单位圆与三角函数线_ ppt课件
- 格式:ppt
- 大小:548.50 KB
- 文档页数:17
利用三角函数线比较函数值大小课后作业:一、选择题1.对三角函数线,下列说法正确的是( ) A .对任何角都能作出正弦线、余弦线和正切线 B .有的角正弦线、余弦线和正切线都不存在C .任何角的正弦线、正切线总是存在,但余弦线不一定存在D .任何角的正弦线、余弦线总是存在,但是正切线不一定存在2.角α(0<α<2π)的正弦线与余弦线长度相等且符号相同,那么α的值为( )A.π4或34πB.5π4或74πC.π4或54πD.π4或74π 3.若角α的正切线位于第一象限,则角α属于( )A .第一象限B .第一、二象限C .第三象限D .第一、三象限 4.下列命题中为真命题的是( )A .三角形的内角必是第一象限的角或第二象限的角B .角α的终边在x 轴上时,角α的正弦线、正切线都变成一个点C .终边在第二象限的角是钝角D .终边相同的角必然相等5.若-3π4<α<-π2,则sin α、cos α、tan α的大小关系是( )A .sin α<tan α<cos αB .tan α<sin α<cos αC .cos α<sin α<tan αD .sin α<cos α<tan α6.在[0,2π]上满足sin x ≥12的x 的取值范围是( )A .[0,π6]B .[π6,5π6]C .[π6,2π3]D .[5π6,π]7.在(0,2π)内使cos x >sin x >tan x 成立的x 的取值范围是( )A .(π4,3π4)B .(5π4,3π2)C .(3π2,2π)D .[3π2,7π4]8.如果cos α=cos β,则角α与β的终边除可能重合外,还有可能( )A .关于x 轴对称B .关于y 轴对称C .关于直线y =x 对称D .关于原点对称9.设a =sin 5π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c 10.函数x x y cos sin -+=的定义域是( )A .))12(,2(ππ+k k ,Z k ∈B .])12(,22[πππ++k k ,Z k ∈C .])1(,2[πππ++k k , Z k ∈ D .[2k π,(2k+1)π],Z k ∈二、填空题11.不等式cos α≤12的解集为________.12.若θ∈(3π4,π),则下列各式错误的是________.①sin θ+cos θ<0;②sin θ-cos θ>0;③|sin θ|<|cos θ|;④sin θ+cos θ>0.13.若0≤sin θ<32,则θ的取值范围是________.14.函数y =sin x +cos x -12的定义域是____________.。
09三角函数在单位圆的表示方法1在理解任意角三角函数定义的基础上,理解三角函数在单位圆上的表示方法,理解正弦线、余弦线,并能由图象讲出三角函数的值域和已知三角函数值作出对应的角。
三角函数(正弦、余弦)在单位圆的表示已知三角函数值作出对应的角。
讲授与讨论相结合三角函数在单位圆的表示方法课本P14 图4-12MP y yr y ====1sin α -1≤sin α≤1 -1≤cos α≤1例 题 OM x xr x ====1cos α例 题P20 第2 题一、三角函数的定义,指出:“定义”从代数的角度揭示了三角函数是一个“比值”,三角函数的定义已经明确告诉角的终边上取点具有任意性,如果我们在角的终边上取适当的点,使比值中的分母为1,那末三角函数就可以用相应的一个坐标表示,这样讨论三角函数就比较方便。
二、单位圆的定义在直角坐标系中,以原点为圆心,以1为半径的圆。
三、角α的正弦、余弦在单位上的表示1.作图:(课本P14 图4-12 )此处略 …… …… ……… …… ……设任意角α的顶点在原点,始边与x 轴的非负半轴重合,角α的终边与单位圆交于P 过P(x,y)作PM ⊥x 轴于M ,简单介绍“向量”(带有“方向”的量—用正负号表示),“有向线段”(带有方向的线段),方向可取与坐标轴方向相同,长度用绝对值表示。
例:有向线段OM ,OP 长度分别为y x ,当OM=x 时 若0>x OM 看作与x 轴同向 OM 具有正值x若0<x OM 看作与x 轴反向 OM 具有负值x2.MP y y r y ====1sin α OM x x r x ====1cos α 这就是说:角α的正弦等于它的终边和单位圆的交点的纵坐标,而它的余弦则等于交点的横坐标。
有向线段MP,OM,分别称作α角的正弦线,余弦线。
由图可知, -1≤sin α≤1 -1≤cos α≤1即sin α与cos α的值域都是[-1,1]。
09-10三角函数在单位圆的表示方法2 三四1、2在理解任意角三角函数定义的基础上,理解三角函数在单位圆上的表示方法,理解正弦线、余弦线与正切线,并能由图象讲座三角函数的值域和已知三角函数值,作出对应的角。
三角函数在单位圆的表示正切线正切在单位圆上的表示讲授与讨论相结合三角函数在单位圆的表示方法课本P14 图4-12MP y yr y ====1sin α -1≤sin α≤1 -1≤cos α≤1例 题 OM x xr x ====1cos α例 题P20 第2 题一、三角函数的定义,指出:“定义”从代数的角度揭示了三角函数是一个“比值”,三角函数的定义已经明确告诉角的终边上取点具有任意性,如果我们在角的终边上取适当的点,使比值中的分母为1,那末三角函数就可以用相应的一个坐标表示,这样讨论三角函数就比较方便。
二、单位圆的定义在直角坐标系中,以原点为圆心,以1为半径的圆。
三、角α的正弦、余弦在单位上的表示1.作图:(课本P14 图4-12 )此处略 …… …… ……… …… ……设任意角α的顶点在原点,始边与x 轴的非负半轴重合,角α的终边与单位圆交于P 过P(x,y)作PM ⊥x 轴于M ,简单介绍“向量”(带有“方向”的量—用正负号表示),“有向线段”(带有方向的线段),方向可取与坐标轴方向相同,长度用绝对值表示。
例:有向线段OM ,OP 长度分别为y x ,当OM=x 时 若0>x OM 看作与x 轴同向 OM 具有正值x若0<x OM 看作与x 轴反向 OM 具有负值x2.MP y y r y ====1sin α OM x x r x ====1cos α 这就是说:角α的正弦等于它的终边和单位圆的交点的纵坐标,而它的余弦则等于交点的横坐标。
有向线段MP,OM,分别称作α角的正弦线,余弦线。
由图可知, -1≤sin α≤1 -1≤cos α≤1即sin α与cos α的值域都是[-1,1]。
1 单位圆的定义:圆心在圆点,半径等于单位长的圆叫做单位圆。
2 三角函数的定义:如图,设是一个任意角,它的终边与单位圆交于点,那么得到六个三角函数
有向线段:有大小和方向的线段。
3,正弦线作法:
(1)设角的终边与单位圆交于点P(x,y),过点P作x轴的垂线,垂足M,
得有向线段MP叫做角的正弦线,当线段MP与y轴同向时,MP的方向为正向,且y有正值;当线段MP与y 轴反向时,MP的方向为负向,且y有负值。
同理可得余弦线等其它线。
正弦线的方向以上为正,且永远为从点P在x轴的投影点M指向终边与单位圆的交点P,
余弦线的方向以右为正,且永远为从原点O指向终边与单位圆的交点P在x轴的投影点M,
4. 正切线作法:
根据正切函数的定义与相似三角形的知识,借助有向线段,我们有
正切线的方向以上为正, 正切线的方向永远从(1,0)指向角终边所在直线,
且正切线永远在y轴右边,正切线在过单位圆与轴正方向的交点的切线上。
角终边落在1、3象限正切线为正,2、4象限时正切线为负,
常用的三种三角函数线的作法:
第一步:作出角的终边,与单位圆交于点P;
第二步:过点P作X轴的垂线,设垂足为M,得正弦线MP、余弦线OM;
第三步:过点A(1,0)作单位圆的切线,它与角的终边或其反向延长线的交点设为T,得角的正切线AT.
特别注意:三角函数线是有向线段,在用字母表示这些线段时,要注意它们的方向,分清起点和终点,书写时要带上方向符号。
五、三角函数线的应用。