马尔可夫链
- 格式:doc
- 大小:48.50 KB
- 文档页数:7
马尔可夫链公式1. 什么是马尔可夫链马尔可夫链是指一个随机过程,在这个过程中某些状态可以通过概率转移去到其他状态,而且转移只与当前状态有关,与之前的状态无关。
具有这个特点的随机过程称为马尔可夫过程,而它产生的序列称为马尔可夫链。
2. 马尔可夫链的特点马尔可夫链具有以下几个特点:- 状态空间:指该随机过程中所有可能的状态的集合。
- 转移概率:在任意时刻,从一个状态转移到另一个状态的概率。
- 状态的分布:表示在任意时刻每个状态出现的概率。
- 稳定性:表示在长时间运转后达到的稳定状态的分布。
3. 马尔可夫链的公式马尔可夫链的公式描述了该过程中某个状态在下一时刻的概率分布与当前状态的概率分布之间的关系。
数学表示如下:P(X_n+1=i | X_n=j) = Pij其中,Pij表示从状态j转移到状态i的概率。
上述公式可以表示为一个矩阵形式:P = [Pij]其中P是一个n×n的矩阵,表示马尔可夫链的状态转移概率矩阵。
矩阵中的每个元素都是非负的,且每一行元素之和为1。
4. 马尔可夫链的应用马尔可夫链可以应用于许多现实生活中的问题。
例如:- 预测天气:根据前面几天的天气情况,通过马尔可夫链可以预测后面几天的天气情况。
- 音乐生成:通过马尔可夫链可以生成新的音乐片段,以及根据既有音乐生成新的音乐曲目。
- 股票分析:通过分析历史数据,使用马尔可夫链可以预测未来股票价格的走势。
- 自然语言处理:使用马尔可夫链可以构建文本生成模型,例如自动泡面爆款语录。
总之,马尔可夫链是一种极为重要的随机过程,在很多领域都有广泛的应用。
熟悉马尔可夫链公式,能够帮助我们更好地理解和应用这个概念,从而解决很多实际问题。
马尔可夫链的基本概念马尔可夫链是一种数学模型,用于描述具有马尔可夫性质的随机过程。
马尔可夫性质指的是在给定当前状态的情况下,未来状态的概率只与当前状态有关,与过去状态无关。
马尔可夫链由一组状态和状态之间的转移概率组成,可以用于模拟和预测各种随机过程,如天气变化、股票价格波动等。
一、马尔可夫链的定义马尔可夫链由状态空间和转移概率矩阵组成。
状态空间是指所有可能的状态的集合,用S表示。
转移概率矩阵是一个n×n的矩阵,其中n 是状态空间的大小。
转移概率矩阵的元素表示从一个状态转移到另一个状态的概率。
二、马尔可夫链的性质1. 马尔可夫性质:在给定当前状态的情况下,未来状态的概率只与当前状态有关,与过去状态无关。
2. 遍历性:从任意一个状态出发,经过有限步骤后可以到达任意一个状态。
3. 周期性:一个状态可以分为周期为k的状态和非周期状态。
周期为k的状态在经过k步后才能返回原状态,非周期状态的周期为1。
4. 不可约性:如果一个马尔可夫链中的任意两个状态都是可达的,那么该马尔可夫链是不可约的。
5. 非周期马尔可夫链的收敛性:如果一个马尔可夫链是非周期的且不可约的,那么它具有收敛性,即在经过足够多的步骤后,状态分布会趋于稳定。
三、马尔可夫链的应用马尔可夫链在许多领域都有广泛的应用,包括自然语言处理、机器学习、金融市场分析等。
1. 自然语言处理:马尔可夫链可以用于语言模型的建立,通过分析文本中的词语之间的转移概率,可以预测下一个词语的出现概率,从而实现自动文本生成、机器翻译等任务。
2. 机器学习:马尔可夫链可以用于序列数据的建模和预测,如音频信号处理、图像处理等。
通过分析序列数据中的状态转移概率,可以预测下一个状态的出现概率,从而实现序列数据的预测和分类。
3. 金融市场分析:马尔可夫链可以用于分析金融市场的波动性和趋势。
通过分析股票价格的状态转移概率,可以预测未来股票价格的走势,从而指导投资决策。
四、马尔可夫链的改进和扩展马尔可夫链的基本概念可以通过改进和扩展来适应更复杂的问题。
马尔可夫链马尔可夫过程按其状态和时间参数是连续的或离散的,可分为三类: (1) 时间,状态都是离散的马尔可夫过程,称为马尔可夫链.(2) 时间连续,状态离散的马尔可夫过程,称为连续时间的马尔可夫 (3) 时间,状态都连续的马尔可夫过程. 4.1马尔可夫链的概念及转移概率 一,定义假设马尔可夫过程},{T n X n ∈的参数集T 是离散的时间集合,即 T={0,1,2,…},其相应n X 可能取值的全体组成的状态空间是离散的状态集,...}.,{21i i I =定义4.1 设有随机过程},{T n X n ∈,若对于任意的整数T n ∈和任意的I i i i i n ∈+.,...,,,1210,条件概率满足n n n n i X i X i X i X P ====++,...,,{110011}=},{11n n n n i X i X P ==++ (4.1) 则称},{T n X n ∈为马尔可夫链,简称.马氏链.(4.1)式是马尔可夫链的马氏性(或无后效性)的数学表达式.由定义知 ],...,,{1100n n i X i X i X P =====}.,...,,{111100--====n n n n i X i X i X i X P },...,,{111100--===n n i X i X i X P =}{11--==n n n n i X i X P .},...,,{111100--===n n i X i X i X P =… =}{11--==n n n n i X i X P }{2211----==n n n n i X i X P …}{0011i X i X P ==}.{00i X P =可见,马尔可夫链的统计特性完全由条件概率}{11n n n n i X i X P ==++所决定. 二,转移概率条件概率}{1i X j X P n n ==+的直观含义为系统在时刻n 处于状态i 的条件下,在时刻n+1系统处于状态j 的概率.它相当于随机游动的质点在时刻n 处于状态i 的条件下,下一步转移到状态j 的概率.记此条件概率为).(n p ij 定义4.2 称条件概率).(n p ij = }{11n n n n i X i X P ==++为马尔可夫链},{T n X n ∈在时刻n 的一步转移概率,其中i,j I ∈,简称为转移概率. 定义4.3 若对任意i,j I ∈,马尔可夫链},{T n X n ∈的转移概率).(n p ij 与n 无关,则称马尔可夫链是齐次的,并记).(n p ij 为.ij p下面我们只讨论齐次马尔可夫链,通常将齐次两字省略.设p 表示一步转移概率.ij p 所组成的矩阵,且状态空间I={1,2,…},则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=...........................2222111211nnp p p p p p p 称为系统的一步转移概率矩阵,它有性质: (1) .,1)2(;,,0∑∈∈=∈≥Ij ij ijI i p I j i p通常称满足上述(1),(2)性质的矩阵为随机矩阵. 定义4.4称条件概率ij n p )(= )1,0,,(},{≥≥∈==+n m I j i i X j X P m n m 为马尔可夫链},{T n X n ∈的n 步转移概率,.并称)()()(n ij n p p =为马尔可夫链的n 步转移矩阵,其中(1) .,1)2(;,,0)(∑∈∈=∈≥Ij ij n ij n I i p I j i p 即也是随机矩阵.当n=1 时, .)1(ij p =.ij p ,此时一步转移矩阵.)1(p p =此外我们规定 ⎩⎨⎧=≠=.,1,,0)0(j i j i pij定理4.1设},{T n X n ∈为马尔可夫链,则对任意整数n l n <≤≥0,0和,,I j i ∈n 步转移概率.)(ij n p 具有下列性质:(1)))()()(l n kj Ik l ik n ij p p p -∈∑=; (4.2)(2) ;......112111)(j k Ik k k ik Ik n ij n n p p p p --∑∑∈∈= (4.3)(3);)1()(-=n n PP P (4.4) (4).)(n n P P =(4.5)证明(1) 利用全概率公式及马尔可夫性,有}{)(i X j X P p m n m n ij ===+=}{},{i X P j X i X P m n m m ===+}{},{.},{},,{i X P k X i X P k X i X P j X k X i X P m l m m Ik l m m n m l m m =========+∈+++∑}{}{i X k X P k X j X P m l m l m Ik n m =====++∈+∑=)()()()(m p l m p l ik Ik l n ij +∑∈-=)()(.l n kjIk l ik p p -∈∑. (2)在(1)中令1,1k k l ==得))1()(111-∈∑=n jkIk ik n ij p p p 这是一个递推公式,可递推下下去即得(4.3). (3)在(1).令l=1利用矩阵乘法可得. (4) 由(3),利用归纳法可证.定理4.1中的(1)式称为切普曼---柯尔哥洛夫方程,简称C-K 方程 .定义4.5设},{T n X n ∈为马尔可夫链,称 },{0j X P p j ==)(},{)(I j j X P n p n j ∈==为},{T n X n ∈的初始概率和绝对概率,并分别称}),({},,{I j n p I j p j j ∈∈为},{T n X n ∈的初始分布和绝对分布.简记为}.),({},,{n p p j j 称概率向量 )0(),...),(),(()(21>=n n p n p n P T 为n 时刻的绝对概率向量,而称)0(,...),,(21>=n p p P T为初始向量.定理4.2设},{T n X n ∈为马尔可夫链,则对任意整数I j n ∈≥,1,绝对概率).(n p j 具有下列性质:(1)))()(n ij Ii i j p p n p ∑∈=; (4.6)(2) ij Ii i j p n p p )1(-=∑∈ (4.7)(3);)0()()(n T T P P n P = (4.8) (4)P n P n P T T )1()(-= (4.9)证明(1) ===}{)(j X P n p n j},{0j X i XP n Ii ==∑∈= }{}{00i X P i X j XP nIi ===∑∈ =)(n ijIi i p p ∑∈ (2)===}{)(j X P n p n j },{1j X i X P n Ii n ==∑∈-=}{}{11i X P i X j X P n n n Ii ===--∈∑==ij Ii i p n p ∑∈-)1((3)与(4)是(1)与(2)的矩阵形式.定理4.3 设},{T n X n ∈为马尔可夫链,则对任意,1,,...,1≥∈n I i i n 有 },...{11n n i X i X P ===....11n n i i ii i p p p -∑ (4.10) 证明 由全概率公式及马氏性有},...{11n n i X i X P ===},...,,{110n n Ii i X i X i X P ===∈=},...,,{110n n Ii i X i X i X P ===∑∈=}.,{}{0110i X i X P i X P Ii ===∑∈...},...,{110--===n n n n i X i X i X P=}.,{}{0110i X i X P i X P Ii ===∑∈..}{11--==n n n n i X i X P=n n i i ii Ii i p p p 11...-∑∈.三,马尔可夫链的例子例4.1 无限制随机游动设质点在数轴上移动,每次移动一格,向右移动的概率为p,向左移动的概率为 q=1-p,这种运动称为无限制随机游动.以n X 表示时刻n 质点所处的位置,则},{T n X n ∈是一个齐次马尔可夫链,试写出它的一步和k 步转移概率. 解 },{T n X n ∈的状态空间,...},2,1,0{±±=I 其一步转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=.....................00.........0.....................p q p q P 设在第k 步转移中向右移了x 步向左移动了y 步,且经过k 步转移状态从j 进入j,则⎩⎨⎧-=-=+i j y x k y x ,.2)(,2)(i j k y i j k x --=-+=由于x,y 都只取整数,所以)(i j k -±必须是偶数.又在k 步中哪x 步向右,哪y 步向左是任意的,选取的方法有x k C 种.于是⎩⎨⎧-+-+=是奇数是偶数)(,0)(,i j k i j k q p C p y x x k k ij.例4.2赌徒输光问题.两赌徒甲,乙进行一系列赌博.赌徒甲有a 元,赌注乙有b 元,每赌一局输者给赢者1元,没有和局,直到两人中有一个输光为止.设在每一局中,甲赢的概率为p,输的概率为q=1-p,求甲输光的概率.这个问题实质上是带有两个吸收壁的随机游动,其状态空间为I={0,1,2,…,c} c=a+b.故现在的问题是求质点从a 出发到达0状态先于到达c=a+b 状态的概率.解 设i u 表示甲从状态i 出发转移到状态0的概率,要计算的是a u ..由于0和c 是吸收状态,故,10=u .0=c u i u 由全概公式).1,...,2,1(,11-=+=-+c i qu pu u i i i (4.11) 上式的含义是,甲从状态i 出发开始赌到输光的概率等于’他接下去赢了一局(概率为p)处于状态i+1后再输光”;和他接下去输一局(概率为q),处于状态i-1后再输光”这两个事件的概率.由于p+q=1,(4.11)实质上是一个差分方程.1,...,2,1),(11-=-=--+c i u u r u u i i i i (4.12)其中pqr =,其边界条件为.0,10==c u u (4.13) 先讨论r=1,即p=q=1/2的情况,(4.12)成为 .1,...,2,1),(11-=-=--+c i u u r u u i i i i 令,01α+=u u 得,2012αα+=+=u u u …,01ααi u u u i i +=+=- …,01ααc u u u c c +=+=-将,1,00==u u c 代于最后一式,得参数,1c-=α所以.1,...,2,1,1-=-=ci ciu i 令i=a, 求得甲输光的概率为.1ba bc a u a +=-= 由于甲,乙的地位是对称的,故乙输光的概率为.ba a u a +=再讨论1≠r ,即q p ≠的情况.由(4.12)式得到)(11--=-=-∑i c k i i k c u u r u u =)(011u u r c ki i-=∑-=.1)1(1r r r u ck ---= (4.14) 令k=0,由于,0=c u 有rr u c---=11)1(11即,11)1(1crru --=- 代入(4.14)式,得.1,...,2,1,1-=--=c k rr r u cck k 令k=a,得到输光的概率,1cca a rr r u --= 由对称性,乙输光的概率为.,11111q p r r r r u c cb b =--= 由于,1=+b a u u 因此在1≠r 时,即q p ≠时两个人中也总有一个人要输光的. 例4.3 天气预报问题设昨日,今日都下雨,明日有雨的概率为0.7;昨日无雨今日有雨,明日有雨的概率为0.5;昨日有雨,今日无雨明日有雨的概率为0.4;昨日,今日均无雨,明日有雨的概率为0.2.若星期一星期二均下雨,求星期四下雨的概率.解 设昨日,今日连续两天有雨称为状态0(RR),昨日无雨今日有雨称为状态1(NR),昨日有雨今日无雨称为状态2(RN),昨日今日无雨称为状态3(NN),于是天气预报模型可看作一个四状态的马尔可夫链,其中转移概率为 7.0}{}{}{00====今昨明今昨明今连续三天有雨R R R P P R R R R P p , )(0}{01不可能事件今昨明今==R R R N P p ,,3.07.01}{}{02=-===今昨明今昨明今R R N P R R N R P p)(0}{03不可能事件今昨明今==R R N N P p ,其中R 代表有雨,N 代表无雨.类似地可得到所有状态的一步转移概率,于是它的一步转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=33323130232221201312111003020100p p p p p p p p p p p p p p p p P =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0其中两步转移矩阵为==P P P .)2(⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡.64.010.016.010.048..020.012.020.030.015.020.035.018.021.012.049.0 由于星期四下雨意味着过程所处的状态为0或1,因此星期一星期二连续下雨,星期四下雨的概率为.61.012.049.0)2(01)2(00=+=+=p p p例 4.4 设质点在线段[1,4]上作随机游动,假设它只能在时刻T n ∈发生移动,且只能停留在1,2,3,4点上.当质点转移到2,3点时,它以1/3的概率向左或向右移动一格或停留在原处.当质点称动到点1时,它以概率1停留在原处.当质点移动到点4时,它以概率1移动到点3.若以n X 表示质点在时刻n 所处的位置,则},{T n X n ∈ 是一个齐次马尔可夫链,其转移概率矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=0100313131003131310001P 例中的点1称为吸收壁,即质点一旦到达这种状态后就被吸收住了,不再移动;点4称为反射壁,即质点一旦到达这种状态后,必然被反射出去.例4.5生灭链.观察某种生物群体,以n X 表示在时刻n 群体的数目,设为i 个数量单位,如在时刻n+1增生到i+1个单位的概率为i b ,减灭到i 个数量单位的概率为i a ,保持不变的概率为)(1i i i b a r +-=,则}0,{≥n X n 为齐次马尔可夫链,I={0,1,2,…,}.其转移概率为⎪⎩⎪⎨⎧+==+==.1,,,1,i j a j i r i j b p ii i ij称此马尔可夫链为生灭链. 4.2 遍历性设齐次马氏链的状态空间为I,若对于所有,,I a a j i ∈转移概率)(n P ij 存在极限 j ij n n P π=∞→)(lim (不依赖于i)或 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→=................................................)(212121j j jn P n P πππππππππ则称此链具有遍历性.又若∑=jj 1π,则同时称,...),(21πππ=为链的极限分布.齐次马氏链在什么条件下才具有遍历性?如何求出它的极限分布?这问题在理论上已经解决,但是要较多的篇幅.下面对有限链的遍历性给出一个充分条件. 定理4.4设齐次马氏链},{T n X n ∈的状态空间为P a a a I n },,...,,{21=是它的一步转移概率矩阵,如果存在正整数m,使对任意的j i a a ,都有 ,,...,2,1,,0)(N j i m p ij =>则此链具有遍历性,且有极限分布, ),,...,,(21N ππππ=它是方程组 P ππ=或即ij Ni i j p ∑==1ππ的满足条件∑==>Nj j j 11,0ππ的唯一解.在定理条件下马氏链的极限分布又是平稳分布.即若用π作为链的初始分布,即π=)0(p ,则链在任一时刻T n ∈的分布)(n p 永远与π一致,事实上ππππ======-P P P n P p n p n n ...)()0()(1 例4..6 设马尔可夫链的转移概率矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9.005.005.01.08.01.02.01.07.0P 解 容易证明满足定理4.4条件.可得方程组⎪⎪⎩⎪⎪⎨⎧=++++=++=++=1,9.01.02.0,05.08.01.0,05.01.07.0321321332123211πππππππππππππππ解上述方程组得平稳分布为.5882.0,2353.0,1765.0321===πππ。
1.马尔可夫链马尔可夫过程是随机过程的一个分支, 它的最基本特征是“无后效性”, 即在已知某一随机过程“现在”的条件下, 其“将来”与“过去”是独立的。
马尔可夫链是状态与时间参数都离散的马尔可夫过程。
定义在概率空间(Ω,F , P ) 上的随机序列{X (t),t ∈T }, 其中T = {0, 1, 2, ⋯}, 状态空间I = {0, 1, 2,⋯}, 称为马尔可夫链, 如果对任意正整数L ,m ,k, 及任意非负整数j L >⋯>j 2>j 1 (m>j L ), i m + k , i m , i jL , ⋯, i j2,i j1有P{X (m + k) = i m + k ︳X (m) = i m , X jL = i jL , ⋯, X j2 = i j2 , X j1 = i j1}= P{X (m + k) = i m + k ︳X (m ) = i m } (1) 这里,需假定P{X (m) = i m , X (jL) = i jL , ⋯, X (j1) =i j1} > 0实际应用中, 一般考虑齐次马尔可夫链, 即对任意 k,n ∈N +,有P ij (n,k)=P ij (k) i,j = 0, 1, ⋯ (2)其中P ij (n,k)表示“于n 阶段状态为i,经k 步转移至状态j 的概率”, P ij (k)表示“从状态i 经k 步转移至状态j 的概率”。
齐次的马尔可夫链{X (t)}完全由其初始分布{P (i),i= 0,1,⋯}及其状态转移概率矩阵(状态转移概率P ij ,(i,j=0,1,⋯) 所构成的矩阵)所决定。
2.权马尔可夫链预测的思想由于生产井产量是一相依的随机变量,各阶自相关系数刻画了各种滞时的产量间的相关关系及其强弱。
因而,可考虑先分别依其前面若干时段的产量对该时段产量状况进行预测,然后,按前面各时段与该时段相依关系的强弱加权求和,即达到充分、合理利用信息进行预测的目的。
马尔可夫链概念马尔可夫链(Markov chain)是一种描述随机过程的数学模型,其名称源自俄罗斯数学家安德烈·马尔可夫。
马尔可夫链具有记忆独立性的特点,即未来状态只依赖于当前状态,与过去状态无关。
马尔可夫链在很多领域中都有广泛的应用,如模拟与仿真、自然语言处理、金融工程等。
马尔可夫链的基本概念是状态和转移概率。
状态是随机变量,代表系统的一种特定状态,可以是离散的也可以是连续的。
转移概率是指从一个状态转移到另一个状态的概率。
马尔可夫链的转移概率可以用一个转移矩阵表示。
假设当前状态为i,下一个状态为j的概率可以表示为矩阵中第i行第j列的元素。
马尔可夫链的特性之一是其具有无记忆性。
也就是说,无论过去的路径如何,下一步的状态只依赖于当前状态。
这是因为马尔可夫链具有马尔可夫性质,即满足马尔可夫性质的随机过程具有无后效性。
这一特性使得马尔可夫链的分析相对简单,可以通过概率论和线性代数的方法进行求解。
马尔可夫链可以分为有限状态马尔可夫链和无限状态马尔可夫链。
有限状态马尔可夫链的状态数是有限的,转移概率可以用矩阵表示。
而无限状态马尔可夫链的状态数是无穷的,转移概率可以用转移函数表示。
对于无限状态马尔可夫链,常见的分析方法有平稳分布和极限分布。
平稳分布是指在马尔可夫链中经过长时间之后,系统的状态分布不再发生变化。
平稳分布可以用向量表示,该向量的元素表示系统处于各个状态的概率。
通过求解转移概率方程,可以得到平稳分布。
在实际应用中,平稳分布可以用于预测未来的状态变化。
极限分布是指在马尔可夫链中经过无限次迭代后,系统的状态分布趋于稳定。
极限分布也可以用向量表示,表示系统处于各个状态的概率。
通过求解转移概率方程的极限,可以得到极限分布。
极限分布在统计学和物理学中有重要的应用,常用于描述随机过程的长期行为。
总结起来,马尔可夫链是一种描述随机过程的数学模型,具有无记忆性的特点。
它通过状态和转移概率描述系统的状态变化,并且可以用转移矩阵或转移函数表示。
4模型完整的四叉树模型也存在一些问题.⑴因概率值过小,计算机的精度难以保障而出现下溢,若层次多,这一问题更为突出.虽然可以通过取对数的方法将接近于0 的小值转换成大的负值,但若层次过多、概率值过小,该方法也难以奏效,且为了这些转换所采用的技巧又增加了不少计算量.⑵当图像较大而导致层次较多时,逐层的计算甚为繁琐下溢现象肯定会出现,存储中间变量也会占用大量空间,在时间空间上都有更多的开销 .⑶分层模型存在块效应,即区域边界可能出现跳跃,因为在该模型中,同一层随机场中相邻的像素不一定有同一个父节点,同一层的相邻像素间又没有交互,从而可能出现边界不连续的现象.5MRF为了解决这些问题,我们提出一种新的分层MRF 模型——半树模型,其结构和图15类似,仍然是四叉树,只是层数比完整的四叉树大大减少,相当于将完整的四叉树截为两部分,只取下面的这部分.模型最下层仍和图像大小一致,但最上层则不止一个节点.完整的四叉树模型所具有的性质完全适用于半树模型,不同点仅在于最上层,完整的树模型从上到下构成了完整的因果依赖性,而半树模型的层间因果关系被截断,该层节点的父节点及祖先均被删去,因此该层中的各节点不具有条件独立性,即不满足上述的性质2,因而对这一层转为考虑层内相邻节点间的关系.半树模型和完整的树模型相比,层次减少了许多,这样,层次间的信息传递快了,概率值也不会因为过多层次的逐层计算而小到出现下溢.但第0 层带来了新的问题,我们必须得考虑节点间的交互,才能得出正确的推导结果,也正是因为在第0 层考虑了相邻节点间的影响,使得该模型的块现象要好于完整的树模型.对于层次数的选取,我们认为不宜多,太多则达不到简化模型的目的,其优势体现不出来,但也不能太少,因为第0 层的概率计算仍然要采用非迭代的算法,层数少表明第0 层的节点数仍较多,计算费时,所以在实验中将层数取为完整层次数的一半或一半稍少.MPM 算法3半树模型的MPM 算法图像分割即已知观测图像y,估计X 的配置,采用贝叶斯估计器,可由一个优化问题来表示:?x = arg min [E C ( x,x )′ | Y = y],x其中代价函数C 给出了真实配置为x 而实际分割结果为x′时的代价.在已知y 的情况下,最小化这一代价的期望,从而得到最佳的分割.代价函数取法不同得到了不同的估计器,若C(x,x′)=1?δ(x,x′)(当x=x′时δ(x,x′)=1,否则δ(x,x′)=0)得到的是MAP 估计器,它意味着x 和x′只要在一个像素处有不同,则代价为1,对误分类的惩罚比较重,汪西莉等:一种分层马尔可夫图像模型及其推导算法而在实际中存在一些误分类是完全允许的.若将半树模型的MPM 算法记为HT-MPM,它分为向上算法和向下算法两步,向上算法自下而上根据式⑵、式⑶逐层计算P(yd(s)|xs)和P(xs,xρ(s)|yd(s)),对最下层P(yd(s)|xs)=P(ys|xs). 向下算法自上而下根据式⑴逐层计算P(xs|y),对最上层由P(x0|y)采样x0⑴,…,x0(n),6详细说明马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。
马尔可夫过程编辑词条一类随机过程。
它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。
该过程具有如下特性:在已知目前状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变 ( 过去 ) 。
例如森林中动物头数的变化构成——马尔可夫过程。
在现实世界中,有很多过程都是马尔可夫过程,如液体中微粒所作的布朗运动、传染病受感染的人数、车站的候车人数等,都可视为马尔可夫过程。
关于该过程的研究,1931年A.H.柯尔莫哥洛夫在《概率论的解析方法》一文中首先将微分方程等分析的方法用于这类过程,奠定了马尔可夫过程的理论基础。
目录马尔可夫过程离散时间马尔可夫链连续时间马尔可夫链生灭过程一般马尔可夫过程强马尔可夫过程扩散过程编辑本段马尔可夫过程Markov process1951年前后,伊藤清建立的随机微分方程的理论,为马尔可夫过程的研究开辟了新的道路。
1954年前后,W.费勒将半群方法引入马尔可夫过程的研究。
流形上的马尔可夫过程、马尔可夫向量场等都是正待深入研究的领域。
类重要的随机过程,它的原始模型马尔可夫链,由俄国数学家Α.Α.马尔可夫于1907年提出。
人们在实际中常遇到具有下述特性的随机过程:在已知它目前的状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变(过去)。
这种已知“现在”的条件下,“将来”与“过去”独立的特性称为马尔可夫性,具有这种性质的随机过程叫做马尔可夫过程。
荷花池中一只青蛙的跳跃是马尔可夫过程的一个形象化的例子。
青蛙依照它瞬间或起的念头从一片荷叶上跳到另一片荷叶上,因为青蛙是没有记忆的,当现在所处的位置已知时,它下一步跳往何处和它以往走过的路径无关。
如果将荷叶编号并用X0,X1,X2,…分别表示青蛙最初处的荷叶号码及第一次、第二次、……跳跃后所处的荷叶号码,那么{Xn,n≥0} 就是马尔可夫过程。
液体中微粒所作的布朗运动,传染病受感染的人数,原子核中一自由电子在电子层中的跳跃,人口增长过程等等都可视为马尔可夫过程。
还有些过程(例如某些遗传过程)在一定条件下可以用马尔可夫过程来近似。
关于马尔可夫过程的理论研究,1931年Α.Η.柯尔莫哥洛夫发表了《概率论的解析方法》,首先将微分方程等分析方法用于这类过程,奠定了它的理论基础。
1951年前后,伊藤清在P.莱维和C.H.伯恩斯坦等人工作的基础上,建立了随机微分方程的理论,为研究马尔可夫过程开辟了新的道路。
1954年前后,W.弗勒将泛函分析中的半群方法引入马尔可夫过程的研究中,Ε.Б.登金(又译邓肯)等并赋予它概率意义(如特征算子等)。
50年代初,角谷静夫和J.L.杜布等发现了布朗运动与偏微分方程论中狄利克雷问题的关系,后来G.A.亨特研究了相当一般的马尔可夫过程(亨特过程)与位势的关系。
目前,流形上的马尔可夫过程、马尔可夫场等都是正待深入研究的领域。
编辑本段离散时间马尔可夫链以上述荷花池中的青蛙跳跃过程为例,荷叶号码的集合E叫做状态空间,马尔可夫性表示为:对任意的0≤n1<n2<…<nl<m,n>0,i0,i1,i2,…,i(n-1),i,j∈E,有(1)P[x(n)=in|x(0)=i0,x(1)=i1,...,x(n-1)=i(n-1)]=P[x(n)=in|x(n-1)=i(n-1)](以下n与m的区别请注意!)只要其中条件概率(见概率)有意义。
一般地,设E={0,1,…,M}(M为正整数)或E ={0,1,2,…},Xn,n≥0为取值于E的随机变量序列,如果(1)式成立,则称{X,n≥0}为马尔可夫链。
如果(1)式右方与m无关,则称为齐次马尔可夫链。
这时(1)式右方是马尔可夫链从i出发经n步转移到j的概率,称为转移概率,记为。
对于马尔可夫链,人们最关心的是它的转移的概率规律,而n步转移矩阵正好描述了链的n步转移规律。
由于从i出发经n+m步转移到j必然是从i出发先经n步转移到某个k,然后再从k出发(与过去无关地)经m步再转移到j,因此有这就是柯尔莫哥洛夫-查普曼方程。
根据这一方程,任意步转移矩阵都可以通过一步转移矩阵计算出来。
因此,每个齐次马尔可夫链的转移规律可以由它的一步转移矩阵P来刻画。
P的每一元素非负且每行之和为1,具有这样性质的矩阵称为随机矩阵。
例如,设0<p<1,q= 1-p,则M阶方阵为随机矩阵,它刻画的马尔可夫链是一个具有反射壁的随机游动。
设想一质点的可能位置是直线上的整数点 0,1,…,M,0和M称为壁,它每隔单位时间转移一次,每次向右或左移动一个单位。
如果它处在0或M,单位时间后质点必相应地移动到1或M-1,如果它处于0和M之间的i,则它以概率p转移到i+1,以概率q转移到i-1。
又如果把P的第一行换成(1,0,…,0),则此时表示0是吸收壁,质点一旦达到0,它将被吸收而永远处于0。
如果不设置壁,质点在直线上的一切整数点上游动,称为自由随机游动,特别当时,称为对称随机游动。
为了进一步研究马尔可夫链的运动进程,需要对状态进行分类。
若pij>0,则称i可以直达j,记作i→j,如还有pji>0,则记作i凮j,采用这样的记号,可以用图形表示运动的进程。
例如图形表示一个马尔可夫链的运动情况,当链处于b1,b2,b3状态时,将永远在{b1,b2,b3}中运动,当链处于α1,α2,α3,α4状态时,将永远在{α1,α2,α3,α4}中运动,而{d 1,d2,…}不具有这种性质,因为从d1可一步转移到b1或d2,自d3可到α1或d4,等等。
对一般的马尔可夫链,若C是由一些状态组成的集合,如果链一旦转移到C中的状态,它将永远在C 中转移,C 就称为这个链的闭集。
对闭集C,如果从C 中任一状态出发经有限步转移到另一状态的概率都大于0,则称C为不可约闭集,例如上例中的{b1,b2,b3}。
至于{b 1,b2,b3,с1,c2}虽然也是闭集,但却是可约的。
如果从状态i出发经有限次转移后回到i 的概率为1,则称i为常返状态。
状态空间 E可以分解为由一切非常返状态组成的集 E0(如上例中的{d1,d2,…})和一些由常返状态组成的不可约闭集Eα(如上例中的 {b1,b2,b3}, {α1,α2,α3,α4},{с1,c2})的并。
这样,在链的转移中,它或者总是在E0中转移,或者转移到某个常返类Eα中,一旦转移到Eα,它将永远在Eα中转移,而且不时回到其中的每一个状态。
特别,当 E本身是不可约常返闭集时,极限存在,其中0≤r<t,t是0)的最大公约数,即链的周期,与j无关。
近20年建立起来的马丁边界理论,更细致地刻画了链在E0中转移的情况。
它的主要思想是在链的状态空间E 中引进距离并将E 完备化,使得在这个距离下,Xn 以概率1收敛(见概率论中的收敛)。
编辑本段连续时间马尔可夫链设E是{0,1,…,M}或{0,1,2,…},{X,t≥0}是一族取值于E的随机变量,如果在(1)式中,将n1,n2,…,m,n理解为实数,(1)式仍成立,则称{Xt,t≥0}为连续时间马尔可夫链。
若还与s≥0无关,记为pij(t),则称链为齐次的。
连续时间齐次马尔可夫链也由它的转移矩阵P(t)=(pij(t))(i,j∈E,t>0)所刻画。
P(t)满足下述条件:①pij(t)≥0,;②柯尔莫哥洛夫-查普曼方程;通常假定:③标准性这里δii=1,δij=0(i≠j)。
有时直接称满足①、②、③的一族矩阵P(t)=(pij(t)),t≥0为转移矩阵或马尔可夫链。
当①中条件放宽为时,称为广转移矩阵,它有很好的解析性质。
例如,每个pij(t)在t>0时具有连续的有穷导数 P拞(t);在t=0,右导数P拞(0)存在,i≠j时P拞(0)非负有穷,但P 拞(0)可能为无穷。
矩阵Q =(qij)呏(P拞(0))称为链的密度矩阵,又称Q矩阵。
对于每个齐次马尔可夫链{X,t≥0},钟开莱找到一个具有较好轨道性质(右下半连续)的修正{X 怂,t≥0}(即对一切t≥0,P(X怂≠Xt)=0,且对每个轨道对一切t≥0有),而且以概率1,对任意t≥0,s从大于t的一侧趋于t时,X最多只有一个有穷的极限点。
以Q为密度矩阵的广转移矩阵称为Q广转移矩阵或Q过程。
在一定条件下,Q广转移矩阵P(t),t≥0满足向后微分方程组或者向前微分方程组。
上面两个方程组的更普遍形式由柯尔莫哥洛夫于1931年引入。
他并提出求解上述方程组的问题,这就是Q矩阵问题或构造问题:给定一个矩阵Q =(qij),满足0qij<+∞(i≠j),,是否存在Q广转移矩阵?如果存在,何时唯一?如果不唯一,如何求出全部的Q广转移矩阵?对于qii都有限的情形,W.费勒于1940年构造了一个最小解p(t),证明了Q 广转移矩阵总是存在的;中国学者侯振挺于1974年对于qii都有限的情形找到了Q 广转移矩阵的唯一性准则;至于求出全部Q 广转移矩阵的问题,仅仅对一些特殊的情形获得解决。
对于Q 的对角线元素全为无穷的情形,D.威廉斯曾获得了完满的结果。
编辑本段生灭过程考察一个群体成员的数目,在时间的进程中可增可减,假定在时刻t群体有i个成员,在很短的时间间隔(t,t+Δt)中,群体数目增加或减少两个或两个以上几乎是不可能的,它只可能增加一个或减少(当i>0时)一个或保持不变。
而增加一个的概率为,减少一个的概率为,保持不变的概率为。
(pij(t))的密度矩阵是式中α0≥0,b0>0,对一切i>0,αi>0,bi>0。
具有上述形状的密度矩阵的齐次马尔可夫链称为生灭过程。
物理、化学、生物、医学等的许多实际模型都可以用生灭过程来描述,因此生灭过程有着广泛的实际应用。
不仅如此,生灭过程还有重要的理论研究意义。
关于生灭过程的结果已经十分丰富。
当α0=0,b0>0时,只有一个生灭过程的充分必要条件是。
对上述条件不成立的情形,中国学者王梓坤于1958年建立了“极限过渡法”,构造了全部生灭过程。
这个方法的基本思想是用较简单的杜布过程的轨道来逼近一般过程的轨道。
此外,甚至对α0≥0,b0>0的情形,或更一般的双边生灭Q矩阵(即为一切整数)的情形,全部Q广转移矩阵也都已构造出来。
编辑本段一般马尔可夫过程设(E,B)为可测空间,X={X,t≥0}为一族取值于E的随机变量,如果对任意的B,以概率1有(2)则称X为马尔可夫过程。
马尔可夫过程的定义还可以进一步扩充。
第一,所谓"过去"可以作更广泛的理解,即(2)中由,Xs所产生的ζ域(见概率)可以扩大为一般的ζ域Fs,只要Fs包含由{X,u≤s}产生的ζ域,而当 s<t时,。
如果对任意s≥0,t>0,A∈B,以概率1有(3)则称随机过程X={X,t≥0}为马尔可夫过程。