠BAC =80°,∠C =70°,分别以点A 和点B 为圆心,大于AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则∠DAC 的度数为( )A .60°B .50°C .40°D .30°2.如图,△ABC 中,∠B =55°,∠C =30°,分别以点A 和点C 为圆心,大于AC 的长为半径画弧,两弧相交于点M ,N 作直线MN ,交BC 于点D ,连结AD ,则∠BAD 的度数为( )A .65°B .60°C .55°D .45°3.如图,已知△ABC (AC <BC ),用尺规在BC 边上确定一点P ,使得PA +PC =BC ,则下列四种不同的作图方法中,正确..的是( ) A .B .C .D .4.如图,长方形ABCD 中∠DAC =68°,请依据尺规作图的痕迹,求出∠α等于1212( )A .34°B .44°C .56°D .68°5.如图,在中,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,,连接,交于点D ,连接,若的周长为,,则的周长为( )A .B .C .D .6.如图,在Rt △ABC 中∠C =90°,AB >BC ,分别以顶点A 、B 为圆心,大于AB 长为半径作圆弧,两条圆弧交于点M 、N ,作直线MN 交边CB 于点D .若AD =5,CD =3,则BC 长是( )A .7B .8C .12D .137.如图,在△ABC 中,DE 是边AB 的垂直平分线,垂足为E ,交BC 边于D 点,若AC =5 cm ,△ADC 的周长为17 cm ,则BC 的长为( )ABC ∆A B 12AB M N MN BC AD ADC ∆107AB =ABC∆714172012A.7 cm B.10 cm C.12 cm D.22 cm8.如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于( )A.6cm B.8cm C.10cm D.12cm9.如图,点A,B,C表示某公司三个车间的位置,现在要建一个仓库,要求它到三个车间的距离相等,则仓库应建在( )A.△ABC三边的中线的交点上B.△ABC三内角平分线的交点上C.△ABC三内高线的交点上D.△ABC三边垂直平分线的交点上,我们知道按如图所作10.如图,点E,F,G,Q,H在一条直线上,且EF GH的直线l为线段FG的垂直平分线.下列说法正确的是( ).A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线11.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧MN的长为半径画弧,分别交AB,AC于点M和N,再分别以M,N为圆心,大于12两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有( ).A.1个B.2个C.3个D.4个12.如图,在△ABC中,∠BAC=90°,∠ABC=2∠C,BE平分∠ABC交AC于E,AD ⊥BE于D,下列结论:①AC-BE=AE;②点E在线段BC的垂直平分线上;③∠DAE=∠C;④BC=3AD,其中正确的个数有( )A.4个B.3个C.2个D.1个13.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作弧DE,交射线OB于点F,连接CF;(2)以点F为圆心,CF长为半径作弧,交弧DE于点G;(3)连接FG,CG.作射线OG.根据以上作图过程及所作图形,下列结论中错误的是( )A .∠BOG =∠AOBB .若CG =OC ,则∠AOB =30° C .OF 垂直平分CGD .CG =2FG14.如图,△ABC 中,AC =BC ,直线l 经过点C ,则( )A .l 垂直ABB .l 平分ABC .l 垂直平分ABD .不能确定二、填空题 1.如图,分别以线段的端点和为圆心大于的长为半径作弧,连接两弧交点,得直线,在直线上取一点,使得,延长至, 的度数为__________.2.如图,在中,分别以点A 和点C 为圆心,大于长为半径画弧,两弧相交于点M 、N ;作直线MN 分别交BC 、AC 于点D 、点E ,若,的周长为13cm ,则的周长为________.AB A B 12AB l l C 25CAB ∠=︒AC M BCM∠ABC ∆12AC 3AE m =ABD ∆ABC ∆3.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,S:S△ABC=_____.△AED4.如图,在△ABC中,AC=5 cm,AB的垂直平分线交AC于点N,△BCN的周长是8 cm,则线段BC的长为________ cm.5.如图,△ABC 中,∠BAC=108°,E,G 分别为AB,AC 中点,且DE⊥AB,FG⊥AC,则∠DAF=_________°.三、解答题1.已知△ABC中,∠A=80°,∠B=40°.(1)尺规作图:在AB边上找一点D使得DB=DC(要求:不写作法,保留作图痕迹);(2)求∠ADC.2.如图,在的边上求作点,做得与的面积相等.(保留作图痕迹,不写作法)3.如图,已知△ABC ,点 P 为 BC 上一点.(1)尺规作图:作直线 EF ,使得点 A 与点 P 关于直线 EF 对称,直线 EF 交直线 AC 于 E ,交直线 AB 于 F ;(保留作图痕迹,不写作法)(2)连接 PE ,AP ,AP 交 EF 于点 O ,若 AP 平分∠BAC ,请在(1)的基础上说明 PE =AF .4.如图,在Rt △ABC 中,∠B=90°,用圆规分别以A 、C 为圆心,大于AC 的一半的长度为半径画弧,产生如图所示的两个交点M 、N ,作直线MN ,交AC 于点D ,交BC 于点E . ABC BC D ABD △ACD△(1)根据作法判断直线DE为线段AC的线;(2)连接AE,若∠C=36°,求∠BAE的度数.5.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,分别交BC于点D、E,已知△ADE的周长5cm.(1)求BC的长;(2)分别连接OA、OB、OC,若△OBC的周长为13cm,求OA的长.6.如图,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于点D,交AC于点E.(1)求∠BAD的度数;(2)若AB=10,BC=12,求△ABD的周长.7.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.8.已知,如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高。
数学人教版(五四学制)八年级上册20一、选择题1.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,AB的垂直平分线交BC于点D,衔接AD,那么△ACD的周长是〔〕A. 7B. 8C. 9D. 102.如图,是的角平分线,是的垂直平分线,,,那么的长为〔〕A. 6B. 5C. 4D.3.如图,在△ABC中,DE垂直平分AB,交边AC于点D,交边AB于点E,衔接BD.假定AC=6,△BCD的周长为10,那么BC的长为〔〕A. 2B. 4C. 6D. 84.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.△PAB的周长为14,PA=4,那么线段AB的长度为( )A. 6B. 5C. 4D. 35.点P在线段的中垂线上,点Q在线段的中垂线外,那么〔〕.A. B. C. D. 不能确定 6.如图,∠AOB 和线段CD ,假设P 点到OA ,OB 的距离相等,且PC=PD ,那么P 点是〔 〕A. ∠AOB 的平分线与CD 的交点B. CD 的垂直平分线与OA 的交点C. ∠AOB 的平分线与CD 的垂直平分线的交点D. CD 的中点7.如图,在中, , 的平分线AD 交BC 于点D ,假定DE 垂直平分AB ,那么 的度数为〔 〕A. B. C. D.8.如图,在△ABC 中,区分以点A 和点C 为圆心,大于 21AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 区分交BC ,AC 于点D ,E .假定AE=3cm ,△ABD 的周长为13cm ,那么△ABC 的周长为〔 〕A. 16cmB. 19cmC. 22cmD. 25cm9.如图,DE 是△ABC 中AC 边的垂直平分线,假定BC=8,AB=10,那么△EBC 的周长为〔 〕.A. 16B. 18C. 26D. 2810.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,衔接BD.有以下结论:①∠C=2∠A;②BD平分∠ABC;③S△BCD=S△BOD.其中正确的选项是〔〕A. ①③B. ②③C. ①②③D. ①②二、填空题11.小军做了一个如下图的风筝,其中EH=FH,ED=FD,小军说不用测量就知道DH是EF的垂直平分线.其中包括的道理是________12.如图,CD是线段AB的垂直平分线,假定AC=2cm,BD=4cm,那么四边形ACBD的周长是________cm.13.如图,△ABC中,BC的垂直平分线l与AC相交于点D,假定△ABD的周长为6cm,那么AB+AC=________cm.14.如下图,在△ABC中,DM,EN区分垂直平分AB和AC,交BC于点D,E,假定△ADE的周长为19 cm,那么BC=________15.如图,在△ABC 中,按以下步骤作图:①区分以B ,C 为圆心,以大于 21BC 的长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,衔接CD.假定CD =AC ,∠B =25°,那么∠ACB 的度数为________.16.如下图,线段AB=6,现依照以下步骤作图:①区分以点A ,B 为圆心,以大于21AB 的长为半径画弧,两弧相交于点C 和点D ; ②连结CD 交AB 于点P .那么线段PB 的长为________.三、解答题17.:OC 平分∠AOB ,点P 、Q 都是OC 上不同的点,PE ⊥OA ,PF ⊥OB ,垂足区分为E 、F ,衔接EQ 、FQ.求证:FQ =EQ18.如图,在△ABC 中,AB 的垂直平分线ED 交AC 于D ,假设AC=7,BC=5,求△BDC 的周长.19.如图,∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于点D,交AC于点E.〔1〕求∠BAD的度数;〔2〕假定AB=10,BC=12,求△ABD的周长.20.如图,P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.〔1〕求证:∠PCD=∠PDC;〔2〕求证:OP是线段CD的垂直平分线.21.如图,在△ABC中,AB=AC,点D在AB边上,点D到点A的距离与点D到点C的距离相等.〔1〕应用尺规作图作出点D,不写作法但保管作图痕迹.〔2〕假定△ABC的底边长5,周长为21,求△BCD的周长.答案解析局部一、选择题1.【答案】A【考点】线段垂直平分线的性质【解析】【解答】解:∵AB的垂直平分线交AB于E,∴AD=BD,∵AC=3,BC=4∴△ACD的周长为:AC+CD+AD=AC+BC=7.故答案为:A【剖析】依据垂直平分线的性质得出AD=BD,依据三角形周长的计算方法及等量代换线段的和差即可算出答案。
八年级数学专项练习——垂直平分线与角平分线(含答案解析)1.如图,P为△ABC内一点,过点P的线段MN分别交AB、BC于点M、N,且M、N分别在PA、PC的中垂线上.若∠ABC=80°,则∠APC的度数为()A.120°B.125°C.130°D.135°2.如图所示,已知AB=AB1,A1B1=B1B2,A2B2=B2B3,A3B3=B3B4…,以此规律操作下去,若∠B=50°,则∠A n-1B n B n-1(n≥2)的度数为()A.B.C.D.3.如图,∠BAC=120°.若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是()A.30°B.40°C.50°D.60°4.如图,在△ABC中,AC的垂直平分线PD与BC的垂直平分线PE交于点P,垂足分别为D,E,连接PA,PB,PC,若∠PAD=45°,则∠ABC=.5.如图,已知BD平分∠ABC,AD=CD,DE⊥AB于点E,DF⊥BC于点F,BC=12cm,AB=6cm,那么AE的长度为cm.6.△ABC的外角∠DAC的平分线交BC的垂直平分线线于P点,PD⊥AB于D,PE⊥AC于E.⑴求证:BD=CE;⑵若AB=5cm,AC=10cm,求AD长.答案解析1.解:∵∠ABC=80°,∴∠BMN+∠BNM=180°-80°=100°,∵M、N分别在PA、PC的中垂线上,∴MA=MP,NC=NP,∴∠MPA=∠MAP,∠NPC=∠NCP,∴∠MPA+∠NPC=12(∠BMN+∠BNM)=50°,∴∠APC=180°-50°=130°,故选:C.2.解:在△ABB1中,AB=AB1,∠B=50°,∴∠AB1B=50°,∵A1B1=B1B2,∠AB1B是△A1B1B2的外角,3.解:∵MP和NQ分别垂直平分AB和AC,∴PA=PB,QA=QC,∴∠B=∠PAB,∠C=∠QAC,∵∠BAC=120°,∴∠B+∠C=60°,∴∠PAB+∠QAC=60°,∴∠PAQ=60°,故选:D.4.解:∵AC的垂直平分线PD与BC的垂直平分线PE交于点P,∴PA=PB=PC,∴∠PCA=∠PAD=45°,∠PAB=∠PBA,∠PCB=∠PBC,∵∠PCA+∠PAD+∠PAB+∠PBA+∠PCB+∠PBC=180°,∴∠PAB+∠PBA+∠PCB+∠PBC=90°,∴∠PBC+∠PBA=45°,∴∠ABC=45°,故答案为:45.5.解:∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,又∵AD=CD,∴Rt△ADE≌Rt△DFC(HL),∴AE=CF,∴Rt△BDE≌Rt△BDF(HL),∴BE=BF,∵BE=AB+AE=6+AE,∴BF=6+AE.∴BC=6+AE+CF=12,即12=6+2AE,解得:AE=3(cm),故答案为:3cm.6.⑴证明:如图,连接BP、PC.∵PQ垂直平分线段BC,∴PB=PC,∵∠PAD=∠PAE,PD⊥AD,PE⊥AE,∴PD=PE,∠PDB=∠PEC=90°,在Rt△PBD和Rt△PCE中,∴Rt△PBD≌Rt△PCE(HL),∴BD=CE.⑵解:在Rt△APD和Rt△APE中,∴Rt△APD≌Rt△APE,∴AD=AE,设AD=AE=x,∵△PBD≌△PCE,∴BD=EC,∴AB+AD=AC-AE,∴5+x=10-x,∴x=2.5,∴AD=2.5.。
八年级数学《线段的垂直平分线与角平分线》练习题
班级姓名
一、选择题
1.如图1,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交
边AC于点E,△BCE的周长等于18cm,则AC的长等于()
A.6cm B.8cm C.10cm D.12cm
2.如图,AC=AD,BC=BD,则()
A.CD垂直平分AD
B.AB垂直平分CD
C.CD平分∠ACB
D.以上结论均不对
3.如果三角形三条边的中垂线的交点在三角形的外部,
那么,这个三角形是()
A.直角三角形
B.锐角三角形
C.钝角三角形
D.等边三角形
4.下列命题中正确的命题有()
①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P在线段AB外且PA=PB,过P作直线MN,则MN是线段AB的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.
A.1个
B.2个
C.3个
D.4个
5.△ABC中,AB的垂直平分线交AC于D,如果AC=5 cm,BC=4cm,那么△DBC的周长是()
A.6 cm
B.7 cm
C.8 cm
D.9 cm
二.填空题
1、如图,(1)、AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,
如果△EBC的周长是24cm,那么BC=
(2)、AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,
如果BC=8cm,那么△EBC的周长是
(3)、AB=AC,AB的垂直平分线交AB于点D,交AC于点E,
如果∠A=28°,那么∠EBC是
2.在△ABC中,AB=AC,AB的垂直平分线与边AC所在的直线
.....相交所成锐角为50°,
△ABC的底角∠B的大小为_______________。
3. △ABC中,AB=AC,AC的中垂线交AB于E,△EBC的周长为21cm,AB=2BC,则腰长为________________。
三.解答题
1、已知:在△ABC中,ON是AB的垂直平分线,OA=OC,求证:点O在BC的垂直平分线上
2.已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.
3.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线MN分别交BC、AB于点M、N. 求证:CM=2BM.
4.已知:如图所示,∠ACB,∠ADB都是直角,且AC=AD,P是AB上任意一点,
求证:CP=DP。
5、已知:如图,点B、C在∠A的两边上,且AB=AC,P为∠A内一点,PB=PC,
PE⊥AC,PF⊥AB,垂足分别是E、F。
求证:PE=PF
6.如图,在△ABC中,∠C=90°,M为AB的中点,DM⊥AB,CD平分∠ACB,求证:MD=AM.
7.如图7,在△ABC 中,AC =23,AB 的垂直平分线交AB 于点D ,交BC 于点E ,△ACE 的周长为50,求BC 长.
8.如图8,已知AD 是△ABC 的BC 边上的高,且∠C =2∠B ,求证:BD =AC +CD.
9、如图,已知在四边形ABCD 中,对角线BD 平分∠ABC ,且∠BAD 与∠BCD 互补, 求证:AD =CD.
10、如图10,已知在直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,E 为BC 中点,连接AE 、DE ,DE
平分∠ADC ,求证:AE 平分∠BAD.
11. 如图,已知:线段CD 垂直平分AB ,AB 平分DAC . 求证:BC AD //.
图7E D A
C B B C
D A 图10F C D
A E
12.已知:如图,∠B=∠C=90°,DM 平分∠ADC ,AM 平分∠DAB 。
求证:MB=MC.
13.如图,︒=∠90C ,DE 是AB 的垂直平分线,E 为垂足,交BC 于D ,AC AB 2=. 求证:DE CD =.
14.如图,已知BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 相交于点D ,若BD=CD.
求证:AD 平分∠BAC.
15.如图,已知:AD 是ABC ∆的高,E 为AD 上一点,且CE BE =.
求证:ABC ∆是等腰三角形.
16. 如图,在ABC ∆中,BAC ∠的平分线交BC 于D ,且AB DE ⊥,AC DF ⊥,垂足分别是E 、F. 求证:AD 是EF 的垂直平分线.。