WLAN射频和信道
- 格式:pdf
- 大小:270.92 KB
- 文档页数:4
无线wifi的信道复用方式无线WIFI的信道复用方式主要包括以下几种:1.频分复用(FDM):频分复用是将无线信号分成多个子信道,每个子信道可以承载不同的数据流。
在WIFI系统中,802.11a和802.11g采用了OFDM(正交频分复用)技术,将射频信号分成52个子信道,从而实现多个数据流的复用。
2.时分复用(TDM):时分复用是将时间分成若干个时间段,每个时间段可以分配给不同的用户使用。
在WIFI系统中,采用多路复用技术,如CDMA(码分多路复用)和OFDM(正交频分复用),在同一频段上实现多个用户的同时传输。
3.码分复用(CDM):码分复用是利用不同的编码方式将多个数据流分开,从而实现多路复用。
在WIFI系统中,采用CCK(互补编码)和QPSK(正交相移键控)等编码方式来实现多路复用。
4.空间复用:空间复用是通过多个天线或信号传输路径来实现多路复用。
在WIFI系统中,采用MIMO(多输入多输出)技术,通过多个天线同时发送和接收多个数据流,提高系统容量和覆盖范围。
5.动态信道分配(DCA):动态信道分配是一种自适应信道分配策略,根据无线环境的变化,动态地分配信道给各个接入点。
DCA技术可以有效避免信道干扰,提高系统性能。
6.信道捆绑(CB):信道捆绑是将多个相邻的信道绑定在一起,提高整体传输速率。
在802.11n协议中,采用频道捆绑技术,将多个5GHz信道捆绑在一起,实现更高的数据传输速率。
综上所述,无线WIFI的信道复用方式主要包括频分复用、时分复用、码分复用、空间复用、动态信道分配和信道捆绑等技术。
这些复用技术在WIFI系统中相互配合,实现多个用户的同时传输,提高系统容量和覆盖范围,满足日益增长的无线通信需求。
无线射频通信中的信道建模与传播特性一、引言(100字左右)无线射频通信已经成为了现代通信的重要组成部分,从手机通话到无线局域网,都离不开无线射频通信。
在无线射频通信的过程中,信道建模与传播特性的研究对于提高通信系统的可靠性和性能至关重要。
二、信道建模的概念和意义(200字左右)1. 信道建模是指对信号在传输过程中所经历的各种影响进行建模和仿真的过程。
2. 信道建模可以帮助我们了解信道对信号的衰减、多径效应、干扰等影响,从而设计出更加鲁棒和可靠的通信系统。
三、信道建模的步骤(400字左右)1. 信道特性的收集:通过实地测量和实验获取信道的相关参数,如衰减、多径效应、干扰等。
2. 数据处理与分析:对收集到的数据进行处理和分析,提取出信道模型所需要的特征参数。
3. 信道建模方法选择:根据实际需求和数据分析结果,选择合适的信道建模方法,如统计模型、几何模型、时频模型等。
4. 信道建模参数估计:利用已选择的建模方法,使用收集到的数据进行参数的估计和拟合。
5. 信道建模验证与评估:通过与实际场景进行对比和验证,评估所建模型的准确性和适用性。
6. 信道建模应用:将所建模型应用于具体的通信系统设计和性能评估中,为系统的优化和改进提供基础。
四、无线信道传播特性(400字左右)1. 多径效应:信号在传播过程中会经历多条路径,导致多径传播现象。
多径效应会产生多普勒频移、时延扩展和幅度衰减等。
2. 大尺度衰减:信号在传播过程中会因为材料和障碍物的阻挡而遭受衰减。
通常使用路径损失指数(Path Loss Exponent)来描述衰减的程度。
3. 阴影衰落:信号在传播过程中,由于信号与建筑物、自然环境等的阻挡和干扰,会造成信号的强度突变现象。
4. 多普勒展宽:移动通信中,信号源和接收器之间的相对运动会导致多普勒频移,进而引起信号的频谱扩展。
5. 天气衰落:天气现象对信号的传播也会产生影响,如雨滴、雪花等大气中的微粒会散射和吸收信号。
符号间干扰�高数据率意味着高符号率(比特率)�高符号率意味着短符号(在时间域里)�多径效应�B接收相同符号的多种复制,及时转换�对于相同的多径延迟,短符号比长符号将遭遇更多有效的ISI�为了最小化ISI,因此增加多径效应的抵抗能力(在多径环境中更好的系统运作),应该在传输中使用长符号�但是长符号意味着低符号率(比特率),也就是低带宽频率分集多路传输(FDM)�为了增加整体的信道带宽,符号将由多路载波作为独立的字符串传输�多信道整体带宽通过m因数来增加,m是使用载波的数量信道间干扰(ICI)�FDM信号的频谱是多路信道频谱的叠加�因为信道频谱中所有频率的组成,导致了信道间干扰的产生,影响了载波频率的能量为了最小化ICI,载波必须在频率域有较好的间距,也意味着低频谱利用率红色载波从蓝色和棕色载波上均遭遇到ICI正交频分复用�增加频谱利用率,载波的选择便于每个载波频率不会受到任何其他载波的影响�每个信道的频率与系统中使用的其他载波必须有空点(零点交叉,我个人理解为各载波的交点均在X轴上)。
OFDM允许载波的高密度,而不产生ICI原始的约束条件产生的频宽信道位置(工作频率)信道子载波数量子载波之间的频率间隔调制方式-主要参数值以某产品为例,分为20MHz和10MHz 两种频宽信道位置(工作频点)信道频宽信道子载波数量子载波间隙符号持续期(正交情况下)符号率调制方式-主要参数值假定情况如下进行的速率计算:-符号一个接着一个的传输,没有任何符号时间间隙-所有子载波用于数据传输(没有任何的引导波)-符号中的所有比特都是数据比特(没有向前纠错-FEC比特)以上所有的架设都是错的!每个子载波的真实带宽速率是250kBaud*48个子载波=12Mbaud调制方式-主要参数值假定情况如下进行的速率计算:-符号一个接着一个的传输,没有任何符号时间间隙-所有子载波用于数据传输(没有任何的引导波)-符号中的所有比特都是数据比特(没有向前纠错-FEC比特)以上所有的架设都是错的!每个子载波的真实带宽速率是125kBaud*48个子载波=6Mbaud实现限制-真实数据率20MHz频宽下BPSK-每个符号代表1比特(2个符号)-比特率=12MBaud*1比特/符号=12Mbps-数据率=比特率*编码率-编码率1/2�数据率=12*1/2=6Mbps-编码率3/4�数据率=12*3/4=9MbpsQPSK-每个符号代表2比特(4个符号)-比特率=12MBaud*2比特/符号=24Mbps-数据率=比特率*编码率-编码率1/2�数据率=24*1/2=12Mbps -编码率3/4�数据率=24*3/4=18Mbps 16QAM-每个符号代表4比特(16个符号)-比特率=12MBaud*4比特/符号=48Mbps-数据率=比特率*编码率-编码率1/2�数据率=48*1/2=24Mbps -编码率3/4�数据率=48*3/4=35Mbps64QAM-每个符号代表6比特(64个符号)-比特率=12MBaud*6比特/符号=72Mbps-数据率=比特率*编码率-编码率1/2�数据率=72*1/2=36Mbps -编码率3/4�数据率=72*3/4=54Mbps每个信道支持的速率OFDM技术骨头实现限制-真实数据率10MHz频宽下BPSK-每个符号代表1比特(2个符号)-比特率=6MBaud*1比特/符号=6Mbps-数据率=比特率*编码率-编码率1/2�数据率=6*1/2=3Mbps-编码率3/4�数据率=6*3/4= 4.5MbpsQPSK-每个符号代表2比特(4个符号)-比特率=6MBaud*2比特/符号=12Mbps-数据率=比特率*编码率-编码率1/2�数据率=12*1/2=6Mbps-编码率3/4�数据率=12*3/4=9Mbps 16QAM-每个符号代表4比特(16个符号)-比特率=6MBaud*4比特/符号=24Mbps-数据率=比特率*编码率-编码率1/2�数据率=24*1/2=12Mbps -编码率3/4�数据率=24*3/4=18Mbps64QAM-每个符号代表6比特(64个符号)-比特率=6MBaud*6比特/符号=36Mbps-数据率=比特率*编码率-编码率1/2�数据率=36*1/2=18Mbps -编码率3/4�数据率=36*3/4=27Mbps每个信道支持的速率非视距下的OFDM非视距的定义K因数=视距下接收到的能量总和/遮挡下接收到的能量总和,K>5dB为视距,K<5dB为非视距非视距下的OFDM-衰减�到达B的反射信号在时间和相位上进行转换(相对于主信号和其他反射信号)�B的主信号和反射信号混合�一些反射信号的相位与主信号相同,其他的与主信号相位相反�相位相反的信号会与其他信号相减,这就是衰减的产生�根据地势,组件转换的相位总和就是频率的功能�相同地势下,不同频率的衰减是不同的,这就是信道频率响应视距下的OFDM非视距下的OFDM。
此君说5G是第五代Wi-Fi传输技术....,其实不是,5G是指的另外一个可以被免费使用的无线电频段(5150MHz - 5825MHz),俗称5G Wi-Fi频段,这个频段里面一共有201个信道,但是,能够被Wi-Fi协议所用的信道寥寥无几。
原因是这个频段非常特殊,与军用雷达频段重合,因此,很多国家处于国家安全考虑,对5G频段持保留态度(如卡塔尔,叙利亚,也门等)。
另外有一些国家,有着较强的抗干扰技术,所以对此频段比较开放。
如下图所示:但是,是不是可用就意味着真的可用,这里有个小误区。
实际情况是有一个叫做DFS的认证需要过,你才可以在这些通篇标记可用的区域,如美国,欧洲,台湾等地使用这些“很多”的信道。
这个认证的核心原理是要求5G Wi-Fi产品侦测到同频段军用雷达信号时,要自动切信道,否则,罚款,甚至下架,集体召回。
结论一:5G Wi-Fi是指5150MHz-5825MHz的无线电频段,是Wi-Fi可以免费使用的有一个频率范围。
中国,只开启149,153,157,161,165这5个信道,其他的都不可用。
原因不详,我猜有两种原因:1. 国家有关部门无法做到监督到5G产品能够在雷达信号出现时自动避开,不相信产品和商家,所以禁;2. 我国的雷达频段覆盖很全,民用无线电不得与军用冲突。
(原因是猜的,有知道详细原因的,非常欢迎告诉我,感谢!!!)结论二:5G频段并非随便使用,需要遵守每个国家定义的无线电法规,因为此频段与雷达频段冲突。
那么,只有5个信道,够不够?答案是不好说,如果用的人不多,肯定够,如果用的人多,那就拥堵。
不过,值得欣慰的是,5G频段地广人稀,信道与信道之间的间距很大,抗干扰能力强过2.4Ghz。
于此同时,微波炉,无绳电话,蓝牙等无线设备工作的频段是2.4G频段,也不会对5G频段造成干扰。
所以,短时间内看,5G频段算一方净土。
结论三:5G频段相对2.4G频段更干净,短时间内不容易被干扰。
WLAN使用的2.4GHz频段和5GHz频段属于ISM频段。
ISM,即工业(Industrial)、科学(Scientific)与医疗(Medical)。
ISM频段主要开放给工业、科学、医疗三个机构使用,只要设备的功率符合限制,不需要申请许可证(Free License)即可使用这些频段,大大方便
了解了什么是射频后,射频是怎么作为载体传递信息的呢?我们高中物理都有学过射频传输信息的基本调制方式:调频、调相和调幅,发送端将信息调制到载波上,通过改变载波的频率、相位和振幅传递信息,接收端收到信息后,再解调还原信息。
通过这样一个调制解调的过程,就实现了信息的传递。
我们日常生活中遇到的调频广播,调幅广播等就是这样传递信息的。
WLAN射频传输信息的基础也是调频、
这样看来使用射频通信和有线通信是不是没有多大区别?我们更为熟悉的有线通信其实也是将信号调制成电脉冲或光脉冲,然后放到电缆或光缆上传输。
只不过射频需要解决更多的问题,如射频的反射、衍射等问题。
无论是使用射频通信还是使用有线媒介的通信,其过程都
我们可以把WLAN信道理解为电视机的频道,如果WLAN使用整个2.4GHz频段作为一个信道,当同一覆盖范围内有两个及两个以上
在部署WLAN时,为避免相邻AP产生同频干扰,多采用蜂窝式信道布局。
蜂窝式布局中相邻AP间使用不交叠的独立信道,可以有效避免同频干扰。
华为AP产品2.4G射频默认使用1信道,如果用户在部署WLAN时忘了配置信道,可能会造成某些AP覆盖重合的区域产生同频干扰,使用户无法上线。
但是,为众多AP配置信道也是件很累人的事情,华为产品支持射频信道的自动模式。
AP上线后,AC会根据AP周围的无线环境,自动为AP射频设置信道,避免了用户为多个AP配置信道的繁杂工作。
华为产品还支持射频调优功能,可以根据射频周围的无线环境自动调整信道和发射功率,保持整个无线网络处于一个最佳的状态。
在WLAN初次部署完成后,建议执行一次射频调优。
比如周围的卖场也有WLAN,很可能会和我们自己部署的WLAN有部分区域的射频冲突,射频调优可以让WLAN自己根据无线环境调整信道部署和发射功率,减少射频的冲突。
而且无线环境可能是变化的,在低峰时段执行定期的射频调优也是有必要的。
2.4GHz频段射频在各个国家已经放开使用,越来越多的无线设备都工作在2.4GHz频段(如蓝牙设备),使得2.4GHz频段日益拥挤,信道干扰严重,有时会影响WLAN用户的正常业务。
华为产品在V2R3C00版本开始支持频谱分析功能,频谱分析可以分析出AP周围存在的干扰设备,如婴儿监视器、微波炉、蓝牙设备等。
WLAN 可以使用的另一个频段——5GHz频段,有更高的频率和频宽,可以提供更高的速率和更小的信道干扰。
WLAN标准协议
将5GHz频段分为24个20**z宽的信道,且每个信道都为独立信道。
这为WLAN提供了丰富的信道资源,更多的独立信道也使得信道绑定更有价值,信道绑定是将两个信道绑定成一个信道使用,能提供更大的带宽。
如两个20**z的独立信道绑定在一起可以获得20**z两倍的吞吐量,这好比将两条道路合并成一条使用,自然就提高了道路的通过能力。
802.11n支持通过将相邻的两个20**z信道绑定成40**z,使传输速率成倍提高。
802.11n也同时定义了2.4GHz频段的信道绑定,但由
于2.4GHz频段较拥挤的信道资源,降低了2.4GHz频段信道绑定的实用性,一般不推荐使用2.4GHz频段的信道绑定。
下图为5GHz频段的信道划分情况。
图中,黑色的半圆表示独立信道,红色的半圆表示标准协议推荐的信道绑定,UNII-2e为5GHz新增频段,该频段中国尚未放开使用。
目前中国已放开使用的信道有36, 40, 44, 48, 52, 56, 60, 64, 149, 153, 157, 161, 165。
各个国家开放的信道不一样,可以参照国家信道顺从。