5.2矩阵级数
- 格式:ppt
- 大小:284.00 KB
- 文档页数:11
各种矩阵的概念矩阵是现代数学的一个基本概念,广泛应用于线性代数、微积分、概率论、统计学等领域。
它是由若干行和列组成的一个矩形阵列。
在这篇文章中,我将介绍矩阵的基本概念和一些常见的矩阵类型。
一、基本概念1.1 元素:矩阵中每个所在行列交叉点上的数称为元素。
常用小写字母表示,如a_ij表示第i行第j列的元素。
1.2 阶数:矩阵的行数和列数称为矩阵的阶数。
如果一个矩阵有m行n列,记作m×n的矩阵,其中m和n分别表示矩阵的行数和列数。
1.3 主对角线:一个方阵从左上角到右下角的斜线称为主对角线。
1.4 零矩阵:所有元素都为零的矩阵称为零矩阵,用0表示。
二、特殊类矩阵2.1 方阵:行数和列数相同的矩阵称为方阵。
它可以表示线性变换、线性方程组等。
2.2 对称矩阵:主对角线两侧的元素相等的方阵称为对称矩阵。
如果一个矩阵A 满足A_ij=A_ji,其中A_ij表示第i行第j列的元素,A_ji表示第j行第i列的元素,则称矩阵A为对称矩阵。
2.3 反对称矩阵:主对角线上的元素为零,且A_ij=-A_ji的方阵称为反对称矩阵。
2.4 单位矩阵:主对角线上的元素为1,其余元素为零的方阵称为单位矩阵,用I表示。
例如,3×3的单位矩阵是[[1, 0, 0], [0, 1, 0], [0, 0, 1]]。
2.5 对角矩阵:主对角线以外的元素全部为零的方阵称为对角矩阵。
例如,一个对角矩阵可以表示特定向量的缩放因子。
2.6 上三角矩阵:主对角线以下的元素全部为零的方阵称为上三角矩阵。
例如,一个上三角矩阵的所有元素在主对角线和主对角线上方。
2.7 下三角矩阵:主对角线以上的元素全部为零的方阵称为下三角矩阵。
例如,一个下三角矩阵的所有元素在主对角线和主对角线下方。
三、矩阵运算3.1 矩阵的加法:相同阶数的两个矩阵相加,只需将对应位置上的元素相加。
3.2 矩阵的数乘:一个矩阵中的每个元素都乘以一个常数,结果仍然是一个矩阵。
《矩阵论》教学大纲Matrix Theory第一部分大纲说明1. 课程代码:2. 课程性质:专业学位课3. 学时/学分:40/2.54. 课程目标:《矩阵论》课程旨在培养学生学习和掌握信息计算相关的矩阵基础理论及矩阵计算方法。
通过本课程的学习,使得学生在已掌握本科阶段线性代数知识的基础之上,进一步深化和提高矩阵理论的相关知识,为学习后续课程、开展工程与科学研究打下必要基础。
5. 教学方式:课堂讲授6. 考核方式:考试7. 先修课程:线性代数、高等数学9. 教材及教学参考资料:(一)教材:《矩阵论》科学出版社,主编戴华(二)教学参考资料:《矩阵论》华中科技大学出版社主编杨明,刘先忠第二部分教学内容和教学要求第1章线性空间与线性变换教学内容:1.1线性空间的基本概念及性质1.2线性变换及其矩阵表示教学要求:理解线性空间的定义,理解线性空间的基、维数与坐标变换等知识,了解线性空间的子空间。
第2章矩阵的对角化、Jordan标准形教学内容:2.1 矩阵的特征值与特征向量2.2矩阵相似与相似对角化2.3 Hermite矩阵与Hermite二次型2.4 矩阵2.5 矩阵相似的条件2.6 矩阵的Jordan标准形教学要求:掌握矩阵的相似对角化方法;了解Hermite矩阵的概念,掌握向量组正交标准化的方法;理解初等因子及相关理论,掌握矩阵Jordan标准形的求解方法。
第3章矩阵分解教学内容:3.1 Gauss消去法与矩阵的三角分解3.2 矩阵的QR分解3.3 矩阵的满秩分解3.4 矩阵的奇异值分解教学要求:掌握矩阵的三角分解方法,掌握矩阵的QR分解及满秩分解方法,了解矩阵的奇异值分解。
第4章欧式空间与酉空间教学内容:4.1 欧式空间与酉空间的定义4.2 Schmidt正交化方法4.3 酉变换与正交变换教学要求:理解欧式空间的概念,理解酉空间的概念,会判断一个空间是否为酉空间;了解酉变换与正交变换;掌握向量组正交标准化的方法。
同济大学研究生课程教学大纲课程名称所在院(系、所)适用专业填表日期同济大学研究生院培养处制课程编号:(请用4号字填写)课程名称:(请用黑体4号字填写)英文名称:(请用4号字填写)开课单位:(请用宋体5号字填写)开课学期:(请用宋体5号字填写)课内学时:(请用宋体5号字填写)教学方式:(请用宋体5号字填写)适用专业:(请用宋体5号字填写)考核方式:(请用宋体5号字填写)预修课程:(请用宋体5号字填写)一、教学目标与要求(请用宋体5号字填写)二、课程内容与学时分配(请用宋体5号字填写)三、实验及实践性环节(注:此项没有的不填)(请用宋体5号字填写)四、教材(序号,编著者姓名,教材名称,出版社,版次,出版日期)(请用宋体5号字填写)主要参考书(序号,编著者姓名,教材名称,出版社,版次,出版日期)(请用宋体5号字填写)大纲撰写负责人:(请用宋体5号字填写)授课教师:(请用宋体5号字填写)课程编号:000109课程名称:矩阵论英文名称:The Theory of Matrices开课单位:081(理学院数学系)开课学期:1课内学时:60 教学方式:讲授适用专业:工科各专业考核方式:考试预修课程:线性代数、高等数学一、教学目标与要求本课程较全面、系统地介绍矩阵的基本理论、方法和某些应用,重点是线性空间及其映射、变换,以及矩阵运算等。
难点是理解线性空间、线性映射、线性变换的不变子空间、λ矩阵在相抵下的标准形和矩阵算子范数等抽象概念以及计算线性映射在基下的矩阵、-的各种因子分解等。
通过本课程中基本概念和基本定理的阐述和论证,培养研究生的抽象思维与逻辑推理能力,提高研究生的数学素养。
在重视数学论证的同时,强调数学概念的物理、力学等实际背景,培养研究生应用数学知识解决实际工程技术问题的能力。
通过本课程的学习,要求研究生掌握矩阵的基本理论和方法,为学习后续课程、开展科学研究打好基础。
二、课程内容与学时分配第一章线性空间与内积空间(8学时)1.1 预备知识:集合·映射与数域 1.2 线性空间1.3 基与坐标 1.4 线性子空间1.5 线性空间的同构 1.6 内积空间第二章线性映射与线性变换(8学时)2.1 线性映射及其矩阵表示 2.2 线性映射的值域与核2.3 线性变换 2.4 特征值与特征向量2.5 矩阵的相似对角形 2.6 线性变换的不变子空间2.7 酉(正交)变换与酉(正交)矩阵第三章λ-矩阵与矩阵的Jordan标准形(8学时)3.1 一元多项式 3.2 λ-矩阵及其在相抵下的标准形3.3 λ-矩阵的行列式因子和初等因子 3.4 矩阵相似的条件3.5矩阵的Jordan标准形3.6 Cayley-Hamilton定理与最小多项式第四章矩阵的因子分解(8学时)4.1 初等矩阵 4.2 满秩分解4.3 三角分解 4.4 QR分解4.5 Schur定理与正规矩阵 4.6 奇异值分解第五章 Hermite 矩阵与正定矩阵(6学时)5.1 Hermite 矩阵与Hermite 二次型 5.2 Hermite 正定(非负定)矩阵5.3 矩阵不等式 5.4 Hermite 矩阵的特征值* 第六章 范数与极限(10学时)6.1 向量范数 6.2 矩阵范数6.3 矩阵序列与矩阵级数 6.4 矩阵扰动分析第七章 矩阵函数与矩阵值函数(4学时)7.1 矩阵函数 7.2 矩阵值函数7.3 矩阵值函数在微分方程组中的应用 7.4 特征对的灵敏度分析* 第八章 广义逆矩阵(6学时)8.1 广义逆矩阵的概念 8.2 广义逆矩阵A -与线性方程组的解8.3 极小范数广义逆A m -与相容方程组的极小范数解8.4 最小二乘广义逆A i -与矛盾方程组的最小二乘解8.5 广义逆矩阵A +与线性方程组的极小最小二乘解第九章 Kronecker 积与线性矩阵方程(2学时)9.1 矩阵的Kronecker 积 9.2 矩阵的拉直与线性矩阵方程9.3 矩阵方程AXB C =与矩阵最佳逼近问题* 9.4 矩阵方程AX B =的Hermite 解与矩阵最佳逼近问题* 9.5 矩阵方程AX XB C +=和X AXB C-=* 第十章 非负矩阵* 10.1 非负矩阵与正矩阵 10.2 素矩阵与不可约矩阵10.3 随机矩阵 10.4 M —矩阵注:带“*”者为机动的内容。
2024数学三考研大纲第一部分:数学分析1.实数与实数的基本性质1.1实数的完备性1.2实数序列的性质1.3实数级数的收敛性与发散性2.极限与连续2.1极限的定义与性质2.2函数的极限与连续2.3一元函数的微分学3.不定积分与定积分3.1不定积分的概念与性质3.2定积分的概念与性质3.3定积分的计算方法4.函数列与函数项级数4.1函数列的收敛性4.2函数项级数的收敛性4.3函数项级数的一致收敛性5.幂级数与傅里叶级数5.1幂级数的收敛半径与收敛域5.2幂级数的常用运算5.3傅里叶级数的性质与应用第二部分:代数与几何1.线性代数1.1实数向量空间与内积空间1.2矩阵与行列式1.3向量空间的基与维数2.线性方程组与矩阵的应用2.1线性方程组的基本概念与解法2.2矩阵的特征值与特征向量2.3矩阵的对角化与相似变换3.多元函数的微分学3.1多元函数的偏导数与全微分3.2多元函数的极值与条件极值3.3隐函数与参数方程的微分4.曲线积分与曲面积分4.1曲线积分的定义与性质4.2曲面积分的定义与性质4.3绿公式与高斯公式5.空间解析几何5.1空间中的直线与平面5.2空间曲线与曲面的方程5.3空间中的向量与坐标系第三部分:概率与统计1.随机事件与概率1.1随机事件的概念与性质1.2概率的基本概念与公理1.3概率的运算与应用2.随机变量与概率分布2.1随机变量的概念与分类2.2离散型随机变量的概率分布2.3连续型随机变量的概率密度函数3.随机变量的特征与分布3.1随机变量的数学期望与方差3.2常见离散型与连续型分布3.3多维随机变量的联合分布与边缘分布4.大数定律与中心极限定理4.1大数定律的概念与证明4.2中心极限定理的概念与应用4.3样本统计量的极限分布5.统计推断与假设检验5.1参数估计与区间估计5.2假设检验的基本原理5.3常用假设检验的方法与步骤第四部分:数学建模与应用1.数学建模的基本概念1.1数学建模的过程与方法1.2数学建模的评价标准与特点1.3数学建模在实际问题中的应用2.线性规划模型2.1线性规划问题的数学描述2.2单纯形法与对偶问题2.3整数线性规划问题与解法3.非线性规划模型3.1非线性规划的基本概念与性质3.2非线性规划的解法与应用3.3动态规划与整数规划问题4.数学建模实例分析4.1数学建模实例的选择与分析4.2实际问题的数学建模过程4.3数学建模结果的解释与应用5.模拟与优化算法5.1随机模拟与蒙特卡洛方法5.2优化算法的基本概念与分类5.3优化算法在数学建模中的应用结语数学三考研大纲是考生备战考研数学的重要参考资料,内容涵盖了数学分析、代数与几何、概率与统计、数学建模与应用等多个领域,全面系统地呈现了数学学科的基本知识与方法。
课程名称:矩阵分析一、课程编码:1700002课内学时: 32 学分: 2二、适用学科专业:计算机、通信、软件、宇航、光电、生命科学等工科研究生专业三、先修课程:线性代数,高等数学四、教学目标通过本课程的学习,要使学生掌握线性空间、线性变换、Jordan标准形,及各种矩阵分解如QR分解、奇异值分解等,正规矩阵的结构、向量范数和矩阵范数、矩阵函数,广义逆矩阵、Kronecker积等概念和理论方法,提升研究生的数学基础,更好地掌握矩阵理论,在今后的专业研究或工作领域中熟练应用相关的矩阵分析技巧与方法,让科研结果有严格的数学理论依据。
五、教学方式教师授课六、主要内容及学时分配1、线性空间和线性变换(5学时)1.1线性空间的概念、基、维数、基变换与坐标变换1.2子空间、线性变换1.3线性变换的矩阵、特征值与特征向量、矩阵的可对角化条件2、λ-矩阵与矩阵的Jordan标准形(4学时)2.1 λ-矩阵及Smith标准形2.2 初等因子与相似条件2.3 Jordan标准形及应用;3、内积空间、正规矩阵、Hermite 矩阵(6学时)3.1 欧式空间、酉空间3.2标准正交基、Schmidt方法3.3酉变换、正交变换3.4幂等矩阵、正交投影3.5正规矩阵、Schur 引理3.6 Hermite 矩阵、Hermite 二次齐式3.7.正定二次齐式、正定Hermite 矩阵3.8 Hermite 矩阵偶在复相合下的标准形4、矩阵分解(4学时)4.1矩阵的满秩分解4.2矩阵的正交三角分解(UR、QR分解)4.3矩阵的奇异值分解4.4矩阵的极分解4.5矩阵的谱分解5、范数、序列、级数(4学时)5.1向量范数5.2矩阵范数5.3诱导范数(算子范数)5.4矩阵序列与极限5.5矩阵幂级数6、矩阵函数(4学时)6.1矩阵多项式、最小多项式6.2矩阵函数及其Jordan表示6.3矩阵函数的多项式表示6.4矩阵函数的幂级数表示6.5矩阵指数函数与矩阵三角函数7、函数矩阵与矩阵微分方程(2学时)7.1 函数矩阵对纯量的导数与积分7.2 函数向量的线性相关性7.3 矩阵微分方程(t)()() dXA t X t dt=7.4 线性向量微分方程(t)()()() dxA t x t f t dt=+8、矩阵的广义逆(3学时)8.1 广义逆矩阵8.2 伪逆矩阵8.3 广义逆与线性方程组课时分配说明:第一章的课时根据学生的数学基础情况可以调整,最多5学时,如学生线性代数的基础普遍较高,可以分配3学时,剩余2学时可在最后讲解第九章部分内容(Kronecker 积的概念和基本性质)。
矩阵分析课程教学大纲一、课程基本信息课程编号:201411237课程中文名称:矩阵分析课程英文名称:Matrix Analysis课程性质:专业选修课程开课专业:应用数学开课学期:6总学时:36 (其中理论36学时)总学分:1.5二、课程目标本课程的学习内容是掌握域上线性空间的基本理论、矩阵分解方法及理论、矩阵的各种分析性质、各种广义逆矩阵及其与线性方程组的关系和广义逆矩阵的计算。
了解一些矩阵理论前沿的研究内容。
通过矩阵分析课程的学习,使学生掌握矩阵理论的基础知识和矩阵理论较前沿的成果,进而让学生受到严格的科学思维训练,掌握数学科学的思想方法,同时也为学生的后续学习做一定的知识上的储备,通过对一些知识点的课堂研讨,使学生加深知识的认知。
三、教学基本要求(含素质教育与创新能力培养的要求)矩阵分析这门课程对于数学系本科生来讲是一门非常重要的数学基础课,这就要求学生掌握如下矩阵基础理论知识:域上线性空间的基本理论;矩阵分解;矩阵广义逆;矩阵积分与微分。
了解一些矩阵理论前沿的研究,具备一定的创新能力。
具体要求如下:(1)具有应用已学习的知识点解决相应习题的能力;(2)能够解决较复杂、较抽象的问题;(3)具备将复杂问题简单化、抽象概念具体化,艰涩内容直白化, 逻辑推理自然化的素质;(4)具备读阅相关科研文献,撰写科研论文的能力,四、教学内容与学时分配1 绪论(6学时)1.1 线性空间基本理论1.2 线性变换及线性变换的矩阵表示2 矩阵分解(8学时)2.1 -矩阵及标准形2.2 初等因子与相似条件2.3 矩阵Jordan标准形 (研究型、研讨式教学模式)主要探讨矩阵若当标准形的得来,与初等因子、不变因子、行列式因子的关系2.4 矩阵的奇异值分解(研究型、研讨式教学模式)主要研讨矩阵奇异值定义的由来,基于变分法给出奇异值定义的表达式,研讨式给出矩阵奇异值分解。
2.5 单纯矩阵与正规矩阵的谱分解2.6 矩阵的满秩分解3 特殊矩阵(6学时)3.1 幂等矩阵3.2 幂零矩阵3.3 Hermite矩阵与Hermite二次型3.4 非负矩阵4 矩阵广义逆(6学时)4.1 矩阵{1}-逆及在线性方程组中的应用4.2 Moore-Penrose 逆及在线性方程组中的应用4.3 矩阵的谱广义逆(研究型、研讨式教学模式)主要研究矩阵分解在计算矩阵谱广义逆时的应用5 矩阵分析(8学时)5.1 矩阵范数5.2 矩阵级数5.3 矩阵的Kronecker积5.4 矩阵函数的微分(研究型、研讨式教学模式)主要以学生研讨式,给出三种矩阵微分公式及性质5.5 矩阵函数的积分6 科研论文讨论(2学时)(研究型、研讨式教学模式)通过读阅文献,研讨可研究的科研内容五、教学方法及手段(含现代化教学手段及研究性教学方法)多媒体授课与传统讲课方式相结合。