拱桥问题与运动中的抛物线-课件
- 格式:ppt
- 大小:869.00 KB
- 文档页数:13
第3课时 拱桥问题和运动中的抛物线1.掌握二次函数模型的建立,会把实际问题转化为二次函数问题. 2.利用二次函数解决拱桥及运动中的有关问题. 3.能运用二次函数的图象与性质进行决策.一、情境导入某大学的校门是一抛物线形的水泥建筑物(如图所示),大门的宽度为8米,两侧距地面4米高处各挂有一个挂校名横匾用的铁环,两铁环的水平距离为6米,请你确定校门的高度是多少?二、合作探究探究点一:建立二次函数模型 【类型一】运动轨迹问题某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时离地面高209米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮圈距地面3米.(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?解析:这是一个有趣的、贴近学生日常生活的应用题,由条件可得到出手点、最高点(顶点)和篮圈的坐标,再由出手点、顶点的坐标可求出函数表达式;判断此球能否准确投中的问题就是判断代表篮圈的点是否在抛物线上;判断盖帽拦截能否获得成功,就是比较当x =1时函数y 的值与最大摸高3.1米的大小.解:(1)由条件可得到球出手点、最高点和篮圈的坐标分别为A (0,209),B (4,4),C (7,3),其中B 是抛物线的顶点.设二次函数关系式为y =a (x -h )2+k ,将点A 、B 的坐标代入,可得y =-19(x -4)2+4.将点C 的坐标代入解析式,得左边=右边,即点C 在抛物线上,所以此球一定能投中.(2)将x =1代入解析式,得y ,所以盖帽能获得成功.【类型二】拱桥、涵洞问题如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米.水面下降1米时,水面的宽度为________米.解析:如图,建立直角坐标系,设这条抛物线为y =ax 2,把点(2,-2)代入,得-2=a ×22,a =-12,∴y =-12x 2,当y =-3时,-12x 2=-3,x =± 6.故答案为2 6.方法总结:在解决呈抛物线形状的实际问题时,通常的步骤是:(1)建立合适的平面直角坐标系;(2)将实际问题中的数量转化为点的坐标;(3)设出抛物线的解析式,并将点的坐标代入函数解析式,求出函数解析式;(4)利用函数关系式解决实际问题.如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标; (2)求出这条抛物线的函数关系式;(3)若要搭建一个矩形“支撑架”AD -DC -CB ,使C 、D 点在抛物线上,A 、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?解析:解决问题的思路是首先建立适当的坐标系,挖掘条件确定图象上点的坐标M (12,0)和抛物线顶点P (6,6);已知顶点坐标,可设二次函数关系式为y =a (x -6)2+6,可利用待定系数法求出二次函数关系式;再利用二次函数上某些点的坐标特征,求出有关“支撑架”总长AD +DC +CB 二次函数的关系式,根据二次函数的性质,求出最值,从而解决问题.解:(1)根据题意,分别求出M (12,0),最大高度为6米,点P 的纵坐标为6,底部宽度为12米,所以点P 的横坐标为6,即P (6,6).(2)设此函数关系式为y =a (x -6)2+6.因为函数y =a (x -6)2+6经过点(0,3),所以3=a (0-6)2+6,即a =-112.所以此函数关系式为y =-112(x -6)2+6=-112x 2+x +3.(3)设A(m,0),则B(12-m,0),C(12-m,-112m2+m+3),D(m,-112m2+m+3).即“支撑架”总长AD+DC+CB=(-112m2+m+3)+(12-2m)+(-112m2+m+3)=-16m2+18.因为此二次函数的图象开口向下.所以当m=0时,AD+DC+CB有最大值为18.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,建立二次函数模型,解决生活中的实际问题.[圆]说课稿一、教材分析1.教材的地位和作用圆是在学习了直线图形的有关性质的根底上来研究的一种特殊的曲线图形.它是常见的几何图形之一,在初中数学中占有重要地位,中考中分值占有一定比例,与其它知识的综合性较强.本节课的内容是对已学过的旋转及轴对称等知识的稳固,也为本章即将要探究的圆的性质、圆与其它图形的位置关系、数量关系等知识打下坚实的根底。