马尔可夫链
- 格式:doc
- 大小:297.50 KB
- 文档页数:3
马尔可夫链
马尔可夫链(Markov Chain, MC)是概率论和数理统计中具有马尔可夫性质(Markov property)且存在于离散的指数集(index set)和状态空间(state space)内的随机过程(stochastic process)。
适用于连续指数集的马尔可夫链被称为马尔可夫过程(Markov process),但有时也被视为马尔可夫链的子集,即连续时间马尔可夫链(Continuous-Time MC, CTMC),与离散时间马尔可夫链(Discrete-Time MC, DTMC)相对应,因此马尔可夫链是一个较为宽泛的概念。
马尔可夫链的命名来自俄国数学家安德雷·马尔可夫以纪念其首次定义马尔可夫链和对其收敛性质所做的研究。
马尔可夫链马尔可夫过程按其状态和时间参数是连续的或离散的,可分为三类: (1) 时间,状态都是离散的马尔可夫过程,称为马尔可夫链.(2) 时间连续,状态离散的马尔可夫过程,称为连续时间的马尔可夫 (3) 时间,状态都连续的马尔可夫过程. 4.1马尔可夫链的概念及转移概率 一,定义假设马尔可夫过程},{T n X n ∈的参数集T 是离散的时间集合,即 T={0,1,2,…},其相应n X 可能取值的全体组成的状态空间是离散的状态集,...}.,{21i i I =定义4.1 设有随机过程},{T n X n ∈,若对于任意的整数T n ∈和任意的I i i i i n ∈+.,...,,,1210,条件概率满足n n n n i X i X i X i X P ====++,...,,{110011}=},{11n n n n i X i X P ==++ (4.1) 则称},{T n X n ∈为马尔可夫链,简称.马氏链.(4.1)式是马尔可夫链的马氏性(或无后效性)的数学表达式.由定义知 ],...,,{1100n n i X i X i X P =====}.,...,,{111100--====n n n n i X i X i X i X P },...,,{111100--===n n i X i X i X P =}{11--==n n n n i X i X P .},...,,{111100--===n n i X i X i X P =… =}{11--==n n n n i X i X P }{2211----==n n n n i X i X P …}{0011i X i X P ==}.{00i X P =可见,马尔可夫链的统计特性完全由条件概率}{11n n n n i X i X P ==++所决定. 二,转移概率条件概率}{1i X j X P n n ==+的直观含义为系统在时刻n 处于状态i 的条件下,在时刻n+1系统处于状态j 的概率.它相当于随机游动的质点在时刻n 处于状态i 的条件下,下一步转移到状态j 的概率.记此条件概率为).(n p ij 定义4.2 称条件概率).(n p ij = }{11n n n n i X i X P ==++为马尔可夫链},{T n X n ∈在时刻n 的一步转移概率,其中i,j I ∈,简称为转移概率. 定义4.3 若对任意i,j I ∈,马尔可夫链},{T n X n ∈的转移概率).(n p ij 与n 无关,则称马尔可夫链是齐次的,并记).(n p ij 为.ij p下面我们只讨论齐次马尔可夫链,通常将齐次两字省略.设p 表示一步转移概率.ij p 所组成的矩阵,且状态空间I={1,2,…},则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=...........................2222111211nnp p p p p p p 称为系统的一步转移概率矩阵,它有性质: (1) .,1)2(;,,0∑∈∈=∈≥Ij ij ijI i p I j i p通常称满足上述(1),(2)性质的矩阵为随机矩阵. 定义4.4称条件概率ij n p )(= )1,0,,(},{≥≥∈==+n m I j i i X j X P m n m 为马尔可夫链},{T n X n ∈的n 步转移概率,.并称)()()(n ij n p p =为马尔可夫链的n 步转移矩阵,其中(1) .,1)2(;,,0)(∑∈∈=∈≥Ij ij n ij n I i p I j i p 即也是随机矩阵.当n=1 时, .)1(ij p =.ij p ,此时一步转移矩阵.)1(p p =此外我们规定 ⎩⎨⎧=≠=.,1,,0)0(j i j i pij定理4.1设},{T n X n ∈为马尔可夫链,则对任意整数n l n <≤≥0,0和,,I j i ∈n 步转移概率.)(ij n p 具有下列性质:(1)))()()(l n kj Ik l ik n ij p p p -∈∑=; (4.2)(2) ;......112111)(j k Ik k k ik Ik n ij n n p p p p --∑∑∈∈= (4.3)(3);)1()(-=n n PP P (4.4) (4).)(n n P P =(4.5)证明(1) 利用全概率公式及马尔可夫性,有}{)(i X j X P p m n m n ij ===+=}{},{i X P j X i X P m n m m ===+}{},{.},{},,{i X P k X i X P k X i X P j X k X i X P m l m m Ik l m m n m l m m =========+∈+++∑}{}{i X k X P k X j X P m l m l m Ik n m =====++∈+∑=)()()()(m p l m p l ik Ik l n ij +∑∈-=)()(.l n kjIk l ik p p -∈∑. (2)在(1)中令1,1k k l ==得))1()(111-∈∑=n jkIk ik n ij p p p 这是一个递推公式,可递推下下去即得(4.3). (3)在(1).令l=1利用矩阵乘法可得. (4) 由(3),利用归纳法可证.定理4.1中的(1)式称为切普曼---柯尔哥洛夫方程,简称C-K 方程 .定义4.5设},{T n X n ∈为马尔可夫链,称 },{0j X P p j ==)(},{)(I j j X P n p n j ∈==为},{T n X n ∈的初始概率和绝对概率,并分别称}),({},,{I j n p I j p j j ∈∈为},{T n X n ∈的初始分布和绝对分布.简记为}.),({},,{n p p j j 称概率向量 )0(),...),(),(()(21>=n n p n p n P T 为n 时刻的绝对概率向量,而称)0(,...),,(21>=n p p P T为初始向量.定理4.2设},{T n X n ∈为马尔可夫链,则对任意整数I j n ∈≥,1,绝对概率).(n p j 具有下列性质:(1)))()(n ij Ii i j p p n p ∑∈=; (4.6)(2) ij Ii i j p n p p )1(-=∑∈ (4.7)(3);)0()()(n T T P P n P = (4.8) (4)P n P n P T T )1()(-= (4.9)证明(1) ===}{)(j X P n p n j},{0j X i XP n Ii ==∑∈= }{}{00i X P i X j XP nIi ===∑∈ =)(n ijIi i p p ∑∈ (2)===}{)(j X P n p n j },{1j X i X P n Ii n ==∑∈-=}{}{11i X P i X j X P n n n Ii ===--∈∑==ij Ii i p n p ∑∈-)1((3)与(4)是(1)与(2)的矩阵形式.定理4.3 设},{T n X n ∈为马尔可夫链,则对任意,1,,...,1≥∈n I i i n 有 },...{11n n i X i X P ===....11n n i i ii i p p p -∑ (4.10) 证明 由全概率公式及马氏性有},...{11n n i X i X P ===},...,,{110n n Ii i X i X i X P ===∈=},...,,{110n n Ii i X i X i X P ===∑∈=}.,{}{0110i X i X P i X P Ii ===∑∈...},...,{110--===n n n n i X i X i X P=}.,{}{0110i X i X P i X P Ii ===∑∈..}{11--==n n n n i X i X P=n n i i ii Ii i p p p 11...-∑∈.三,马尔可夫链的例子例4.1 无限制随机游动设质点在数轴上移动,每次移动一格,向右移动的概率为p,向左移动的概率为 q=1-p,这种运动称为无限制随机游动.以n X 表示时刻n 质点所处的位置,则},{T n X n ∈是一个齐次马尔可夫链,试写出它的一步和k 步转移概率. 解 },{T n X n ∈的状态空间,...},2,1,0{±±=I 其一步转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=.....................00.........0.....................p q p q P 设在第k 步转移中向右移了x 步向左移动了y 步,且经过k 步转移状态从j 进入j,则⎩⎨⎧-=-=+i j y x k y x ,.2)(,2)(i j k y i j k x --=-+=由于x,y 都只取整数,所以)(i j k -±必须是偶数.又在k 步中哪x 步向右,哪y 步向左是任意的,选取的方法有x k C 种.于是⎩⎨⎧-+-+=是奇数是偶数)(,0)(,i j k i j k q p C p y x x k k ij.例4.2赌徒输光问题.两赌徒甲,乙进行一系列赌博.赌徒甲有a 元,赌注乙有b 元,每赌一局输者给赢者1元,没有和局,直到两人中有一个输光为止.设在每一局中,甲赢的概率为p,输的概率为q=1-p,求甲输光的概率.这个问题实质上是带有两个吸收壁的随机游动,其状态空间为I={0,1,2,…,c} c=a+b.故现在的问题是求质点从a 出发到达0状态先于到达c=a+b 状态的概率.解 设i u 表示甲从状态i 出发转移到状态0的概率,要计算的是a u ..由于0和c 是吸收状态,故,10=u .0=c u i u 由全概公式).1,...,2,1(,11-=+=-+c i qu pu u i i i (4.11) 上式的含义是,甲从状态i 出发开始赌到输光的概率等于’他接下去赢了一局(概率为p)处于状态i+1后再输光”;和他接下去输一局(概率为q),处于状态i-1后再输光”这两个事件的概率.由于p+q=1,(4.11)实质上是一个差分方程.1,...,2,1),(11-=-=--+c i u u r u u i i i i (4.12)其中pqr =,其边界条件为.0,10==c u u (4.13) 先讨论r=1,即p=q=1/2的情况,(4.12)成为 .1,...,2,1),(11-=-=--+c i u u r u u i i i i 令,01α+=u u 得,2012αα+=+=u u u …,01ααi u u u i i +=+=- …,01ααc u u u c c +=+=-将,1,00==u u c 代于最后一式,得参数,1c-=α所以.1,...,2,1,1-=-=ci ciu i 令i=a, 求得甲输光的概率为.1ba bc a u a +=-= 由于甲,乙的地位是对称的,故乙输光的概率为.ba a u a +=再讨论1≠r ,即q p ≠的情况.由(4.12)式得到)(11--=-=-∑i c k i i k c u u r u u =)(011u u r c ki i-=∑-=.1)1(1r r r u ck ---= (4.14) 令k=0,由于,0=c u 有rr u c---=11)1(11即,11)1(1crru --=- 代入(4.14)式,得.1,...,2,1,1-=--=c k rr r u cck k 令k=a,得到输光的概率,1cca a rr r u --= 由对称性,乙输光的概率为.,11111q p r r r r u c cb b =--= 由于,1=+b a u u 因此在1≠r 时,即q p ≠时两个人中也总有一个人要输光的. 例4.3 天气预报问题设昨日,今日都下雨,明日有雨的概率为0.7;昨日无雨今日有雨,明日有雨的概率为0.5;昨日有雨,今日无雨明日有雨的概率为0.4;昨日,今日均无雨,明日有雨的概率为0.2.若星期一星期二均下雨,求星期四下雨的概率.解 设昨日,今日连续两天有雨称为状态0(RR),昨日无雨今日有雨称为状态1(NR),昨日有雨今日无雨称为状态2(RN),昨日今日无雨称为状态3(NN),于是天气预报模型可看作一个四状态的马尔可夫链,其中转移概率为 7.0}{}{}{00====今昨明今昨明今连续三天有雨R R R P P R R R R P p , )(0}{01不可能事件今昨明今==R R R N P p ,,3.07.01}{}{02=-===今昨明今昨明今R R N P R R N R P p)(0}{03不可能事件今昨明今==R R N N P p ,其中R 代表有雨,N 代表无雨.类似地可得到所有状态的一步转移概率,于是它的一步转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=33323130232221201312111003020100p p p p p p p p p p p p p p p p P =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0其中两步转移矩阵为==P P P .)2(⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡.64.010.016.010.048..020.012.020.030.015.020.035.018.021.012.049.0 由于星期四下雨意味着过程所处的状态为0或1,因此星期一星期二连续下雨,星期四下雨的概率为.61.012.049.0)2(01)2(00=+=+=p p p例 4.4 设质点在线段[1,4]上作随机游动,假设它只能在时刻T n ∈发生移动,且只能停留在1,2,3,4点上.当质点转移到2,3点时,它以1/3的概率向左或向右移动一格或停留在原处.当质点称动到点1时,它以概率1停留在原处.当质点移动到点4时,它以概率1移动到点3.若以n X 表示质点在时刻n 所处的位置,则},{T n X n ∈ 是一个齐次马尔可夫链,其转移概率矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=0100313131003131310001P 例中的点1称为吸收壁,即质点一旦到达这种状态后就被吸收住了,不再移动;点4称为反射壁,即质点一旦到达这种状态后,必然被反射出去.例4.5生灭链.观察某种生物群体,以n X 表示在时刻n 群体的数目,设为i 个数量单位,如在时刻n+1增生到i+1个单位的概率为i b ,减灭到i 个数量单位的概率为i a ,保持不变的概率为)(1i i i b a r +-=,则}0,{≥n X n 为齐次马尔可夫链,I={0,1,2,…,}.其转移概率为⎪⎩⎪⎨⎧+==+==.1,,,1,i j a j i r i j b p ii i ij称此马尔可夫链为生灭链. 4.2 遍历性设齐次马氏链的状态空间为I,若对于所有,,I a a j i ∈转移概率)(n P ij 存在极限 j ij n n P π=∞→)(lim (不依赖于i)或 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→=................................................)(212121j j jn P n P πππππππππ则称此链具有遍历性.又若∑=jj 1π,则同时称,...),(21πππ=为链的极限分布.齐次马氏链在什么条件下才具有遍历性?如何求出它的极限分布?这问题在理论上已经解决,但是要较多的篇幅.下面对有限链的遍历性给出一个充分条件. 定理4.4设齐次马氏链},{T n X n ∈的状态空间为P a a a I n },,...,,{21=是它的一步转移概率矩阵,如果存在正整数m,使对任意的j i a a ,都有 ,,...,2,1,,0)(N j i m p ij =>则此链具有遍历性,且有极限分布, ),,...,,(21N ππππ=它是方程组 P ππ=或即ij Ni i j p ∑==1ππ的满足条件∑==>Nj j j 11,0ππ的唯一解.在定理条件下马氏链的极限分布又是平稳分布.即若用π作为链的初始分布,即π=)0(p ,则链在任一时刻T n ∈的分布)(n p 永远与π一致,事实上ππππ======-P P P n P p n p n n ...)()0()(1 例4..6 设马尔可夫链的转移概率矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9.005.005.01.08.01.02.01.07.0P 解 容易证明满足定理4.4条件.可得方程组⎪⎪⎩⎪⎪⎨⎧=++++=++=++=1,9.01.02.0,05.08.01.0,05.01.07.0321321332123211πππππππππππππππ解上述方程组得平稳分布为.5882.0,2353.0,1765.0321===πππ。
马尔可夫过程一类随机过程。
它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。
该过程具有如下特性:在已知目前状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变 ( 过去 ) 。
例如森林中动物头数的变化构成——马尔可夫过程。
在现实世界中,有很多过程都是马尔可夫过程,如液体中微粒所作的布朗运动、传染病受感染的人数、车站的候车人数等,都可视为马尔可夫过程。
关于该过程的研究,1931年 A.H.柯尔莫哥洛夫在《概率论的解析方法》一文中首先将微分方程等分析的方法用于这类过程,奠定了马尔可夫过程的理论基础。
目录马尔可夫过程离散时间马尔可夫链连续时间马尔可夫链生灭过程一般马尔可夫过程强马尔可夫过程扩散过程编辑本段马尔可夫过程Markov process1951年前后,伊藤清建立的随机微分方程的理论,为马尔可夫过程的研究开辟了新的道路。
1954年前后,W.费勒将半群方法引入马尔可夫过程的研究。
流形上的马尔可夫过程、马尔可夫向量场等都是正待深入研究的领域。
类重要的随机过程,它的原始模型马尔可夫链,由俄国数学家Α.Α.马尔可夫于1907年提出。
人们在实际中常遇到具有下述特性的随机过程:在已知它目前的状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变(过去)。
这种已知“现在”的条件下,“将来”与“过去”独立的特性称为马尔可夫性,具有这种性质的随机过程叫做马尔可夫过程。
荷花池中一只青蛙的跳跃是马尔可夫过程的一个形象化的例子。
青蛙依照它瞬间或起的念头从一片荷叶上跳到另一片荷叶上,因为青蛙是没有记忆的,当现在所处的位置已知时,它下一步跳往何处和它以往走过的路径无关。
如果将荷叶编号并用X0,X1,X2,…分别表示青蛙最初处的荷叶号码及第一次、第二次、……跳跃后所处的荷叶号码,那么{Xn,n≥0} 就是马尔可夫过程。
液体中微粒所作的布朗运动,传染病受感染的人数,原子核中一自由电子在电子层中的跳跃,人口增长过程等等都可视为马尔可夫过程。
4模型完整的四叉树模型也存在一些问题.⑴因概率值过小,计算机的精度难以保障而出现下溢,若层次多,这一问题更为突出.虽然可以通过取对数的方法将接近于0 的小值转换成大的负值,但若层次过多、概率值过小,该方法也难以奏效,且为了这些转换所采用的技巧又增加了不少计算量.⑵当图像较大而导致层次较多时,逐层的计算甚为繁琐下溢现象肯定会出现,存储中间变量也会占用大量空间,在时间空间上都有更多的开销 .⑶分层模型存在块效应,即区域边界可能出现跳跃,因为在该模型中,同一层随机场中相邻的像素不一定有同一个父节点,同一层的相邻像素间又没有交互,从而可能出现边界不连续的现象.5MRF为了解决这些问题,我们提出一种新的分层MRF 模型——半树模型,其结构和图15类似,仍然是四叉树,只是层数比完整的四叉树大大减少,相当于将完整的四叉树截为两部分,只取下面的这部分.模型最下层仍和图像大小一致,但最上层则不止一个节点.完整的四叉树模型所具有的性质完全适用于半树模型,不同点仅在于最上层,完整的树模型从上到下构成了完整的因果依赖性,而半树模型的层间因果关系被截断,该层节点的父节点及祖先均被删去,因此该层中的各节点不具有条件独立性,即不满足上述的性质2,因而对这一层转为考虑层内相邻节点间的关系.半树模型和完整的树模型相比,层次减少了许多,这样,层次间的信息传递快了,概率值也不会因为过多层次的逐层计算而小到出现下溢.但第0 层带来了新的问题,我们必须得考虑节点间的交互,才能得出正确的推导结果,也正是因为在第0 层考虑了相邻节点间的影响,使得该模型的块现象要好于完整的树模型.对于层次数的选取,我们认为不宜多,太多则达不到简化模型的目的,其优势体现不出来,但也不能太少,因为第0 层的概率计算仍然要采用非迭代的算法,层数少表明第0 层的节点数仍较多,计算费时,所以在实验中将层数取为完整层次数的一半或一半稍少.MPM 算法3半树模型的MPM 算法图像分割即已知观测图像y,估计X 的配置,采用贝叶斯估计器,可由一个优化问题来表示:?x = arg min [E C ( x,x )′ | Y = y],x其中代价函数C 给出了真实配置为x 而实际分割结果为x′时的代价.在已知y 的情况下,最小化这一代价的期望,从而得到最佳的分割.代价函数取法不同得到了不同的估计器,若C(x,x′)=1?δ(x,x′)(当x=x′时δ(x,x′)=1,否则δ(x,x′)=0)得到的是MAP 估计器,它意味着x 和x′只要在一个像素处有不同,则代价为1,对误分类的惩罚比较重,汪西莉等:一种分层马尔可夫图像模型及其推导算法而在实际中存在一些误分类是完全允许的.若将半树模型的MPM 算法记为HT-MPM,它分为向上算法和向下算法两步,向上算法自下而上根据式⑵、式⑶逐层计算P(yd(s)|xs)和P(xs,xρ(s)|yd(s)),对最下层P(yd(s)|xs)=P(ys|xs). 向下算法自上而下根据式⑴逐层计算P(xs|y),对最上层由P(x0|y)采样x0⑴,…,x0(n),6详细说明马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。
马尔科夫链_马尔可夫过程一、引言1、马尔科夫链的数学背景马尔可夫链,因安德烈?马尔可夫(A.A.Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。
该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。
马尔可夫链是随机变量X_1,X_2,X_3...的一个数列。
这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而X_n的值则是在时间n的状态。
如果X_{n+1}对于过去状态的条件概率分布仅是X_n的一个函数,则PX_{n+1}=x|X_0, X_1, X_2, \ldots, X_n = PX_{n+1}=x|X_n. 这里x为过程中的某个状态。
上面这个恒等式可以被看作是马尔可夫性质。
2、马尔科夫链的典型应用①马尔科夫链在股指期货投资中的应用马尔科夫链转移矩阵的有效状态以近时点动量策略原时点反转策略为主,有效抓住了上涨和下跌的中期和初期.从而准确的抓住了日内股指波动. ②马尔科夫链在天气预报中的应用通过对马尔科夫链理论和切普曼-柯尔莫哥洛夫方程方程的探讨,,结合天气情况不确定等诸多特点,构想了天气情况预报的马尔科夫链预测模型,给出了马尔科夫链的初始概率和多重转移概率的计算方法,根据此算法可以预报短期天气情况,同时扩展到对未来天气情况趋势的预测。
③马尔科夫链在环境预测中的应用鉴于目前环境质量预测在理论方法和实践上的缺乏,把马尔科夫链引入环境质量的预测中,将各种污染物的浓度变化过程视作马尔科夫过程,通过预测各种污染物的污染负荷系数来推知其浓度值/④马尔科夫链在桥梁状态预测中的研究与应用马尔科夫链以矩阵的形式来表达桥梁状况,通过求解状态转移矩阵,进一步预测桥梁未来数年内的基本状况。
综合考虑了桥梁检修的影响,给出了桥梁检修后不同状态的状态转移矩阵,为进一步引入实际数据做了充分的准备。
3、相关文献《程序设计实践》作者 Brian W.Kernighan程序设计实践并不是只是写代码。
马尔可夫链
马尔可夫链(Markov chains )是一类重要的随机过程,它的状态空间是有限的或可数无限的。
经过一段时间系统从一个状态转到另一个状态这种进程只依赖于当前出发时的状态而与以前的历史无关。
马尔可夫链有着广泛的应用,也是研究排队系统的重要工具。
1) 离散时间参数的马尔可夫链 ①基本概念
定义 5.7 设{()0,1,2,}X n n ∙∙∙=,是一个随机过程,状态空间{0,1,2,}E =,如果对于任意的一组整数
时间120k n n n ∙∙∙≤<<<,以及任意状态12,,
,k i i i E ∈,都有条件概率
11{()|()}k k k k P X n i X n i --=== (5-17)
即过程{()0,1,2,}X n n ∙∙∙=,未来所处的状态只与当前的状态有关,而与以前曾处于什么状态无关,则称
{()0,1,2,}X n n ∙∙∙=,是一个离散时间参数的马尔可夫链。
当E 为可列无限集时称其为可列无限状态的马尔可
夫链,否则称其为有限状态的马尔可夫链。
定义5.8 设{()0,1,2,}X n n ∙∙∙=,是状态空间{0,1,2,
}E =上的马尔可夫链,条件概率
(,){()|()}ij p m k P X m k j X m i i j E =+==∈,、 (5-18)
称为马尔可夫链{()0,1,2,}X n n ∙∙∙=,在m 时刻的k 步转移概率。
k 步转移概率的直观意义是:质点在时刻m 处于状态i 的条件下,再经过k 步(k 个单位时间)转移到状
态j 的条件概率。
特别地,当1k =时,
(,1){(1)|()}ij p m P X m j X m i =+== (5-19)
称为一步转移概率,简称转移概率。
如果k 步转移概率(,)ij p m k i j E ∈,、,只与k 有关,而与时间起点m 无关,则{()}X n 称为离散时间的齐次马尔可夫链。
定义5.9 设{()0,1,2,}X n n ∙∙∙=,是状态空间{0,1,2,}E ∙∙∙=上的马尔可夫链,矩阵
0001010
11101(,)(,)(,)(,)(,)(,)(,)(,)(,)
(,)
n n j j jn p m k p m k p m k p m k p m k p m k P m k p m k p m k p m k ⎡⎤
⎢⎥⎢⎥
⎢
⎥=⎢
⎥⎢⎥⎢⎥⎣
⎦
(5-20) 称为{()}X n 在m 时刻的k 步转移概率矩阵。
当1k =时,(,1)P m 称为一步转移概率矩阵。
对于齐次马尔可夫链,容易推得k 步转移概率矩阵与一步转移概率矩阵具有关系
()(),,1k
P m k P m =⎡⎤⎣⎦,1,2,k ∙∙∙= (5-21)
而且与起始时刻m 无关。
今后我们用 ()ij p k 表示齐次马尔可夫链的 k 步转移概率,()P k 为k 步转移概率矩阵。
②平稳分布与存在条件
定义5.10 给定齐次马尔可夫链{()0,1,2,}X n n ∙∙∙=,,称概率分布
(0){(0)},j P P X j j E ==∈ (5-22)
为{()0,1,2,}X n n ∙∙∙=,的初始分布,其中0(0)1j P ≤≤,且
(0)1j j E
P ∈=∑,而称概率分布
(){()},j P n P X n j j E ==∈ (5-23)
为{()0,1,2,}X n n ∙∙∙=,的瞬时分布,它表示过程在任意时刻n 的概率分布。
如果极限
()lim ,j j n p p n j E →∞
=∈ (5-24)
存在,且01j P ≤≤,
1j
j E
P ∈=∑,则称{,}j
p j E ∈为过程{()0,1,2,
}X n n ∙∙∙
=,的平稳分布。
显然,对于齐次马尔可夫链,它的瞬时概率由初始分布和转移概率矩阵完全确定,即
()(0)()j i ij i E
p n p p n ∈=⋅∑ (5-25)
在平稳分布存在的条件下,由于式(5-25)可变为
()(1)(1)j i ij i E
p n p n p ∈=-⋅∑ (5-26)
令n →∞,得平稳分布{}j p j E ∈,
满足方程 01(,,,,)[1(1)]0j p p p P ∙∙∙∙∙∙-= (5-27)
即
0001012020010111212100011212(1)0,
(1)0,(1)0.
i i i i
i ii i p p p p p p p p p p p p p p p p p p p p p p p p ∙∙∙∙∙∙
------=⎧⎪-------=⎪⎨⎪⎪------=⎩ (5-28)
再结合正规化条件
1j
j E
P ∈=∑可求得平稳分布{}j
p j E ∈,。
方程式(5-27)或式(5-28)称为过程{()0,1,2,}X n n ∙∙∙=,的平衡方程。
由平衡方程知,若平稳分布存在,它与初始状态无关,完全由一步转移概率矩阵确定。
2) 连续时间参数的马尔可夫链 ① 基本概念
定义5.11 设连续时间参数随机过程{()0}X t t ≥,,状态空间{0,1,2,}E ∙∙∙=,如果对于任意的非负整数
n ,以及任意1210n n t t t t +<<<<<及121,n n i i i i E ∙∙∙+∈,,,,有
11{()|()}n n n n P X t i X t i ++=== (5-29)
则称{()0}X t t ≥,为连续时间参数的马尔可夫链。
定义5.12 设{()0}X t t ≥,为连续时间参数的马尔可夫链,对任意i j E ∈、,非负实数0s t ≥、,条件概率
(,){()|()}ij p s t P X s t j X s i =+== (5-30)
称为其转移概率函数。
显然
0(,)1ij P s t ≤≤,
(,)1ij j E
P s t ∈=∑ (5-31)
若式(5-30)只与时间的间隔t 有关,而与时刻的起点无s 关,则称{()0}X t t ≥,为连续时间参数的齐次马尔可夫链。
一般地,我们要求齐次马尔可夫链的转移概率函数满足如下的连续性条件: ②平稳分布与存在条件
定义5.13 给定连续时间参数的齐次马尔可夫链{()0}X t t ≥,,称概率分布
(0){(0)}j p P X j j E ==∈, (5-32)
为{()0}X t t ≥,的初始分布,其中0(0)1j P ≤≤,且
(0)1j j E
P ∈=∑,而称概率分布
(){()}j p t P X t j j E ==∈, (5-33)
为{()0}X t t ≥,的瞬时概率分布,它表示过程在任意时刻t 的概率分布。
如果极限
lim ()j j t p p t j E →∞
=∈, (5-34)
存在,且01j p ≤≤,
1j
j E
p
∈=∑,则称{}j p j E ∈,为{()0}X t t ≥,的平稳分布。
与离散时间参数的齐次马尔可夫链一样,连续时间参数的齐次马尔可夫链{()0}X t t ≥,的瞬时概率由初始分布和转移概率函数完全确定,即
()(0)(0,)j i ij i E
p t p p t ∈=⋅∑ (5-35)
在平稳分布存在的条件下,由于
(,)()(,)j i
ij
i E
p s t p s p
s t ∈=
⋅∑ (5-36)
令s →∞,得平稳分布满足方程
(0,)j i ij i E
p p p t j E ∈=⋅∈∑, (5-37)
因此,若知道转移概率函数,则结合01j p ≤≤, 1j
j E
p
∈=∑可求得平稳分布{}j p j E ∈,。