分析化学第六版第二章PPT
- 格式:ppt
- 大小:9.55 MB
- 文档页数:69
第二章 误差和分析数据处理 1.标定浓度约为0.1mol·L -1的NaOH ,欲消耗NaOH 溶液20mL 左右,应称取基准物质H 2C 2O 4·2H 2O 多少克?其称量的相对误差能否达到0.1%?若不能,可用什么方法予以改善?解:根据方程2NaOH+H 2C 2O 4·H 2O==Na 2C 2O 4+3H 2O 可知, 需称取H 2C 2O 4·H 2O 的质量m 1为:则称量的相对误差大于0.1% ,不能用H 2C 2O 4·H 2O 标定0.1mol·L -1的NaOH ,可以选用相对分子质量大的基准物进行标定。
若改用KHC 8H 4O 4为基准物,则有: KHC 8H 4O 4+ NaOH== KNaC 8H 4O 4+H 2O ,需称取KHC 8H 4O 4的质量为m 2 ,则 m 2=0.1×0.020×204.22=0.41g由此可见,选用相对分子质量大的邻苯二甲酸氢钾标定NaOH ,由于其称样量较大,称量的相对误差较小(<0.1%),故测定的准确度较高。
2.用基准K 2Cr 2O 7对Na 2S 2O 3溶液浓度进行标定,平行测定六次,测得其浓度为0.1033、0.1060、0.1035、0.1031、0.1022和0.1037 mol/L ,问上述六次测定值中,0.1060是否应舍弃?它们的平均值、标准偏差、置信度为95%和99%时的置信限及置信区间各为多少?解:(1)(2)(3)查G 临界值表,当n =6和置信度为95%时,G 6,0.05=1.89,即G ﹤G 6,0.05,故0.1060不应舍弃。
(4)求平均值的置信限及置信区间。
根据题意,此题应求双侧置信区间,即查t 检验临界值表中双侧检验的α对应的t 值: ①P =0.95:α=1-P =0.05;f =6-1=5;t 0.05,5=2.571,则置信度为95%时的置信限为±0.0014, 置信区间为0.1036±0.0014。
教学大纲第一章绪论【基本内容】本章内容包括分析化学的任务和作用;分析化学的发展;分析化学的方法分类(定性分析、定量分析、结构分析和形态分析;无机分析和有机分析;化学分析和仪器分析;常量、半微量、微量和超微量分析;常量组分、微量组分和痕量组分分析);分析过程和步骤(明确任务、制订计划、取样、试样制备、分析测定、结果计算和表达);分析化学的学习方法。
【基本要求】了解分析化学及其性质和任务、发展趋势以及在各领域尤其是药学中的作用;分析方法的分类及分析过程和步骤。
第二章误差和分析数据处理【基本内容】本章内容包括与误差有关的基本概念:准确度与误差,精密度与偏差,系统误差与偶然误差;误差的传递和提高分析结果准确度的方法;有效数字及其运算法则;基本统计概念:偶然误差的正态分布和t分布,平均值的精密度和置信区间,显著性检验(t检验和F检验),可疑数据的取舍;相关与回归。
【基本要求】掌握准确度与精密度的表示方法及二者之间的关系,误差产生的原因及减免方法,有效数字的表示方法及运算法则;误差传递及其对分析结果的影响。
熟悉偶然误差的正态分布和t分布,置信区间的含义及表示方法,显著性检验的目的和方法,可疑数据的取舍方法,分析数据统计处理的基本步骤。
了解用相关与回归分析处理变量间的关系。
第三章滴定分析法概论【基本内容】本章内容包括滴定分析的基本概念和基本计算;滴定分析的特点,滴定曲线,指示剂,滴定误差和林邦误差计算公式,滴定分析中的化学计量关系,与标准溶液的浓度和滴定度有关的计算,待测物质的质量和质量分数的计算;各种滴定方式及其适用条件;标准溶液和基准物质;水溶液中弱酸(碱)各型体的分布和分布系数;配合物各型体的分布和分布系数;化学平衡的处理方法:质子平衡、质量平衡和电荷平衡。
【基本要求】掌握滴定反应必须具备的条件;选择指示剂的一般原则;标准溶液及其浓度表示方法;滴定分析法中的有关计算,包括标准溶液浓度的计算、物质的量浓度和滴定度的换算、试样或基准物质称取量的计算、待测物质质量和质量分数的计算;水溶液中弱酸(碱)和配合物各型体的分布和分布系数的含义及分布系数的计算;质子平衡的含义及其平衡式的表达。
教学大纲第一章绪论【基本内容】本章内容包括分析化学的任务和作用;分析化学的发展;分析化学的方法分类(定性分析、定量分析、结构分析和形态分析;无机分析和有机分析;化学分析和仪器分析;常量、半微量、微量和超微量分析;常量组分、微量组分和痕量组分分析);分析过程和步骤(明确任务、制订计划、取样、试样制备、分析测定、结果计算和表达);分析化学的学习方法。
【基本要求】了解分析化学及其性质和任务、发展趋势以及在各领域尤其是药学中的作用;分析方法的分类及分析过程和步骤。
第二章误差和分析数据处理【基本内容】本章内容包括与误差有关的基本概念:准确度与误差,精密度与偏差,系统误差与偶然误差;误差的传递和提高分析结果准确度的方法;有效数字及其运算法则;基本统计概念:偶然误差的正态分布和t分布,平均值的精密度和置信区间,显著性检验(t检验和F检验),可疑数据的取舍;相关与回归。
【基本要求】掌握准确度与精密度的表示方法及二者之间的关系,误差产生的原因及减免方法,有效数字的表示方法及运算法则;误差传递及其对分析结果的影响。
熟悉偶然误差的正态分布和t分布,置信区间的含义及表示方法,显著性检验的目的和方法,可疑数据的取舍方法,分析数据统计处理的基本步骤。
了解用相关与回归分析处理变量间的关系。
第三章滴定分析法概论【基本内容】本章内容包括滴定分析的基本概念和基本计算;滴定分析的特点,滴定曲线,指示剂,滴定误差和林邦误差计算公式,滴定分析中的化学计量关系,与标准溶液的浓度和滴定度有关的计算,待测物质的质量和质量分数的计算;各种滴定方式及其适用条件;标准溶液和基准物质;水溶液中弱酸(碱)各型体的分布和分布系数;配合物各型体的分布和分布系数;化学平衡的处理方法:质子平衡、质量平衡和电荷平衡。
分析化学(第六版)总结第二章 误差和分析数据处理第一节 误差定量分析中的误差就其来源和性质的不同,可分为系统误差、偶然误差和过失误差。
一、系统误差定义:由于某种确定的原因引起的误差,也称可测误差特点:①重现性,②单向性,③可测性(大小成比例或基本恒定) 分类:1. 方法误差: 由于不适当的实验设计或所选方法不恰当所引起。
2. 仪器误差: 由于仪器未经校准或有缺陷所引起。
3. 试剂误差: 试剂变质失效或杂质超标等不合格 所引起4. 操作误差: 分析者的习惯性操作与正确操作有一定差异所引起。
操作误差与操作过失引起的误差是不同的。
二、偶然误差定义:由一些不确定的偶然原因所引起的误差,也叫随机误差. 偶然误差的出现服从统计规律,呈正态分布。
特点:①随机性(单次)②大小相等的正负误差出现的机会相等。
③小误差出现的机会多,大误差出现的机会少。
三、过失误差1、过失误差:由于操作人员粗心大意、过度疲劳、精神不集中等引起的。
其表现是出现离群值或异常值。
2、过失误差的判断——离群值的舍弃 a) 在重复多次测试时,常会发现某一数据与平均值的偏差大于其他所有数据,这在统计学上称为离群值或异常值。
b) 离群值的取舍问题,实质上就是在不知情的情况下,区别两种性质不同的偶然误差和过失误差。
离群值的检验方法:(1)Q 检验法:该方法计算简单,但有时欠准确。
设有n 个数据,其递增的顺序为x 1,x 2,…,x n-1,x n ,其中x 1或x n 可能为离群值。
当测量数据不多(n=3~10)时,其Q 的定义为 具体检验步骤是:1) 将各数据按递增顺序排列;2)计算最大值与最小值之差;3)计算离群值与相邻值之差; 4) 计算Q 值;5)根据测定次数和要求的置信度,查表得到Q 表值;6)若Q >Q 表,则舍去可疑值,否则应保留。
该方法计算简单,但有时欠准确。
(2)G 检验法:该方法计算较复杂,但比较准确。
具体检验步骤是:1)计算包括离群值在内的测定平均值;2)计算离群值与平均值 之差的绝对值 3)计算包括离群值在内的标准偏差S4)计算G 值。