第一章 单位圆与三角函数线
- 格式:ppt
- 大小:3.09 MB
- 文档页数:48
单位圆与三角函数线教案教案:单位圆与三角函数线一、教学目标:1.理解单位圆的定义及性质;2.掌握三角函数线的定义;3.能够在单位圆上确定三角函数的取值范围;4.能够根据给定的角度求解三角函数的值。
二、教学重点:1.单位圆的性质;2.三角函数线的定义。
三、教学难点:1.单位圆上角度和三角函数之间的关系;2.在单位圆上确定三角函数的取值范围。
四、教学过程:Step 1:引入1.引导学生回顾三角函数的定义,并简要介绍单位圆的概念。
3.学生回答后,引导他们思考如何用单位圆解释三角函数。
Step 2:单位圆的定义及性质1.展示单位圆的图像,并介绍单位圆的定义。
2.提出问题:“单位圆的半径是多少?圆心在哪里?为什么称之为‘单位’圆?”3.引导学生发现单位圆的半径为1,并解释为什么称之为“单位”圆。
4.提问:“单位圆上一个点的坐标有什么特点?”5.学生回答后,引导他们发现单位圆上的点的坐标可以用三角函数表示。
6. 总结:单位圆上点的坐标(x,y)可以表示为(x,y)=(cosθ,sinθ),其中θ为与正半轴的夹角。
7.展示并讲解单位圆上一些特殊角度的坐标及对应的三角函数值。
Step 3:三角函数线的定义1.提醒学生在单位圆上的角度是从正半轴逆时针旋转的,而实际应用中角度是从正半轴顺时针旋转的。
3.解释正弦函数、余弦函数和正切函数的定义及性质。
4.强调正弦函数、余弦函数和正切函数的周期性。
Step 4:确定三角函数的取值范围1.提醒学生在单位圆上,正弦函数和余弦函数的取值范围是[-1,1]。
2.提问:“在什么角度上,正弦函数和余弦函数的值等于1、等于0、等于-1?”3.学生回答后,引导他们在单位圆上确定三角函数的取值范围,并总结出规律。
4.引导学生发现正切函数的取值范围是整个实数轴,不存在界限。
Step 5:求解三角函数的值1.提醒学生在单位圆上,正弦函数和余弦函数的值由点的y坐标决定,正切函数的值由点的y坐标除以点的x坐标决定。
利用三角函数线比较函数值大小课后作业:一、选择题1.对三角函数线,下列说法正确的是( ) A .对任何角都能作出正弦线、余弦线和正切线 B .有的角正弦线、余弦线和正切线都不存在C .任何角的正弦线、正切线总是存在,但余弦线不一定存在D .任何角的正弦线、余弦线总是存在,但是正切线不一定存在2.角α(0<α<2π)的正弦线与余弦线长度相等且符号相同,那么α的值为( )A.π4或34πB.5π4或74πC.π4或54πD.π4或74π 3.若角α的正切线位于第一象限,则角α属于( )A .第一象限B .第一、二象限C .第三象限D .第一、三象限 4.下列命题中为真命题的是( )A .三角形的内角必是第一象限的角或第二象限的角B .角α的终边在x 轴上时,角α的正弦线、正切线都变成一个点C .终边在第二象限的角是钝角D .终边相同的角必然相等5.若-3π4<α<-π2,则sin α、cos α、tan α的大小关系是( )A .sin α<tan α<cos αB .tan α<sin α<cos αC .cos α<sin α<tan αD .sin α<cos α<tan α6.在[0,2π]上满足sin x ≥12的x 的取值范围是( )A .[0,π6]B .[π6,5π6]C .[π6,2π3]D .[5π6,π]7.在(0,2π)内使cos x >sin x >tan x 成立的x 的取值范围是( )A .(π4,3π4)B .(5π4,3π2)C .(3π2,2π)D .[3π2,7π4]8.如果cos α=cos β,则角α与β的终边除可能重合外,还有可能( )A .关于x 轴对称B .关于y 轴对称C .关于直线y =x 对称D .关于原点对称9.设a =sin 5π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c 10.函数x x y cos sin -+=的定义域是( )A .))12(,2(ππ+k k ,Z k ∈B .])12(,22[πππ++k k ,Z k ∈C .])1(,2[πππ++k k , Z k ∈ D .[2k π,(2k+1)π],Z k ∈二、填空题11.不等式cos α≤12的解集为________.12.若θ∈(3π4,π),则下列各式错误的是________.①sin θ+cos θ<0;②sin θ-cos θ>0;③|sin θ|<|cos θ|;④sin θ+cos θ>0.13.若0≤sin θ<32,则θ的取值范围是________.14.函数y =sin x +cos x -12的定义域是____________.。
高中必修三数学教案《单位圆与三角函数线》教材分析与单位圆有关的三角函数线是对任意三角函数定义的一种“形”上的补充,它作为三角函数线的几何表示,使学生对三角函数的定义有了直观的理解,同时能帮助我们理解和掌握三角函数的定义域及三角函数的符号规律,加深数与形的结合。
三角函数线贯穿了整个三角函数的教学,借助三角函数线,可以推导出同角三角函数的基本关系式及诱导公式,画出正弦曲线,解出三角不等式,求函数的定义域及比较大小。
可以说,三角函数线是研究三角函数的有力工具。
学情分析1、学生在学习本节课之前已经学习了任意角的三角函数的定义和三角函数值在各个象限的符号。
利用几何画板工具,学生可以有效地进行数学试验。
2、在角的分类中,学习角的终边所在的象限知识,学生可能会只考虑到象限角而忽视轴上角,在学习新概念之前要复习且强调一下。
3、向量和实数的对应关系是新内容,学生需要提前掌握。
教学目标1、经过三角函数线的学习,培养数学抽象和直观想象核心素养。
2、借助三角函数的应用,培养逻辑推理及直观想象核心素养。
教学重点认识三角函数线的意义。
教学难点会用三角函数线表示一个角的正弦。
教学方法讲授法、演示法、讨论法、练习法教学过程一、问题导入我们已经知道,如果P (x ,y )是α终边上异于原点的任意一点,r = √x 2+y 2,则sin α = = y r ,cos αx r 。
如果选取的P 点坐标满足x 2+y 2 = 1,则上述正弦与余弦的表达式有什么变化?由此你能给出任意角正弦和余弦的一个直观表示吗?二、学习新知不难看出,如果x 2+y 2 = 1,则sin α = y ,cos α= x 。
因为x 2+y 2 = 1可以化为√(x −0)2+(y −0)2 = 1因此P (x ,y )到原点(0,0)的距离为1。
一般地,在平面直角坐标系中,坐标满足x 2+y 2 = 1的点组成的集合称为单位圆。
因此,如果角α的终边与单位圆的交点为P ,则P 的坐标为(cos α,sin α)这就是说,角α的余弦和正弦分别等于角α终边与单位圆交点的横坐标和纵坐标。