工程力学 第三章
- 格式:ppt
- 大小:1.62 MB
- 文档页数:29
第三章力系的平衡3—1平衡与平衡条件3—1—1平衡的概念概念:物体静止或做等速直线平移运动,这种状态称为平衡。
3—1—2平衡的充要条件力系的平衡是刚体和刚体系统平衡的充要条件力系平衡:力系的主矢和力系对任意一点的主距都等于零F R =∑=n i Fi 1=0 M o=∑=ni MoFi 1=03—2任意力系的平衡方程3—2—1平衡方程的一般形式∑Fx =0,)(F Mx ∑=0 ∑=0Fy ,∑=0)(F My ∑=0Fz ,∑=0)(F Mz3—2—2空间力系的特殊情况一个力通过距心,力到该点的力矩为零。
空间汇交力系交与点O ,平衡方程:∑=0Fx ,∑=0Fy ,∑=0Fz 空间力偶系的平衡方程:∑=0Mx ,∑=0My ,∑=0Mz 3—3平衡力系的平衡方程3—3—1平衡力系平衡方程的一般形式平面任意力系:所有的作用线都位于同一平面的力系。
两投影一距式:∑=0Fx ,∑=0Fy ,∑=0)(F Mo3—3—2平衡力系平衡方程的其他形式 一投影二距式:∑=0Fx ,∑=0)(F MA ,∑=0)(F MB ;(条件:x 轴不垂直AB 的连线)。
三距式:∑=0)(F MA ,∑=0)(F MB ,∑=0)(F MZ ;(条件:A ,B ,C 三点不在同一条直线上)。
3—4平衡方程的应用3—5静定和超静定问题的概念静定问题:未知力的个数正好等于独立平衡方程的数目,由平衡方程可以解出全部的未知数。
超静定问题:仅由静力学平衡方程无法求得全部未知约束力。
超静定次数:未知量的个数为Nr与独立平衡方程的数目Ne之差。
i=Nr—Ne3—6简单的刚体系统平衡问题刚体系统:由两个或两个以上的刚体所组成的系统。
刚体系统平衡的特点:仅仅考察系统的整体或某个局部,不能确定全部未知力。
3—7结论与讨论3—7—1受力分析的重要性3—7—2求解刚体系统平衡问题需要注意的几个问题✧理解掌握“力系整体平衡,组成系统的每个局部必然平衡。
1第三章力系的平衡§3–1 平面力系的平衡方程§3–2 空间力系的平衡方程§3–3 物体系统的平衡方程§3–4 静定与静不定的基本概念§3-1 平面力系的平衡方程由于=0 为力平衡M O =0 为力偶也平衡所以平面任意力系平衡的充要条件为:力系的主矢F R 和主矩M O 都等于零,即:)()(22=+=∑∑Y X F R 0)(==∑i O O F m M 1、平面任意力系的平衡方程R F=∑X 0)(=∑i A F m 0)(=∑i B F m ②二矩式条件:x 轴不AB连线⊥0)(=∑i A F m 0)(=∑i B F m 0)(=∑i C F m ③三矩式条件:A ,B ,C 不在同一直线上上式有三个独立方程,只能求出三个未知数。
=∑X 0=∑Y 0)(=∑i O F m ①一矩式①平面汇交力系=∑xF 0=∑yF2、平面特殊力系的平衡方程②平面力偶系=∑M ③平面平行力系=∑y F 0)(=∑F M O 0)(=∑F MB0)(=∑F M A AB 不x 轴⊥[例] 已知:P , a , 求:A 、B 两点的支座反力?解:①选AB 梁研究②画受力图(以后注明解除约束,可把支反力直接画在整体结构的原图上))(=∑i A F m 由32 ,032PN a N a P B B =∴=⋅+⋅-0=∑X 0=A X 0=∑Y 3,0PY P N Y A B B =∴=-+解除约束,0==∑A X X 由022;0)(=⋅-+⋅⋅+⋅=∑a P m aa q a R F m B A 0=∑Y 0=--+∴P qa R Y B A )kN (122028.01628.02022=⨯+-⨯-=+--=P a m qa R B )kN (24128.02020=-⨯+=-+=B A R qa P Y [例] 已知:P =20kN, m =16kN·m, q =20kN/m, a =0.8m求:A 、B 的支反力。