二滩水电厂低频振荡现象及根源分析
- 格式:pdf
- 大小:50.23 KB
- 文档页数:5
水电站机组振动的原因及解决措施研究随着社会的进步,居民的用电量日益升高,同时也对用电质量提出了更高的要求,这就刺激了电力行业的飞速发展,但同时也暴露了较多的问题,其中最为常见的就是水电站机组振动问题。
这一问题不仅影响着设备正常使用,甚至还会对使用人员的生命安全造成严重威胁。
本文的研究内容即为水电站机组振动的原因及解决措施。
标签:水电站;机组振动;原因;解决措施水轮发电机在工作中如果发生振动,不仅会导致某些部件发生弹性形变或塑料形变出现裂纹、断裂,还会导致部件之间的连接松动,导致部件的使用寿命更短。
严重时甚至还会对整个水电站机组的安全运行造成严重威胁。
但这一问题在实际使用期间难以避免,所以需要采取有效的措施进行改善。
分析水轮机组的结构可以发现,组成部分主要是旋转和固定两部分,水轮发电机在运行期间,其中某部分发生异常,就会导致出现机组振动。
比较常见的振动是旋转部分的振动。
对振动问题采取有效措施进行控制后,可以使机组的运行具备更高的稳定性和可靠性[1]。
1、水利因素造成水电站机组振动的原因1.1水力不平衡水流同时具有动能和势能,在蜗壳的作用下形成环流,经均匀分布固定导叶、活动导叶片到转轮上,将其激活进行旋转。
当导水叶叶片和流量通道受各种因素的影响出现较大的形状差异时,水流作用到转轮后,因为成对称失衡,出现不平衡横向力,转轮从而发生振动,当运行处于无负载和低负荷状态时,振动尤为强烈。
1.2尾管的低频率水压脉冲在非设计工况条件下,水轮机运行时在出口处转轮受到脱流漩涡和旋转水流等因素的影响,尾水管内引发水压脉动并出现大型涡带,并以固定频率在管内转动,引起低频压力脉动。
水流流经管道后,压力脉动会导致转子,蜗壳,压力管等发生剧烈的振动[2]。
1.3空腔汽蚀水流通过水轮机时,受到流速,流向的影响,流道发生改变,增加流速后水流中出现气泡,气泡一旦进入高压区并溃灭,出现的情况即为空腔汽蚀。
这一情况会对机组的推力轴承和顶盖造成剧烈的垂直振动。
电力系统低频振荡的原因引言电力系统是现代社会不可或缺的基础设施,它为我们提供了稳定的电能供应。
然而,有时候电力系统会出现低频振荡问题,给系统的稳定运行带来困扰。
本文将探讨电力系统低频振荡的原因,以及可能导致这些振荡的因素。
低频振荡概述低频振荡是指电力系统中频率较低的周期性波动。
一般情况下,电力系统的标准工作频率为50Hz或60Hz,而低频振荡往往发生在0.1Hz到1Hz范围内。
这种振荡可能导致电网不稳定、设备损坏甚至停电。
常见原因动力系统负载变化动力系统负载变化是引起低频振荡的常见原因之一。
当负载突然增加或减少时,会导致发电机和负载之间的失衡,从而引起低频振荡。
这种失衡可能是由于大型工业设备启动或停止、大规模用电设备切换等原因引起的。
发电机调节不当发电机是电力系统的核心组成部分,它负责将机械能转换为电能。
发电机调节不当可能导致低频振荡。
如果发电机的调节系统响应缓慢或不灵敏,就会导致频率波动,从而引起低频振荡。
线路参数变化电力系统中的线路参数变化也可能导致低频振荡。
线路的阻抗、电感和电容等参数会受到温度、湿度和环境条件等因素的影响而发生变化。
这些变化可能导致系统的谐振现象,从而引起低频振荡。
控制系统故障控制系统是保持电力系统稳定运行的关键组成部分。
控制系统故障可能导致低频振荡。
自动发电机控制器(AVR)故障可能导致发电机输出功率不稳定,从而引起低频振荡。
高压直流输电系统干扰高压直流输电系统在长距离输送大功率时具有优势,但它也可能对交流输电网产生干扰。
由于高压直流输电系统的存在,可能会引起电力系统中的低频振荡。
振荡的影响低频振荡对电力系统的影响是严重的。
它可能导致设备损坏,包括发电机、变压器和开关设备等。
低频振荡可能导致电网不稳定,从而引起停电和能源供应中断。
低频振荡还可能对用户造成经济损失,并对社会生活产生负面影响。
预防和控制为了预防和控制低频振荡问题,需要采取一系列措施。
应确保发电机和负载之间的平衡。
电力系统的低频振荡问题分析及处理措施发布时间:2022-06-01T07:50:30.742Z 来源:《新型城镇化》2022年10期作者:谢福梅[导读] 现代社会的发展决定了电力资源成为国家经济的重要命脉之一,电力系统是否能够安全稳定运行将直接关乎人民社会生活的健康与可持续发展,因此保证电网正常可靠运行具有重大意义。
然而,大规模跨区互联电网的形成必然将给电网运行方式和结构参数带来巨大变化。
其中,长距离、重负荷输电通道的出现无疑将对电力系统低频振荡问题带来严重影响,加之如今发电机更多地采用高放大倍数和快速励磁控制系统,低频振荡问题将会更加恶化以致严重威胁电网的安全稳定运行。
为此,重点研究电网大规模跨区互联阶段下出现的低频振荡现象迫切并且极具现实意义。
谢福梅国网四川阿坝州电力有限责任公司四川阿坝州 623200摘要:现代社会的发展决定了电力资源成为国家经济的重要命脉之一,电力系统是否能够安全稳定运行将直接关乎人民社会生活的健康与可持续发展,因此保证电网正常可靠运行具有重大意义。
然而,大规模跨区互联电网的形成必然将给电网运行方式和结构参数带来巨大变化。
其中,长距离、重负荷输电通道的出现无疑将对电力系统低频振荡问题带来严重影响,加之如今发电机更多地采用高放大倍数和快速励磁控制系统,低频振荡问题将会更加恶化以致严重威胁电网的安全稳定运行。
为此,重点研究电网大规模跨区互联阶段下出现的低频振荡现象迫切并且极具现实意义。
关键词:电力系统;低频振荡问题;处理措施目前低频振荡危害已经成为影响电力系统安全稳定运行的首要因素,对日益普遍的电力联网状况提出了更加严峻的挑战。
为了更好地推进西电东送、南北互供、全国联网的电力发展战略,强化对电力系统低频振荡的控制方法的分析,是促进国家电力事业稳定健康发展的关键途径。
1 电网振荡的分类1.1按照相关机组分类(1)地区振荡模式:地区振荡模式为少数机组之间或少数机组对整个电网之间的振荡模式。
水电站水轮发电机机组振动问题分析处理方法的探讨水轮发电机机组是水电站中产生电能的重要设备,其正常运行对于水电站的稳定运行和发电效率具有重要影响。
在机组运行过程中,可能会出现振动问题,如果不及时处理和解决,将会对机组设备造成损坏,甚至影响整个水电站的运行。
本文将对水轮发电机机组振动问题进行分析,并探讨相应的处理方法。
一、水轮发电机机组振动问题分析1. 振动产生原因水轮发电机机组振动问题的产生主要有以下几个原因:(1)设备老化:随着机组长时间的运行,设备的部件可能会产生磨损和老化,导致机组振动增大。
(2)不平衡:如果机组叶轮或转子存在不平衡现象,将会导致机组振动。
(3)装配问题:机组在装配过程中,如果未能严格按照要求进行装配,可能会导致机组振动。
(4)液力振动:水轮叶片与水流相互作用时产生的振动,也是机组振动的一种原因。
2. 振动对机组的影响水轮发电机机组的正常运行需要保证机组的稳定性和可靠性,而振动问题将会对机组产生以下影响:(1)损坏设备:长期的振动将会导致机组的部件受损,从而减少设备的使用寿命。
(2)降低效率:机组振动将会影响机组的稳定运行,降低水电站的发电效率。
(3)安全隐患:严重的振动问题可能会导致设备的脱落或损坏,存在安全隐患。
1. 定期检查和维护为了保证水轮发电机机组的正常运行,需要对机组进行定期的检查和维护。
在检查过程中,需要特别关注机组的叶轮、转子、轴承等部件,对于存在磨损或老化的零部件及时更换和修理,以减少振动的产生。
2. 平衡校正对于存在不平衡现象的机组,需要进行平衡校正。
通过动平衡调整机组的叶轮或转子,使得转子在高速旋转时不再产生明显的振动,从而减少振动对机组的影响。
3. 规范安装在机组的装配过程中,需要严格按照安装要求进行操作,确保各个部件的安装位置和角度符合要求。
只有规范的安装,才能减少振动问题的产生。
4. 液力振动控制针对水轮叶片与水流相互作用产生的振动问题,可以采取一定的控制措施,如通过改变叶片的结构或调整水流的流速,减少液力振动对机组的影响。
电力系统低频振荡的原因及抑制方法分析电力系统低频振荡的原因及抑制方法分析随着电力系统低频振荡对系统稳定性危害的逐渐显现,对系统低频振荡的分析越来越受到关注,本文分析了系统低频振荡产生的原因,比拟了常见的抑制低频振荡的措施,比照了优缺点,对柔性交流输电系统技术在抑制低频振荡中的应用进行展望。
【关键词】低频振荡抑制措施电力系统电力系统联网开展初期,发电厂同步发电机联系较为紧密,阻尼绕组会产生足够大的阻尼,抑制振荡开展,低频振荡在那时少有产生。
随着电网规模互联的不断扩大,出现了大型电力系统之间的互联,电力系统联系因而变得越来越密切,世界许多地区电网都发现了0.2Hz至2.5Hz范围内的低频振荡,低频振荡问题逐渐受到业内关注。
电力系统低频振荡一旦发生,如果没有及时抑制,将会导致电网不稳定乃至解列,严重威胁电力系统的稳定平安运行,甚至诱发联锁事故,造成严重后果。
1 低频振荡产生的原因1.1 负阻尼导致低频振荡有文献记载了运用阻尼转矩的方法,针对单机无穷大系统分析低频振荡的原因,最主要的原因是系统中产生负阻尼因素,从而抵消系统自有的正阻尼性,导致系统的总阻尼很小甚至为负值。
如果系统阻尼很小,在受到扰动后,系统中功率振荡始终难以平息,就会造成等幅或减幅的低频振荡。
如果系统阻尼为负值,在受到扰动后,低频振荡会不断积累增加,影响系统稳定。
1.2 发电机电磁惯性导致低频振荡电力系统中励磁控制是通过调整励磁电压来改变励磁电流,从而到达调整发电机运行工况的目的。
控制励磁电流就是在调整气隙合成磁场,它使得发电机机端的电压调整为所需值,同时也调整了电磁转矩。
故改变励磁电流大小便可以调整电磁转矩和机端电压。
在励磁自动控制时,因发电机励磁绕组有电感,励磁电流比励磁电压滞后,故会产生一个滞后的控制,滞后的控制在一定因素下会引起系统低频振荡。
1.3 电力系统非线性奇异现象导致低频振荡依据小扰动分析法,系统的特征根中有一个零根或一对虚根时,系统处在稳定边界;系统的特征根都为负实部时,系统处于稳定的;系统特征根中有一对正实部的复数或一个正实数时,系统处于不稳定。
水电站水轮发电机机组振动问题分析处理方法的探讨水轮发电机机组振动问题是水电站运行过程中常见的故障之一,它不仅影响了机组的稳定运行,还可能导致设备的损坏甚至事故的发生。
对水轮发电机机组振动问题进行分析和处理显得尤为重要。
本文将从振动问题的原因分析入手,探讨针对不同原因所采取的相应处理方法,以期为相关工程技术人员在水电站振动问题的处理中提供一些参考和借鉴。
一、振动问题的原因分析1.不平衡水轮发电机机组的不平衡是引起振动问题的常见原因之一。
当机组转子的质量分布不均衡时,会导致旋转时的不平衡力,从而引起机组的振动。
而不平衡可能来自于机组本身的制造问题,也可能是在运行过程中由于叶片磨损、机械松动等原因导致的。
2.轴承故障水轮发电机机组的轴承故障也是引起振动问题的常见原因之一。
当轴承损坏或磨损严重时,会导致机组的不稳定运行,产生较大的振动。
3.失衡失衡是指机组旋转零件或叶片的动力重心与几何轴线不在同一条直线上。
失衡主要是由于静、动平衡不足、质量、尺寸和装配不对称等引起的。
4.共振共振是指机组受到外力激励使其振动幅度变得异常大的一种现象。
共振现象可能十分危险,因为它可能导致机组受损或者损坏。
二、振动问题的处理方法1.不平衡针对机组不平衡问题,应当采取动平衡的措施,通过动平衡仪器检测机组的不平衡情况,确定不平衡的位置和大小,然后通过增加或减少相应位置的质量来进行校正。
在机组停机检修期间,还可以对机组进行整体的静平衡和动平衡处理,以保证机组的平衡性。
2.轴承故障针对机组轴承故障问题,首先需要进行轴承的检测和诊断,确定轴承的具体故障原因,然后根据故障原因采取相应的处理措施。
如果是轴承磨损严重,需要及时更换轴承;如果是轴承损坏,需要进行轴承的修复或更换;如果是轴承润滑不良导致的故障,需要对轴承进行润滑维护。
3.失衡对于失衡问题,需要通过精确加工和装配来保证机组零部件的质量和尺寸的准确性,避免因质量、尺寸和装配不对称而引起失衡问题。
水电站水轮发电机机组振动问题分析处理方法的探讨简介:水电站水轮发电机机组是利用水流能量产生电能的设备,其正常运行对于水电站的稳定运行和电能输出非常重要。
由于机组本身的特点以及外界环境的因素,机组振动问题时常会出现。
本文旨在对水电站水轮发电机机组振动问题进行分析,并探讨相应的处理方法。
一、机组振动问题的原因分析1. 机组本身问题:水轮发电机机组是一个由多个部件组成的复杂系统,其中的轴承、齿轮、叶轮等部件在长时间的运行中可能出现磨损、变形、断裂等问题,导致机组振动。
2. 外界环境因素:水电站位于水流较大的溪流或河流中,水流对机组的冲击力较大,可能引起机组振动。
水电站周围的地质条件以及建筑结构也可能对机组振动产生影响。
二、机组振动问题的危害分析1. 对机组本身的损坏:机组长时间的振动会使机组各个部件的磨损程度加剧,甚至可能导致部件断裂,影响机组的正常运行。
2. 对电能输出的影响:机组振动会导致发电机输出的电能波动,影响水电站的电能输出稳定性,可能会影响到电网的稳定运行。
三、机组振动问题处理方法的探讨1. 轴承检修与更换:轴承是机组振动的重要原因之一,定期检修以及更换磨损严重的轴承对于减小机组振动具有重要意义。
2. 调整叶轮叶片的角度:叶轮叶片的角度与水流的流向有关,通过调整叶轮叶片的角度可以适应不同水流条件,减小机组振动。
3. 加强机组安装的稳定性:加固机组的整体结构以及与地基之间的连接,提高机组的稳定性,减小机组振动。
4. 水流调节:通过调整水流的流量和入口位置,控制水流对机组的冲击力,减小机组振动。
5. 加强机组监控与维护:及时监控机组的振动情况,发现异常情况及时进行维护,防止机组振动问题加剧。
结论:水电站水轮发电机机组振动问题是一个复杂而常见的问题,对机组的正常运行和电能输出都会产生负面影响。
通过对机组振动问题的原因进行分析,我们可以采取有效的处理方法,如轴承检修与更换、调整叶轮叶片的角度、加强机组安装的稳定性、水流调节以及加强机组监控与维护等措施,减小机组振动问题,保证水电站的稳定运行和电能输出的稳定性。
电力系统中的低频振荡分析与控制研究电力系统是现代社会发展不可或缺的基础设施之一,而低频振荡作为全球电力系统中最常见的稳定性问题之一,其研究与控制具有重大应用意义。
本文将着重围绕电力系统中的低频振荡问题展开探讨,从理论到实践层面,探究振荡的产生原因、特征、分析方法以及控制策略等方面,以期为相关研究提供一些参考。
一、低频振荡的原因低频振荡产生的原因有很多,其中主要包括两类因素:一是电力系统的固有特性;二是外界环境的干扰。
电力系统的固有特性主要表现在如下两个方面:一是由于负载的变化以及电力系统的复杂结构,电力系统可能会出现阻尼不足、动力学特性不同步等问题,这些问题会导致系统变得不稳定,从而引发低频振荡的产生;二是电力系统中存在多个控制装置,这些控制装置之间可能存在相互影响、冲突等问题,也可能会引发系统的不稳定,从而导致低频振荡的产生。
外界环境的干扰主要包括大气扰动、天气变化、地震等自然干扰以及设备故障、突发负荷波动等人为干扰。
这些干扰都可能导致电力系统中的阻尼变化、机械位移变化等问题,从而引发低频振荡的产生。
二、低频振荡的特征低频振荡的特征主要包括如下几个方面:一是振荡频率较低,一般在0.5Hz~3Hz之间;二是振幅较大,可达到无载电压的数倍;三是振荡周期长,往往需要几分钟、几十分钟、甚至几小时才能消失。
此外,低频振荡还具有以下几个特点:一是在振荡过程中,电力系统中的电磁场、电压和电流等参数都会发生明显的变化;二是低频振荡的产生具有很强的随机性,很难预测和控制;三是低频振荡往往会引发系统的不稳定,甚至导致系统的崩溃。
三、低频振荡的分析方法为了更好地控制电力系统中的低频振荡,需要对其进行深入的分析和研究。
目前,较为常用的低频振荡分析方法主要有模型计算和系统实测两种。
模型计算方法是建立电力系统的动态模型,利用计算机仿真技术对电力系统进行模拟,从而研究和分析低频振荡的特性和控制方式。
在模型计算中,一般采用各种稳定控制技术对电力系统进行分析和优化,以提高其稳定性和抗干扰能力。
电力系统低频振荡的产生原因及危害性(图文)2010-10-23 10:28:14 互联网浏览: 1111 发布评论(0)介绍电力系统低频振荡的产生原因及危害性、PSS的基本原理、参数、作用及现场试验过程,并对实验结果进行探讨。
关键词:低频振荡励磁调节器电力系统稳定器(PSS)1 前言天津大唐盘山发电有限责任公司是装机容量为2×600MW的新建大型火力发电厂,它同原有天津国华盘山发电有限责任公司的2×500MW俄罗斯汽轮机组构成一个电源点,经三条500KV线路向系统送电,地处京津唐负荷中心,对电网稳定起着重要的支撑作用。
作为京津唐电网最大的发电机组,其发电机励磁系统性能的优劣对华北电网的稳定运行具有举足轻重的影响。
根据国家十五计划实现全国联网的要求,华北电网规定,新建大型发电机组励磁系统应有系统稳定措施并调整好后才能并网运行,为此我厂先后完成了对3#、4#机组的电力系统稳定器(PSS)定值整定和试验工作,实验效果明显。
应国家电力调度中心要求,2003年6月18日,在华北电力调度局方式处的组织下PSS正式投入运行。
2 低频振荡产生原因分析及危害性电力系统低频振荡在国内外均有发生,通常出现在远距离、重负荷输电线路上,或者互联系统的弱联络线上,在采用快速响应高放大倍数励磁系统的条件下更容易出现。
随着电力电子技术的快速发展,快速励磁调节器的时间常数大为减少,这有效地改善了电压调节特性,提高了系统的暂态稳定水平。
但由于自动励磁调节器产生的附加阻尼为负值,抵消了系统本身所固有的正阻尼,使系统的总阻尼减少或成为负值,以至系统在扰动作用后的功率振荡长久不能平息,甚至导致自发的低频振荡,低频振荡的频率一般在0.2-2Hz之间。
(风险管理世界-) 低频振荡会引起联络线过流跳闸或系统与系统或机组与系统之间的失步而解列,严重威胁电力系统的稳定。
解决低频振荡问题成为电网安全稳定运行的重要课题之一。
3 PSS原理及其作用为了既能利用高放大倍数的励磁调节器又能避免其负阻尼效应,人们对传统励磁系统进行了改进。
水电站水轮发电机机组振动问题分析处理方法的探讨水轮发电机机组振动问题是水电站运行中常见的难题之一,它不仅影响了水轮发电机机组的稳定运行,还可能导致设备的损坏,甚至对整个水电站的安全运行造成影响。
对水轮发电机机组振动问题进行深入分析并采取相应的处理方法是非常重要的。
本文将对水轮发电机机组振动问题进行分析,并探讨相应的处理方法。
一、水轮发电机机组振动问题的原因分析1. 设备故障水轮发电机机组振动问题可能是由于设备本身存在故障引起的。
水轮发电机机组内部零部件损坏、轴承故障、叶轮失衡等都可能导致机组振动加剧,甚至超出正常范围。
2. 水动力因素水轮发电机机组的振动问题还可能与水动力因素有关。
水轮叶片设计不合理、进水口或出水口的设计存在问题、水流紊乱等都可能成为引起振动问题的原因。
3. 操作不当水轮发电机机组的振动问题还可能是由于操作不当引起的。
过载运行、不定期维护、设备长期运行而未进行检查、监视等操作不当行为都可能导致机组的振动问题。
二、水轮发电机机组振动问题的处理方法探讨1. 设备故障处理对于因设备故障导致的振动问题,首先需要进行设备的故障诊断。
对机组的各个零部件进行仔细检查,发现损坏或存在故障的部件及时更换或修复。
对于一些需要定期更换的零部件,也要按照规定的周期进行更换,以防止这些零部件在使用过程中导致机组振动。
2. 水动力因素的处理对于与水动力因素有关的振动问题,一方面需要对水轮叶片设计进行重新评估,确保其在运行时不会引起过大的振动。
还需要对水轮进水口和出水口的设计进行调整,确保水流在进出口处的流速和流向达到合适的设计要求。
3. 操作不当的处理在操作不当引起的振动问题方面,首先需要加强操作人员的培训,确保操作人员能够正确操作机组,并严格按照操作规程进行操作。
对设备的维护保养工作也要加强,建立健全的检查、维护制度,定期对机组进行维护,及时发现问题并进行处理,以减少振动问题的发生。
水力发电机组运行中振动产生的原因分析摘要:水力发电机组一直存在振动的问题,这极大地影响了水电机组的正常运转,降低了效率,更严重威胁着水电机组的使用寿命,给发电企业带来了巨大的损失。
本文着重分析了引起振动的三个方面的原因,同时也结合一些例子进行说明。
关键词:水电机组;振动;原因分析1、机械振动引起机械振动的因素有转子质量不平衡、机组轴线不正和导轴承缺陷等。
质量不平衡,由于转子质量不平衡,转子重心对轴心产生一个偏心矩,当轴快速旋转时,由于失衡质量离心惯性力的作用,轴将产生弯曲变形,其中心获得挠度。
转子重心绕中心作圆周运动,回转半径就是振幅。
振幅越大,说明轴变形越太,振动得也越严重。
本机组随负荷增加的振幅值变化不大,但空载时振动摆度明显很大;轴线不正,机组轴线不正会引起两种形式振动:弓状回旋:由于转轮几何中心偏离旋转中心,除直接形成回旋外,尚能增大离心力,两者均使振幅增大。
摆振:在动水压力作用下,推力轴承处发生摆振。
为此,在制造和安装时,必须使轴线找正。
对新安装检修的机组,一般不会由于轴线不正而引起剧烈振动。
但对运行一段时间后的机组,出于某些原因使轴线改变,如推力头与轴配合松动、卡环不均匀压缩、接力头与镜板间的垫变形或破坏等,都会引起机组振动。
轴承缺陷:当导轴承松动、刚性不足、运行不稳或间隙过大而润滑不良时,会发生干摩擦。
引起方向弓状回旋,即横向振动力。
对机组来讲,轴承座刚度不够,带上负荷,主轴向水轮方向弯曲倾斜,转动时有挠度,是机组轴承振动加剧原因之一,导轴承间隙过小,会把转轴的振动传给基座和基础。
导轴承间隙过大,转轴振动大,适当的导轴承间隙,有可能同时保证转轴与支座的振动均在允许的范围内。
2、水力振动引起水力振动的因素有水力不均衡、尾水管中的水力不稳定和涡列等。
2.1 水利不平衡当流入的水流失去轴对称时,出现不平衡的横向力,造成转轮振动。
水流失去轴对称的主要原因是过流通道不对称。
最主要原因是:蜗壳形状不正确,不能保证轴对称;导叶开度不均,引起转轮压力分布不均;在流道中塞有外物;转轮止漏时环偏心,止漏环偏心相当于一个偏心泵,所以造成压力脉动很大,特别是高水头水轮机更为严重。
电力系统低频振荡分析与抑制技术研究引言电力系统的稳定运行对保障社会经济发展起着至关重要的作用。
然而,在实际运行中,电力系统可能会出现低频振荡现象,对系统的可靠性和稳定性带来威胁。
因此,对电力系统低频振荡进行深入分析与抑制技术研究具有重要意义。
一、低频振荡的原因分析低频振荡通常是由于电力系统中存在的失稳因素引起的。
这些因素包括机械振荡、电气振荡、负载变化、系统失衡等。
1. 机械振荡机械振荡是电力系统低频振荡的主要原因之一。
当发电机组和负荷系统之间出现机械共振或不适当的机械耦合时,容易引发低频振荡。
2. 电气振荡电气振荡是电力系统低频振荡的另一个重要原因。
电力系统中存在的电抗器、电容器等元件,以及线路的电感和电容耦合,都可能导致电气振荡。
3. 负载变化负载变化也是引起低频振荡的常见原因。
当负载的突变或不稳定性变化时,容易引发电力系统的低频振荡。
4. 系统失衡电力系统中存在的不对称负载、不平衡电压等因素,也会导致系统的失衡,进而引起低频振荡。
二、低频振荡的危害分析低频振荡对电力系统的稳定运行和设备运行安全带来很大的威胁。
1. 设备损坏低频振荡会导致电力系统中的设备频繁振动,加速设备的老化过程,甚至引发设备损坏,给电力系统带来巨大经济损失。
2. 电压不稳定低频振荡会导致电压的剧烈波动,这不仅对电力设备的运行稳定性造成威胁,还可能影响用户的用电质量,给社会带来负面影响。
3. 系统失效如果低频振荡得不到及时有效的控制和抑制,可能会导致系统失效,引发电力中断事故,给电力系统的安全稳定运行带来极大隐患。
三、电力系统低频振荡的分析方法为了深入研究电力系统低频振荡,并采取相应的抑制措施,有必要运用一些分析方法以明确振荡特征和原因。
1. 功率谱分析法功率谱分析法是一种常用的电力系统低频振荡分析方法,通过对信号频谱的分析,可以得到系统中的谐波与低频振荡成分。
2. 模拟实验法模拟实验法是通过搭建电力系统的模型,模拟系统振荡和失稳情况,来分析低频振荡的原因和特征。
水电站水轮发电机机组振动问题分析处理方法的探讨水电站水轮发电机机组的振动问题一般是指机组在正常运行过程中出现的不安全振动,对机组系统的稳定性、使用寿命和安全性等方面产生不利影响。
本文将对水电站水轮发电机机组的振动问题进行分析,并提出相应的处理方法。
一、振动问题的原因1.1机组结构设计不当机组结构设计不当是机组振动问题的主要原因之一。
如转子、导轮、轴承、联轴器、齿轮等组件的配合精度不够、结构刚度不足、质量不平衡等问题,都可能导致机组振动过大。
此外,如果机组存在过度磨损或者损坏的部件也会引起振动。
1.2水轮进口压力不均衡水轮进口压力不均衡也是造成机组振动的重要因素之一。
如水管堵塞或转轮与水流配合不当等问题都可能导致机组振动。
1.3水轮流量或角度不稳定1.4地震或其它外力因素地震或其他外力因素也可能导致机组振动。
如机组地震动力学效应、风力、自然频率等因素都可能引起机组振动。
二、振动问题的处理方法2.1结构设计优化优化机组结构设计是解决机组振动问题的根本方法。
设计者应该考虑机组的结构刚度,避免各个部件之间造成过度磨损或者失衡,增强各个部件之间的联动性,从而保持机组的稳定性。
2.2水轮系统的优化水轮进口压力不均衡是造成机组振动的重要因素之一。
为了减少水轮进口压力不均衡,可以在进水管道安装柔性接头或检漏器,以保持水轮系统的稳定性。
2.3振动检测与监测对机组进行振动检测和监测是解决机组振动问题的关键。
一般可以在机组各个部件的关键位置安装振动传感器,实时监测机组的振动状况。
一旦发现异常情况,及时采取相应措施,降低机组的振动。
2.4加强机组维护和保养加强机组维护和保养也是解决机组振动问题的有效方法。
对于机组运行过程中出现的故障或者损坏部件,及时进行修复或更换。
同时,加强机组维护管理,保持机组的清洁度和运行的整体质量。
三、结语机组振动问题对水电站的安全和经济运行都有着关键的影响。
针对机组振动问题,我们应该从结构设计优化、水轮系统优化、振动检测与监测以及机组维护和保养等方面进行全方位的管理,以保证机组的安全、稳定和经济性运行。
电力系统低频振荡的原因1. 低频振荡的定义与背景低频振荡是指电力系统中频率低于标称频率(如50Hz)的振动现象。
由于电力系统的复杂性和运行模式的多样性,低频振荡可能会出现在不同的情况下,包括在大电网中的发电、输电和配电系统中。
低频振荡对电力系统的稳定性和安全运行具有重要影响,因此深入研究其原因和影响是至关重要的。
2. 低频振荡的分类与特征低频振荡可以根据其频率和振荡模态划分为不同的类型,其中一些常见类型包括:电气振荡、电动力振荡和机械振荡。
这些振荡可能表现为系统频率周期性波动、电压和电流的角频率振动以及发电机转速的起伏等。
低频振荡还可以根据其起因分为电力系统固有振荡和外部激励振荡。
3. 电力系统低频振荡的原因电力系统低频振荡的形成涉及多个因素的相互作用。
以下是导致电力系统低频振荡的主要原因:3.1 功率不平衡功率不平衡是电力系统低频振荡的常见原因之一。
当系统中某些发电机或负荷出现不平衡时,由于电力的误差积累和支路参数差异,可能导致系统频率出现周期性变化并产生低频振荡。
3.2 频率响应特性电力系统的频率响应特性对低频振荡具有重要影响。
电力系统中的发电机、负荷和输电线路具有不同的频率响应特性,其中包括频率响应增益、频率死区和相位延迟等。
这些特性可能会引起低频振荡的发生和扩大。
3.3 振荡模态耦合电力系统中的振荡模态之间存在耦合现象,这可能是低频振荡的原因之一。
当不同的振荡模态相互耦合时,可能会引起振荡的共振和放大。
3.4 控制系统不稳定电力系统的控制系统是保持系统稳定运行的关键。
当控制系统参数设置不当、控制策略失效或控制循环闭合不稳定时,可能会导致低频振荡的发生。
3.5 电力设备故障和故障处理电力设备的故障和故障处理也是导致低频振荡的潜在原因。
例如,发电机的励磁系统故障、输电线路的短路、变压器的故障等都可能导致系统的低频振荡。
4. 低频振荡的影响与对策低频振荡对电力系统稳定性和可靠性产生不利影响。
它可能导致系统频率不稳定、电压波动、设备过载以及系统崩溃等问题。
一起大型水轮发电机组功率低频振荡事件分析王思良;冯喆;魏步云【摘要】低频振荡是电力系统的一种复杂动态行为,关系到电网设备的安全稳定运行.二滩水电站调度侧监控系统曾推送出"低频振荡"信号,故障定位为3号机组.结合同步相量测量装置(PMU)历史数据详细分析事件过程,原因为机组较长时间停留在典型涡带工况区运行,受水力因素影响,强烈的涡带频率压力脉动引发了机组功率产生周期性波动,属于强迫功率振荡.据此提出了相关稳定运行建议措施.【期刊名称】《水电与新能源》【年(卷),期】2017(000)005【总页数】4页(P54-57)【关键词】低频振荡;功率波动;振动区【作者】王思良;冯喆;魏步云【作者单位】二滩水力发电厂,四川攀枝花 617000;二滩水力发电厂,四川攀枝花617000;二滩水力发电厂,四川攀枝花 617000【正文语种】中文【中图分类】TM312低频振荡是指在正常运行状态下保持同步运行的电力系统,在受到突发或持续性的扰动而引起发电机转子间持续性的相对摆动。
当系统缺乏阻尼时会导致持续振荡。
这种振荡的振荡频率较低,一般为0.2~2.5 Hz。
低频振荡多出现在长距离、重负荷输电线上。
关于低频振荡产生机理主要有:负阻尼理论、强迫功率振荡理论以及模式谐振机理等[1-3]。
负阻尼机理指出,随着现代电力系统的发展、高放大倍数快速励磁系统的广泛采用,会产生负阻尼作用。
在这种情况下,系统受到小的扰动后就会引发系统持续性的增幅振荡而长久不能平息。
对于负阻尼所引发的系统低频振荡多采用增强系统阻尼的方法进行抑制,即设计并投入电力系统稳定器(PSS),能起到良好的效果。
PSS 不仅可以补偿励磁调节器的负阻尼,还可以增加正阻尼,使发电机有效提高抑制系统低频振荡的能力[2]。
强迫振荡机理指出,如果系统受到周期性功率振荡扰动源的影响,扰动源的振荡频率恰好解决电网自身振荡的固有频率,将导致系统随之出现大范围振荡,一般是由网络内电源的率先振荡引起的。
二滩水电厂低频振荡现象及根源分析庞晓艳 李明节 梁汉泉 陈苑文 四川省电力公司调度中心 摘要:本文介绍了二滩水电厂多次出现的低频振荡现象和机组励磁系统,分析了低频振荡现象发生的背景和根源。
现场试验表明,机组励磁系统设计存在缺陷,其伏特/赫兹(V/Hz)限幅环节限制了PSS输出信号。
在二滩机组带满负荷运行,多台机组增加励磁调压时,多台机组PSS功能同时退出,致使PSS功能未能真正发挥作用。
这些教训对大容量机组励磁系统设计、调试及运行等具有指导意义。
关键词:低频振荡;电力系统稳定器(PSS);伏特/赫兹(V/Hz)限制一前言二滩水电厂位于四川省西南部攀枝花地区,装机容量6550MW,经1100多公里的500kV输电通道向川渝和华中电网送电。
根据川渝孤立电网、川渝-华中互联电网的小干扰稳定性分析,在二滩大功率远距离输电方式下,系统均存在1个与二滩、宝珠寺和铜街子机组强相关的负阻尼振荡模式。
为此在二滩、宝珠寺和铜街子机组励磁系统中,投入了电力系统稳定器(以下简称PSS)附加控制功能,并经过现场调试投入运行,而且时域数字仿真表明,系统PSS配置方案可以明显改善系统阻尼特性,防治低频振荡现象的发生。
但是自2001年8月以来,二滩水电厂已多次发生低频振荡现象,而且电厂现场打印记录显示机组PSS功能一直处于投运状态。
为了弄清低频振荡发生的根源,我们对多次发生低频振荡的背景和二滩机组励磁系统进行了分析,并通过现场试验,最终查明了低频振荡的根源。
本文将介绍二滩水电厂多次出现的低频振荡现象、机组励磁系统及现场试验情况等,提出了在大容量机组及励磁系统设计、调试和实际运行中需注意的问题。
二低频振荡现象及特点1.2001年8月3日低频振荡20:47 因负荷中心电压低,四川省调通知二滩将电压调至电压曲线上限,二滩5台机组相继增加了励磁。
20:48 二滩汇报电压在532KV至539KV之间波动。
20:53 龚嘴电厂汇报7台机有功、无功均在波动,无功摆动大,有功摆动小。
20:54 洪沟站汇报500KV、220KV所有电流表计均在摆动;龙王站汇报电压在510-520KV之间波动;江油电厂汇报机组励磁电流波动大;映秀湾汇报110KV有功波动大,电压基本无波动。
20:55 令宝珠寺电厂立即加负荷,二滩电厂根据周波情况减负荷。
21:02 二滩负荷减至2100MW,系统恢复正常。
2.2002年7月1日低频振荡16:38 四川省调通知二滩将500kV电压调至电压曲线上限。
16:40:21 二滩#6机增磁按钮选中,增加励磁;16:40:46 二滩#1机增磁按钮选中,增加励磁;16:41:11 二滩#2机增磁按钮选中,增加励磁;16:51 二滩电厂汇报500kV线路总负荷在2650MW~2700MW范围波动,电压在536kV~539kV波动。
16:59 省调通知视万龙线潮流减负荷至2600MW。
17:01 二滩电厂出力减至2600MW,系统恢复正常。
3.2002年7月15日低频振荡10:03 四川省调通知二滩电厂电压调上限运行。
10:18 二滩汇报500kV线路总有功波动50MW,总无功波动50Mvar,电压波动3KV.10:21 通知宝珠寺加负荷,二滩负荷由2700MW减至2500MW。
10:25 二滩负荷减至2500MW,波动平息. 从上述的低频振荡现象看,有四个明显的特点:第一,低频振荡现象发生的背景均是丰水期二滩机组满负荷运行,在二滩多台机组增加励磁后出现的。
第二,二滩电厂现场打印显示机组PSS功能一直处于投运状态。
第三,二滩电厂降低出力,受端电厂增加出力,低频振荡现象消失。
第四,现场打印记录显示二滩机组增加励磁,机端电压保持恒定。
三低频振荡的原因分析及防止措施我们首先对低频振荡发生时的系统运行工况进行了时域数字仿真。
仿真结果表明二滩机组PSS功能投运对抑制功率振荡有明显效果。
根据多次低频振荡现象发生的背景,我们又对二滩机组的励磁系统进行了研究分析,发现励磁系统的PSS输出信号在V/Hz限制之前,V/Hz环节的增益整定为1.05,V/Hz限制环节是否过滤了PSS输出信号?为此,四川省电力公司组织人员对二滩#2机组励磁系统进行了现场试验,试验结果表明,机组励磁系统设计存在缺陷,V/Hz限制环节不仅限制了励磁给定信号,而且限制了PSS输出信号。
在二滩多台机组相继增加励磁进行调压时,多台机组PSS功能同时退出,系统阻尼由强阻尼转变为弱阻尼,这就是二滩电厂多次发生低频振荡现象的根源。
下面介绍二滩机组励磁系统、现场试验情况以及防止措施。
1.二滩机组励磁系统 二滩水电厂机组励磁系统采用加拿大GE 公司的SILCO5自并励励磁系统,其自动电压调节器(AVR )逻辑框图如图1所示。
图1 二滩机组励磁系统逻辑框图Figure 1 logic diagram of ertan units excitation system从图1可以看出,二滩机组PSS 输出信号PSSOP 与励磁给定信号AVRREF 、低励限制信号MINELOP 叠加后,经伏特/赫兹(V/Hz )限制和机端电压限制环节后,形成AVR 设定值AVRSP 。
励磁系统V/Hz 限制环节的幅值VHZOP 等于发电机频率FREQFB 乘以V/Hz 增益VHZGN 。
V/Hz 限制环节实际上是用来保护发电机和升压变压器,以防止发电机在低频率运行时,励磁给定信号AVRREF 过大,造成机端电压过高,产生过度持续磁通而损坏发电机和升压变压器。
V/Hz 增益VHZGN 的整定值取决于发电机和升压变压器允许的持续过磁通能力,也就是发电机和升压变压器的V/Hz 值。
发电机和升压变压器的典型V/Hz 值和允许运行时间如下表1[1]。
表1V/Hz (pu )1.25 1.2 1.15 1.1 1.05 发电机 0.2 1.0 6.0 20.0 长期运行 允许运行时间(min) 升压变压器 1.0 5.0 20.0 长期运行由表1可以看出,机组V/Hz 值,也就是发电机机端运行电压相对于机端额定电压的标么值和频率标么值之比小于1.05pu 时,发电机可以长期运行。
升压变压器V/Hz 值,也就是机组升压变压器低压侧运行电压相对于低压侧额定电压的标么值和频率标么值之比小于1.1时,升压变压器可以长期运行。
当发电机以某一机端电压运行时,发电机机端电压等于升压变低压侧电压。
如果机端额定电压与升压变低压侧额定电压相同,则机组V/Hz 值等于升压变压器V/Hz 值,励磁系统V/Hz 增益整定值取决于发电机,应整定为1.05;如果升压变低压侧额定电压比机端额定电压低5%,机组V/Hz值等于升压变压器V/Hz值的0.95倍,励磁系统V/Hz增益整定值则取决于变压器,应整定为1.1。
通常在设计参数选择时,机组升压变的低压额定电压比发电机额定电压应低5%。
但是二滩机组机端额定电压与升压变低压侧额定电压相同,均为18kV,二滩机组励磁系统V/Hz增益VHZGN整定为1.05。
当电网运行正常,机组频率测量值为50Hz,V/Hz 限制的幅值为1.05pu ,也就是V/Hz限制首先将AVR设定值AVRSP限制在1.05pu内。
2.二滩机组励磁系统试验情况 (1) 单机增加励磁调压试验#2机组并网带400MW负荷,通过调整#2机组增磁按钮AVR-R来调整发电机机端电压。
当机端电压增至18.72kV时,继续增加励磁给定,发电机机端电压保持不变。
从工作站观测到的信息为:励磁给定信号AVRREF=1112,V/Hz限制信号VHZOP=1075,AVR设定值AVRSP信号也限制为AVRSP=1075。
可见,V/Hz限制器限制了励磁给定电压,限制了机组的正常调压。
这时PSS的输出有-7到6的波动,但V/Hz环节后的信号没有波动,说明了V/Hz限制器也限制了PSS的作用。
(2) 阶跃响应试验在#2机组机端电压为18.2kV时,励磁给定信号AVRREF=1047,加2%AVR TS阶跃信号,从录波图上看出,阶跃扰动的上、下阶跃引起的有功波动在1个周波后衰减。
在#2机组机端电压为18.4kV时,加2%AVR TS阶跃信号,从录波图上看出,阶跃扰动的上阶跃引起的有功波动约8个周波后衰减,而下阶跃引起的有功波动在1个周波后衰减。
从试验结果看,在不同的机端电压水平下,加入相同的阶跃扰动信号,机组有功波动的衰减周期是不同的。
其原因为在机端电压较高时,励磁给定信号AVRREF较大,励磁给定信号AVRREF叠加2%AVR TS上阶跃信号,再叠加PSS输出信号PSSOP后超过了V/Hz的限制值,PSS输出信号受到限制。
而叠加2%AVR TS下阶跃信号后没超过V/Hz 限制的限制值,PSS输出信号发挥了抑制有功振荡的作用。
可见,当机组励磁给定信号AVRREF叠加PSS输出信号PSSOP之和大于V/Hz的限制值VHZOP时,AVR设定值AVRSP信号被限制为AVRSP=VHZOP。
V/Hz限制不仅限制了励磁给定信号AVRREF,而且限制了PSS输出信号PSSOP。
3.防止二滩水电厂低频振荡的措施 在二滩大功率远距离输电方式下,二滩机组PSS功能可靠投运是防止低频振荡现象发生的重要措施。
目前二滩机组励磁系统存在缺陷,需要进行改造。
在二滩励磁系统改造之前,发生低频振荡的隐患依然存在,运行中采取措施为:丰水期在二滩机组带满负荷之前,提高系统运行电压,尽可能避免在二滩满负荷运行时多台机组同时增加励磁,避免多台机组PSS功能同时退出运行的情况发生。
四低频振荡的启示随着全国联网工程的不断推进,互联电网规模日益扩大,电网长过程动态稳定问题更加突出,大容量机组励磁调节性能的好坏对电网安全稳定运行影响很大,二滩电厂多次出现的低频振荡现象给了我们许多启示。
1.在大容量机组接入系统的可行性研究阶段,应加强励磁系统对互联电网动态稳定水平影响的研究分析,并从系统安全稳定的角度对机组励磁调节性能提出具体的要求,励磁系统的各种限幅环节不能影响正常的调节性能。
2.电网调度运行部门在重视发电机组励磁系统A VR和PSS性能参数的基础上,应高度重视励磁系统的各种限幅环节的参数,这些保障设备安全的限幅定值可能会严重影响励磁系统调节性能。
3.在进行机组PSS参数调试项目中,在常规调试项目的基础上,应增加各限幅环节对PSS功能影响的试验。
4.在发电机和升压变的设计参数选择时,机组升压变的低压额定电压应比发电机额定电压应低5%。
参考文献 1.四川电力试验研究院,《二滩电站#2机组V/Hz限制对PSS影响的试验报告》,2002年8月2.二滩水电开发有限责任公司,《二滩水电站励磁系统安装、维护、运行手册》,1998年1月3.[加] PRABHA KUNDUR,《电力系统稳定与控制》,中国电力出版社THE PHENOMENON AND REASON OF ROTOR OSCILLATION IN ERTAN HYDRO PLANT Li mingjie Pang xiaoyan Liang hanquan Chen yuanwen Sichuan Electric Power Company Dispatching Center ABSTRACT:The paper introduces the phenomenon and excitation system of hydro plant, and analyses its background and reason. The test indicate that there is defect in excitation system, its V/Hz limiter restrict the output of PSS. When Ertan units is in full load and multi-units increase excitation to regulate voltage, the PSS of muli-units exit, the PSS dont work. These lesson have guidance to the design and debug and operation of excitation system. KEY WORDS:Rotor Oscillation;Power System Stabilizer;V/Hz Limiter 。