危岩稳定性分析及崩塌落石计算
- 格式:pdf
- 大小:187.16 KB
- 文档页数:4
对三类危岩崩塌后影响斜坡稳定性的定量计算摘要:三类不同运动轨迹的危岩与斜坡撞击后对斜坡稳定性的影响不同。
本文通过刚体运动学的理论知识,将三类危岩的崩塌体与斜坡作为一个系统进行研究,应用质心定理,能量守恒定律以及动量定理分别对三类危岩崩塌体与斜坡构成的系统的稳定性作了定量计算,最后给出了每个系统最终滑移距离的计算公式。
关键词:危岩斜坡定量计算1 前言危岩是指位于岩质陡坡或陡坡的崩塌源被结构面切割且稳定性较差的岩块体。
外力的作用,如地震作用,人工爆破和分化作用等使得危岩体后部主控结构面失稳断裂和贯通,大块岩体或岩石群突然从陡坡坠落。
危岩体失稳破坏的这个过程也称之为崩塌。
危岩崩塌是山岭地区最主要的一种地质灾害现象。
大量的危岩崩塌体突然从陡坡坠落,崩塌体在向下的运动过程中,垂直运行的距离远远大于水平运行距离,大块的危岩体或群体在重力作用下,获得了巨大的能量。
当不稳定斜坡受到危岩崩塌体的冲击后,危岩崩塌体的动力作用就成为了斜坡失稳的起搏器,诱使其形成崩塌滑坡。
滑坡的滑移距离能否危及该地区人民的生命安全是我们最为关心的问题。
鉴于此,具体定量的分析各类危岩崩塌体对斜坡的稳定性的影响就显得非常重要。
根据陈洪凯,唐红梅等人对危岩具体研究,可将危岩体化分为以下类:(1)坠落式危岩(2)倾倒式危岩(3)滑塌式危岩,据实地调查,陈洪凯,唐红梅等人对危岩类型的划分符合实际情况。
具体分析这三类危岩运动轨迹后发现,危岩与斜坡撞击后运动轨迹受到斜坡地形地貌和崩塌体自身形状等因素影响,很难准确地予以宏观测定以及类比分析其运动轨迹。
故采用多刚体运动学把崩塌体与斜坡作为一个系统进行研究,对这三类危岩崩塌体应用质心定理,功能转化原理以及动量定理进行定量分析计算,并认为这一细化的定量分析方法基本可信,可以为防灾治灾工作提供计算依据。
2计算过程分析2.1 坠落式危岩—斜坡系统联合运动分析计算坠落式危岩—斜坡系统:高悬于陡崖上端和岩岩腔顶部的岩体受裂隙切割脱离母岩,下部受结构面切割脱离母岩,上部及后部母岩尚未脱离,在重力作用下基本不受阻力便失稳崩塌冲击陡崖下的不稳定斜坡后联合运动。
2-2危岩3530.70.57345 1.4290910.421349103.90.6967620.87004830.1748234570.567072 1.48352332.982712536.70.5175 2.14574631.75578Ⅲ-Ⅲ5873.50.8095680.62558326.664684024.40.6102 1.19261129.003714972.70.6967620.87004837.447633018.40.5448 1.73311337.715365249.60.7314480.78202742.87798Ⅳ-Ⅳ3737.70.587178 1.32794912.757465989.50.8237220.60157132.368174576.80.65505 1.00079739.574733430.70.5670721.48352340.76363Ⅴ-Ⅴ41227.70.618522 1.15121235.848283099.50.5448 1.73311337.33524崩塌落石弹跳计算AB λρφtanφcosφ坡脚弹跳0.40.3130.2307470.974396CD四号危岩段设置当地碎块石土作为缓冲材料,容重γ=21.75最大块径=2*1.4*1 2.8m³重约=72.436KN块石重量Q (KN)块石单位容重γ(KN/m³)缓冲材料的重度γR³石块半径R(m)72.43625.821.750.6706040.87落石冲击力的计算落石冲击力及缓冲填土层厚度块石缓冲层厚度确定缓冲材料的重度γ石块陷入深度Z(m)内摩擦角φtan4(45+0.5*Φ)假定石块为球体的直径截面积F(m²)21.75 2.275487430.69.447405 2.3766660.2880.4550580.42700108037.5166958.64590.427001080108.6294491.68080.427001080118.7378587.44390.427001080114.3208544.55180.3270081071.99463287.95710.3270081078.31001340.69210.32700810101.1086567.94160.32700810101.8315576.09170.32700810115.7706744.60120.3270081034.4451365.91480.3270081087.39405424.31780.32700810106.8518634.29440.32700810110.0618672.97770.3270081096.79035520.46520.32700810100.8052564.5377tanγ反射角γcosγsinγV R0.115374280.8830638760.48647713.4075内摩擦角φ=30.6,落石冲击缓冲层的速度V =36Vm/s ,石块的单位容重25.87,假定石块为球体的直径截面积F(m²)落石冲击缓冲层的速度V 内摩擦角φtan 4(45+0.5*Φ)石块陷入深度Z(m)设计深度2.3766663630.69.447405 2.275487 3.4132311计算层厚度的计算度确定冲击力(Kpa)4209.77695落石腾跃高度计算使用说明:初始速度:输入你所要求解断面中坠落后的速度。
4.2危岩体稳定性计算及评价4.2.1计算模型目前,按照不同的标准,危岩分类系统多样,但是,从工程防治的角度按照危岩失稳类型进行分类更有价值,可将危岩概化分为滑移式危岩、倾倒式危岩和坠落式危岩3 类。
计算公式参考重庆市地方标准《地质灾害防治工程勘察规范》(DB50/143-XXXX)中(30)~(50)计算公式。
勘查区内主要为滑移式危岩、倾倒式危岩;当软弱结构面倾向山外,上覆盖体后缘裂隙与软弱结构面贯通,在动水压力和自重力作用下,缓慢向前滑移变形,形成滑移式危岩,其模式见图(图4.2-1);当软弱夹层形成岩腔后,上覆盖体重心发生外移,在动水压力和自重作用下,上覆盖体失去支撑,拉裂破坏向下倾倒,形成倾倒式危岩(图4.2-2)。
图4.2-1 滑移式危岩示意图图4.2-2 倾倒式危岩示意图1、滑移式危岩体计算(1)计算模型图4.2-3 滑移式危岩稳定性计算示意图(后缘无陡倾裂隙)图4.2-4 滑移式危岩稳定性计算示意图(后缘有陡倾裂隙)(2) 计算公式① 后缘无陡倾裂隙(滑面较缓)时按下式计算(cos sin )sin cos W Q U tg clK W Q θθϕθθ−−+=+ (4.2.1)式中:V ——裂隙水压力(kN/m),221w w h V γ=;w h ——裂隙充水高度(m),取裂隙深度的1/3。
w γ——取10kN/m 。
Q ——地震力(kN/m),按公式e Q W ξ=⨯确定,式中地震水平作用系数e ξ取0.05;K ——危岩稳定性系数;c ——后缘裂隙粘聚力标准值(kPa);当裂隙未贯通时,取贯通段和未贯通段粘聚力标准值按长度加权和加权平均值,未贯通段粘聚力标准值取岩石粘聚力标准值的0.4倍;φ——后缘裂隙内摩擦角标准值(kPa);当裂隙未贯通时,取贯通段和未贯通段内摩擦角标准值按长度加权和加权平均值,未贯通段内摩擦角标准值取岩石内摩擦角标准值的0.95倍;θ——软弱结构面倾角(°),外倾取正,内倾取负; W ——危岩体自重(kN/m 3)。
云台山景区公路边坡危岩体稳定性计算及落石运动轨迹研究作者:郭龙龙耿国建丛颖来源:《西部资源》2017年第04期摘要:介绍云台山景区内公路边坡危岩体的稳定性计算,并根据计算结果应用Rock Fall 软件模拟计算危岩体失稳后落石的运动轨迹,为危岩体的防治提供科学依据。
以编号为TW23的危岩体为例,采用静力计算的方法分析计算其在不同工况下的稳定系数,采用数值模拟软件研究危岩体失稳形成落石后的运动距离、速度、弹跳高度、冲量等运动特征,根据数值模拟结果,选取合适的防治措施,将危岩体失稳后可能造成的损害降到最低,同时为景区内其他部位危岩体的治理提供依据。
关键词:云台山;危岩体;落石;稳定性;运动轨迹引言危岩体是指发育在边坡斜体上的随时可能在各种因素作用下发生失稳破坏的岩体,具有突发性、速度快、冲击力大的特点,是山区常见的一种地质灾害。
云台山景区位于河南省焦作市境内,西北方向与山西省晋城市接壤,是我国首批5A级世界地质公园之一。
近年来景区内公路上发育的危岩体给景区的正常运行带来了安全隐患,通过现场调查,选取编号为JW23危岩体为研究对象,计算其稳定性并研究失稳后所形成的落石运动轨迹,最终为危岩体的防治提供建议。
JW23位于前往叠彩洞景点的盘山公路边坡的顶部,大体呈柱状,长2.1m,高4.6m,宽1.5m,体积14.49m3,质量38.7t,倾角65°,岩性为灰岩,危岩后部被裂隙切割,基本贯穿整个危岩体,坡面角度30°,植被生长较茂盛。
根据重庆市地方标准《地质灾害防治工程设计规范》(DB50/5029-2004)对该危岩体进行分类,属于滑移型危岩体。
1.稳定性评价标准根据陈洪凯等(2011)在《地质灾害理论与控制》一书中有关危岩体稳定性评价标准内容,可依据危岩体稳定性系数将危岩体稳定性分为:不稳定、基本稳定、稳定,对应的具体稳定性评价标准见表1。
2.稳定性计算2.1基本假设根据前人的研究成果,滑移式危岩体稳定性计算依据以下假设条件:危岩体变形发展过程中,尤其是在其破坏失稳运动以前,将危岩体视为刚体;把复杂的空间运动问题简化成平面问题;危岩体与稳定坡体之间无摩擦力。
千家岩崩塌(危岩)体特征及稳定性评价摘要:崩塌是斜坡灾害的一种形式,千家岩崩塌(危岩)体在地震、降雨的影响下产生变形破坏,本文通过野外调查,查明千家岩崩塌的基本特征,分析了千家岩崩塌的变形机制及变形趋势,通过对其稳定性进行分析计算,为崩塌治理提供可靠的数据支持。
关键词:崩塌;基本特征;变形机制;稳定性分析一、千家岩崩塌(危岩)体基本特征千家岩崩塌位于四川省都江堰市都江堰市龙池镇栗坪社区,崩塌体发育于龙溪河左岸斜坡上,位于不稳定斜坡下部基岩出露处。
根据本次地面调查,崩塌体后缘有裂缝,根据崩塌体的相对位置、结构组成及崩落方向,将整个区域分为崩塌区以及堆积区。
图1 崩塌BT1全貌照片(1)崩塌区崩塌堆积区地形坡度约38-54°,危岩体岩层产状136°∠68°,与坡面倾向相反,为一反向坡,岩性主要为石炭系(C)灰岩,泥质灰岩,风化、卸荷裂隙发育。
崩塌区长约40m,宽约50m,厚约2-3m,体积6000m3,为一小型岩质崩塌,主崩方向为332°。
(2)堆积区崩塌堆积体长约26m,宽约40m,厚约2-5m,体积3800m3。
崩塌堆积物沿斜坡分布,北东部基岩崩落的大块石分散于斜坡中下部,部分块石滚落至下部机耕道外部,堆积区坡度在20°-35°之间。
崩塌堆积体顺坡堆积形成倒石锥,堆积体结构松散。
由于堆积体位斜坡平台后缘,未见滚落和滑动现象,目前处于基本稳定状态。
二、崩塌(危岩)体变形特征及形成机制经野外实地调查,该崩塌最早出现于5.12地震。
2010年8月,该崩塌在强降雨条件下发生局部垮塌,崩塌方量约260m3,2013年7月9日,受强降雨影响,发生垮塌,方量约320m3。
本次崩塌发生于2017年8月28日强降雨条件下,崩塌体顶部基岩崩落,沿斜坡堆积在斜坡中下部。
岩层产状与坡面倾向相反,崩塌堆积体目前处于整体基本稳定状态。
崩塌后缘右侧为强风化基岩,风化裂隙发育,裂缝一般宽约2-5cm。
危岩稳定性计算4.2危岩体稳定性计算及评价 421计算模型目前,按照不同的标准,危岩分类系统多样,但是,从工程防治的角度按 照危岩失稳类型进行分类更有价值,可将危岩概化分为滑移式危岩、倾倒式危 岩和坠落式危岩3类。
计算公式参考重庆市地方标准《地质灾害防治工程勘察 规范》 (DB50/143-2003)中(30)〜(50)计算公式。
勘查区内主要为滑移式危岩、倾倒式危岩;当软弱结构面倾向山外,上覆 盖体后缘裂隙与软弱结构面贯通,在动水压力和自重力作用下,缓慢向前滑移 变形,形成滑移式危岩,其模式见图(图4.2-1);当软弱夹层形成岩腔后,上覆 盖体重心发生外移,在动水压力和自重作用下,上覆盖体失去支撑,拉裂破坏 向下倾倒,形成倾倒式危岩(图4.2 — 2)1、滑移式危岩体计算(1)计算模型图4.2 —2倾倒式危岩示意图图4.2 —1滑移式危岩示意图图4.2 - 3滑移式危岩稳定性计算示意图(后缘无陡倾裂隙)危岩后缘图4.2 - 4滑移式危岩稳定性计算示意图(后缘有陡倾裂隙)(2)计算公式①后缘无陡倾裂隙(滑面较缓)时按下式计算(W cos Qsin U )tg clW sin Q cos(4.2.1 )式中:1V ――裂隙水压力(kN/m), V - w h W ;2h w ――裂隙充水高度(m),取裂隙深度的1/3。
w ——取10kN/m=Q 地震力(kN/m),按公式Q e W确定,式中地震水平作用系数e取0.05 ;c ――后缘裂隙粘聚力标准值(kPa);当裂隙未贯通时,取贯通段和未贯通段粘聚力标准值按长度加权和加权平均值,未贯通段粘聚力标准值取岩石粘聚力标准值的0.4倍;――后缘裂隙内摩擦角标准值(kPa);当裂隙未贯通时,取贯通段和未贯通段内摩擦角标准值按长度加权和加权平均值,未贯通段内摩擦角标准值取岩石内摩擦角标准值的0.95倍;——软弱结构面倾角(°,外倾取正,内倾取负;3W ――危岩体自重(kN/m )。
附件2危岩体稳定性分析1、WY-01危岩体稳定性定量评价1计算模型从工程防治的角度按照危岩失稳类型进行分类,可将危岩概化分为滑移式危 岩、倾倒式危岩和坠落式危岩 3类。
WY-01危岩体为滑移式危岩;其软弱结构 面倾向山外,上覆盖体后缘裂隙与软弱结构面贯通, 在动水压力、地震和自重力 作用下,缓慢向前滑移变形,形成滑移式危岩,其模式见图(图3-1)。
危岩后缘2计算公式①后缘有陡倾裂隙、滑面缓倾时,滑移式危岩稳定性按下式计算:K(Wcos Qsin V sin V)tg c l K 二后缘裂隙图3-1滑移式危岩示意图ne地下水位危岩体 扬压力U危岩前缘9Wcos e : 7W轨弱结构面静水压力V=h图3-2滑移式危岩稳定性计算示意图(后缘有陡倾裂隙)Wsin 日+ Q COST+ V cos6式中:V——裂隙水压力(kN/m),,hw ――裂隙充水高度(m),取裂隙深度的1/3。
yw——取10kN/m。
Q——地震力(kN/m),按公式Q = e W确定,式中地震水平作用系数七级烈度地区e取0.075;K——危岩稳定性系数;c――后缘裂隙粘聚力标准值(kPa);当裂隙未贯通时,取贯通段和未贯通段粘聚力标准值按长度加权和加权平均值,未贯通段粘聚力标准值取岩石粘聚力标准值的0.4倍;――后缘裂隙内摩擦角标准值(kPa);当裂隙未贯通时,取贯通段和未贯通段内摩擦角标准值按长度加权和加权平均值,未贯通段内摩擦角标准值取岩石内摩擦角标准值的0.95倍;二一一软弱结构面倾角(°,外倾取正,内倾取负;W——危岩体自重(kN/m3)。
3危岩稳定性计算结果根据危岩结构特征和形态特征,②区危岩破坏模式主要为滑移式。
(1)计算参数:崩塌区出露地层为第四系崩坡积物和石炭系太原组,根据附近工程岩体参数及工程类比得出物理力学参数见表:注:由于坡表白云岩、灰岩多为强〜弱风化强卸荷岩体,其参数均参考类比相似强〜弱风化强卸荷岩体参数。
崩塌山体变形破坏模式及稳定性分析1. 崩塌灾害崩塌是指陡峻的山坡上的岩块、土体在重力作用下,发生突然的急剧的倾落运动,这里所说的崩塌灾害是指由于崩塌的发生已经或者可能对人民的生命财产安全造成危害的地质灾害,否则就是一种普通到地质现象。
崩塌多发生在大于60-70度得斜坡上。
崩塌的物质称为崩塌体。
崩塌体与坡体的分离面称为崩塌面,崩塌面往往就是倾角很大或者裂隙很深的界面,如节理、片理、劈理、层面、破碎带等。
崩塌的分类:1、崩积物崩塌:山坡上已有崩塌岩屑和沙土等物质组成的堆积,由于它们的质地很松散,当有雨水侵湿或受地震震动时,可再一次形成崩塌。
此类崩塌常发生在水易渗透和汇集的地点。
其性质是有其母岩的性质决定的,由花岗岩、变质岩、凝灰岩、泥岩形成的崩积土最易崩塌。
2、表层风化物崩塌:是在基岩表层生产的风化物的崩塌,是崖崩中常见的类型。
这是因为在表层有风化层,它与基岩之间的渗透系数不同。
在水流汇集或者地下水沿风化层下部的基岩面流动时,可引起风化层沿基岩面崩塌。
崩落的土层较浅,是一种小规模的滑动,但发生的次数最多。
大多发生在从缓变陡的斜坡变化点的地方。
3、沉积物崩塌:有些由厚层的冰积物、冲积物或火山碎屑物组成的陡坡,结构松散,按沉积时的状态形成性质不同的沉积土层,透水性和土的强度有差异,在积水的地方引起崩塌。
4、基岩崩塌:一般在坚硬的岩石的斜坡上,由于节理、层理面、断层面等方面的原因也有可能产生崩塌,在这种裂隙是沿容易崩塌的方向伸展时和在夹有粘土、泥岩等成分时容易发生崩塌。
落石属于小规模的岩石崩塌。
2. 崩塌山体变形破坏模式分析危岩体失稳方式,受多方面因素的影响。
通常失稳方式有三种,即坠落式、倾倒式和滑塌式。
根据对工作区内崩塌危岩总体形态、发育规模、基底和底界层特征和空间分布特征分析,区内危岩的失稳破坏方式以坠落、倾倒-滚落和滑移-倾倒-滚落方式居多。
滑移-倾倒式21强风化滑塌式倾倒式坠落式图3.2-1 危岩体失稳方式示意图灰 岩灰 岩灰 岩灰 岩图3-2 危岩失稳方式示意图1 坠落式受裂隙切割和下部岩腔影响,高悬于陡岩上端和岩腔顶部的危岩体,随卸荷裂隙不断加深加宽,一旦裂隙发育切割整个危岩体,使其脱离母体,危岩在重力作用下从母体突然脱离失稳产生崩塌。
单体危岩崩塌是地质灾害中一种常见的灾害类型,具有较大的危害性和不确定性。
在治理设计中,需要采用合适的方法对单体危岩崩塌进行定量计算,并据此设计治理方案。
本文将就单体危岩崩塌的定量计算方法和在治理设计中的应用进行探讨。
一、单体危岩崩塌的定量计算方法1. 单体危岩崩塌的形成机理单体危岩崩塌是指由于地质体内部存在一定的构造缺陷或岩层间的滑动面、节理面等内在缺陷,受外力作用下所引发的大规模岩石和土石体的破坏现象。
单体危岩崩塌的形成机理是多方面的,主要包括地质构造、地下水、外力作用等因素的综合影响。
2. 单体危岩崩塌的定量计算方法(1)地质勘察调查:对危岩体进行详细的地质勘察调查,确定构造缺陷、节理面等内在缺陷的分布情况。
(2)力学参数的测试:对危岩体进行力学参数的测试,包括岩石的强度、变形特性、破裂模式等参数的测定。
(3)数值模拟分析:采用数值模拟方法,对单体危岩崩塌的稳定性进行分析,包括有限元法、离散单元法等方法的应用。
(4)定量评价:根据地质勘察调查和力学参数测试结果,采用定量评价方法对单体危岩崩塌的潜在危险性进行评估。
二、单体危岩崩塌治理设计中的应用1. 危岩崩塌的治理原则(1)综合治理:危岩崩塌的治理应该采取综合治理的原则,包括加固、排除、隔离等多种手段的综合应用。
(2)科学设计:危岩崩塌的治理设计应该科学合理,充分考虑地质环境、工程条件等因素,设计出合适的治理方案。
2. 危岩崩塌的治理措施(1)围护结构:采用围护结构对危岩体进行加固,包括挡土墙、引导坡、挡石墙等结构的设计和施工。
(2)爆破除爆:对危岩体进行爆破除爆处理,消除潜在的危险因素。
(3)排水处理:对危岩体周围的地下水进行排水处理,降低地下水对危岩体稳定性的影响。
(4)监测预警:对治理后的危岩体进行监测预警,及时发现异常情况并采取相应的应对措施。
三、结语单体危岩崩塌的定量计算方法和治理设计在地质灾害治理中具有重要的意义。
通过对单体危岩崩塌的形成机理的研究,采用合适的定量计算方法,可以科学地评估危岩崩塌的潜在危险性,为治理设计提供科学依据。