1.2 无线射频基础知识介绍
- 格式:pdf
- 大小:950.37 KB
- 文档页数:11
射频和无线电的知识点总结一、基本概念1. 射频信号:射频信号是指频率在几十千赫兹到几千兆赫兹之间的电磁波信号,是一种无线通信中常用的信号类型。
射频信号可以通过调制解调技术传输数据和声音等信息。
2. 无线电信号:无线电信号是指通过无线电波传播的电信号,在通信、广播、遥控等方面有着广泛的应用。
无线电信号可以分为射频信号和微波信号两种类型。
3. 射频技术:射频技术是指在射频范围内进行信号处理和传输的技术,包括调制解调、频谱分析、功率放大等方面。
4. 无线电技术:无线电技术涉及到无线电信号的发射、接收、解调、解调等方面,是现代通信领域中的重要组成部分。
二、常用技术1. 调制解调技术:调制技术是指将数字信号或模拟信号转换成适合无线传输的射频信号的过程,而解调技术则是指将这些射频信号还原成原始信号的过程。
2. 天线设计:天线是用来发送和接收射频信号的设备,天线的设计可以影响信号的发送和接收效果,包括指向性天线、全向天线、定向天线等多种类型。
3. 频谱分析:频谱分析是对射频信号进行频率分析和功率分析的过程,用来确定信号的频率、占用带宽和信号强度等参数。
4. 功率放大:功率放大是指通过将信号经过放大器放大来增加信号的功率,常用于提高信号的传输距离和覆盖范围。
5. 射频链路设计:射频链路设计涉及到传输介质、信号传输距离、覆盖范围、抗干扰能力等多个方面,是无线通信系统设计中重要的一环。
6. 无线电频谱管理:无线电频谱管理是指对无线电频谱的合理规划、分配和监管,以确保不同无线设备之间的信号不干扰以及频谱资源的有效利用。
三、应用1. 无线通信系统:无线通信系统是利用无线电波进行通信的系统,包括蜂窝网络、无线局域网、蓝牙、Zigbee等多种技术。
2. 无线电广播:无线电广播是利用无线电波进行广播传输的技术,包括调频广播、中波广播、短波广播等多种广播方式。
3. 无线电遥控:无线电遥控是通过无线电信号控制设备或机器的技术,包括无人机、遥控车、遥控船等多种应用场景。
射频知识点总结一、射频基本概念1. 电磁波电磁波是一种由电场和磁场相互作用而产生的波动现象,是一种在真空中传播的波动现象。
电磁波具有频率和波长两个基本特征,频率越高,波长越短。
常见的射频波段包括:HF(3-30MHz)、VHF(30-300MHz)、UHF(300-3000MHz)、SHF(3-30GHz)等。
2. 天线天线是射频系统中的重要组成部分,它用来接收和发射电磁波。
天线的工作原理是通过和周围的电磁场相互作用,将电磁波转换成电流或者将电流转换成电磁波。
天线的性能对系统的传输和接收性能有很大的影响,因此天线设计是射频系统中的重要环节。
3. 调制解调调制解调是射频系统中的重要技术,它利用调制信号将基带信号传输到射频信号中,然后再通过解调将射频信号转换成原来的基带信号。
调制技术有幅度调制、频率调制、相位调制等多种方式,不同的调制方式适用于不同的通信场景。
二、射频组件1. 射频放大器射频放大器是射频系统中的重要组件,它用来对射频信号进行放大。
射频放大器的主要参数包括增益、带宽、噪声系数、输出功率等,不同的应用场景需要不同参数的射频放大器。
2. 滤波器滤波器是用来对射频信号进行频率选择和抑制干扰的器件,它可以选择性地通过某个频率范围的信号,同时将其他频率范围的信号进行抑制。
滤波器的种类很多,包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。
3. 射频开关射频开关是用来控制射频信号的开关和切换的器件,它可以实现对射频信号的选择、分配和切换。
射频开关的性能包括插入损耗、隔离度、速度等多个方面。
4. 射频混频器射频混频器是用来将两个不同频率的射频信号混合到一起的器件,它可以实现频率的转换和信号的解调等功能。
射频混频器的工作原理是利用非线性元件将两个输入信号进行非线性混合,然后通过滤波将混频后的信号提取出来。
三、射频系统设计原则1. 抗干扰设计射频系统在使用过程中会受到各种干扰的影响,包括天线干扰、多路径干扰、热噪声干扰等,因此在射频系统设计中需要采取一系列抗干扰措施,以保证系统的可靠性和稳定性。
通信网络中的无线传输与射频技术随着科技的不断发展,无线通信技术已经成为现代生活中不可或缺的一部分。
而无线传输和射频技术作为无线通信的核心组成部分,在保持距离和移动的情况下,能够实现高效的数据传输。
本文将详细介绍无线传输和射频技术的定义、原理、应用以及未来发展方向。
一、无线传输和射频技术的定义和原理1.1 无线传输的定义无线传输是指通过无线信道将信息从一个地点传输到另一个地点的技术。
它主要依赖于电磁波的传播,具备了灵活性、方便性和可移动性的特点。
1.2 射频技术的定义射频技术是指在射频频率范围内工作的通信技术。
射频频率范围一般指300Hz到300GHz的范围,包括无线电、微波和毫米波等。
1.3 无线传输和射频技术的原理无线传输和射频技术主要基于以下原理:a) 电磁波传播:通过无线信道进行信息传输,主要依赖于电磁波的传播。
电磁波的传输是通过无线电频率的震荡来实现的。
b) 调制和解调:无线传输中的信号往往需要通过调制和解调来进行传输和接收。
调制是将原始信号转换为载波的一种形式,解调则是从载波中恢复出原始信号。
二、无线传输和射频技术的应用2.1 无线传输的应用a) 无线通信:可以通过无线传输实现语音、短信和数据的传输,如手机通话、短信和上网等。
b) 无线电视:无线传输可以用于传输电视信号,实现无线电视的接收和播放。
c) 无线传感器网络:无线传输可以用于搭建无线传感器网络,实现环境监测、物体追踪等功能。
d) 无线充电:无线传输技术还可以用于实现无线充电,例如无线充电器和无线充电座等。
2.2 射频技术的应用a) 无线局域网(WLAN):无线局域网是一种基于射频技术的无线网络,可以实现移动设备的无线联网。
b) 射频识别(RFID):射频识别技术可以用于商品管理、物流追踪和身份验证等领域。
c) 智能家居:射频技术可以用于智能家居系统,实现家电的远程控制和智能化管理。
d) 智能交通:射频技术可以用于电子收费、车辆追踪和无线传感器的信号传输等。
射频基础知识培训一、射频概述射频(Radio Frequency,简称RF)是指无线电频率范围内的电磁波信号。
射频技术在现代通信、无线电、雷达等领域起着重要作用。
本次培训将介绍射频的基础知识,包括射频信号的特性、射频电路设计及射频测量。
二、射频信号的特性1. 频率范围:射频信号的频率范围通常指300kHz至300GHz之间的频段。
这一频率范围被广泛应用于无线通信和雷达系统中。
2. 带宽:射频信号的带宽是指在频率上的范围,用于传输信息。
带宽越宽,信号传输的速率越高。
3. 衰减:射频信号在传输过程中会发生衰减,衰减的程度与信号传播距离、传输介质等因素有关。
为了保持信号的质量,需要采取衰减补偿措施。
三、射频电路设计1. 射频放大器设计:射频放大器用于增强射频信号的强度。
设计射频放大器需要考虑电源电压、功率放大系数、频率响应等因素。
2. 射频滤波器设计:射频滤波器用于去除非期望频率范围内的干扰信号。
设计射频滤波器需要考虑信号带宽、截止频率、滤波器类型等因素。
3. 射频混频器设计:射频混频器用于将不同频率的信号进行混合,产生新的频率信号。
设计射频混频器需要考虑输入信号频率、混频器类型、频率转换效率等因素。
四、射频测量1. 射频功率测量:射频功率测量用于确定射频信号的功率水平。
常用的测量仪器包括射频功率计和射频功率传感器。
2. 射频频谱分析:射频频谱分析用于分析射频信号在频率上的变化情况。
常用的仪器包括射频频谱分析仪和扫频仪。
3. 射频网络分析:射频网络分析用于测量射频电路的传输特性(如反射系数、传输系数等)。
常用的仪器包括网络分析仪和隔离器。
五、总结通过本次射频基础知识培训,我们了解了射频信号的特性、射频电路设计和射频测量等内容。
掌握这些基础知识对于从事射频相关工作或研究具有重要意义。
我们将进一步深入学习射频技术并应用于实际项目中,提升我们的专业能力和水平。
(以上文字仅供参考,具体内容可根据实际情况进行添加或修改)。
射频基础知识知识讲解第⼀部分射频基础知识⽬录第⼀章与移动通信相关的射频知识简介 (1)1.1 何谓射频 (1)1.1.1长线和分布参数的概念 (1)1.1.2射频传输线终端短路 (3)1.1.3射频传输线终端开路 (4)1.1.4射频传输线终端完全匹配 (4)1.1.5射频传输线终端不完全匹配 (5)1.1.6电压驻波分布 (5)1.1.7射频各种馈线 (6)1.1.8从低频的集中参数的谐振回路向射频圆柱形谐振腔过渡 (9) 1.2 ⽆线电频段和波段命名 (9)1.3 移动通信系统使⽤频段 (9)1.4 第⼀代移动通信系统及其主要特点 (12)1.5 第⼆代移动通信系统及其主要特点 (12)1.6 第三代移动通信系统及其主要特点 (12)1.7 何谓“双⼯”⽅式?何谓“多址”⽅式 (12)1.8 发信功率及其单位换算 (13)1.9 接收机的热噪声功率电平 (13)1.10 接收机底噪及接收灵敏度 (13)1.11 电场强度、电压及功率电平的换算 (14)1.12 G⽹的全速率和半速率信道 (14)1.13 G⽹设计中选⽤哪个信道的发射功率作为参考功率 (15) 1.14 G⽹的传输时延,时间提前量和最⼤⼩区半径的限制 (15) 1.15 GPRS的基本概念 (15)1.16 EDGE的基本概念 (16)第⼆章天线 (16)2.1天线概述 (16)2.1.1天线 (16)2.1.2天线的起源和发展 (17)2.1.3天线在移动通信中的应⽤ (17)2.1.4⽆线电波 (17)2.1.5 ⽆线电波的频率与波长 (17)2.1.6偶极⼦ (18)2.1.7频率范围 (19)2.1.8天线如何控制⽆线辐射能量⾛向 (19)2.2天线的基本特性 (21)2.2.1增益 (21)2.2.2波瓣宽度 (22)2.2.3下倾⾓ (23)2.2.4前后⽐ (24)2.2.5阻抗 (24)2.2.6回波损耗 (25)2.2.7隔离度 (27)2.2.8极化 (29)2.2.9交调 (31)2.2.10天线参数在⽆线组⽹中的作⽤ (31)2.2.11通信⽅程式 (32)2.3.⽹络优化中天线 (33)2.3.1⽹络优化中天线的作⽤ (33)2.3.2天线分集技术 (34)2.3.3遥控电调电下倾天线 (1)第三章电波传播 (3)3.1 陆地移动通信中⽆线电波传播的主要特点 (3)3.2 快衰落遵循什么分布规律,基本特征和克服⽅法 (4)3.3 慢衰落遵循什么分布规律,基本特征及对⼯程设计参数的影响 (4) 3.4 什么是⾃由空间的传播模式 (5)3.5 2G系统的宏⼩区传播模式 (5)3.6 3G系统的宏⼩区传播模式 (6)3.7 微⼩区传播模式 (6)3.8 室内传播模式 (9)3.9 接收灵敏度、最低功率电平和⽆线覆盖区位置百分⽐的关系 (10) 3.10 全链路平衡和最⼤允许路径损耗 (11)第四章电磁⼲扰 (12)4.1 电磁兼容(EMC)与电磁⼲扰(EMI) (12)4.2 同频⼲扰和同频⼲扰保护⽐ (13)4.3 邻道⼲扰和邻道选择性 (14)4.4 发信机的(三阶)互调⼲扰辐射 (15)4.5 收信机的互调⼲扰响应 (15)4.6 收信机的杂散响应和强⼲扰阻塞 (15)4.7 dBc与dBm (16)4.8 宽带噪声电平及归⼀化噪声功率电平 (16)4.9 关于噪声增量和系统容量 (17)4.10 直放站对基站的噪声增量 (17)4.11 IS-95 CDMA 对 GSM 基站的⼲扰 (19)4.12 G⽹与PHS⽹的相互⼲扰 (20)4.13 3G系统电磁⼲扰 (22)4.14 PHS系统与3G系统之间的互⼲扰 (24)4.15 GSM系统与3G系统之间的互⼲扰 (25)第五章室内覆盖交流问题应答 (12)5.1、⽬前GSM室内覆盖⽆线直放站作信源站点数量达60%,WCDMA的建设中,此类站点太多将导致⽹络上⾏噪声被直放站抬⾼,请问怎么考虑?5.2、⾼层窗边的室内覆盖信号场强难以做到主导,⽽室内窗边将是数据业务需求的⾼发区域,室内窗边的⾼速速率如何保证?5.3、有⼚家建议室内覆盖不⽤⼲放,全⽤⽆源覆盖分布,我们如何考虑?5.4、室内覆盖中,HSDPA引⼊后,有何新要求?5.5、系统引⼊多载频对室内覆盖的影响?5.6、上、下⾏噪声受限如何考虑?5.7、室内覆盖时延分集增益。
无线射频识别技术(R F I D)基础知识(共9页)-本页仅作为预览文档封面,使用时请删除本页-无线射频识别技术(RFID)基础知识无线射频识别技术的基本原理是利用空间电磁感应(Inductive Coupling)或者电磁传播(Propagation Coupling)来进行通信,以达到自动识别被标识物体的目的。
基本工作方法是将无线射频识别标签(Tags)安装在被识别物体上(粘贴、插放、挂佩、植入等),当被标识物体进入无线射频识别系统阅读器(Readers)的阅读范围时,标签和阅读器之间进行非接触式信息通讯,标签向阅读器发送自身信息如ID号等,阅读器接收这些信息并进行解码,传输给后台处理计算机,完成整个信息处理过程。
无线射频识别技术是一本多门学科多种技术综合利用的应用技术。
所涉及的关键技术大致包括:芯片技术、天线技术、无线通信技术、数据变换与编码技术、电磁场与微波技术等。
一、基本概念无线射频识别技术(Radio Frequency Identification,RFID)是一种非接触的自动识别技术,其基本原理是利用射频信号的空间耦合(电磁感应或者电磁传播)传输特性,实现对被识别物体的自动识别。
图1所示为RFID系统配置示意图。
图1 RFID系统配置示意图电磁感应,即所谓的变压器模型,通过空间高频交变磁场实现耦合,依据的是电磁感应定律,如图2所示。
电磁感应方式一般适合于中、低频工作的近距离射频识别系统。
典型的工作频率有:125KHz、225KHz和。
识别作用距离小于1m,典型作用距离为10~20cm。
图2 电感耦合电磁传播或者电磁反向散射(Back Scatter)耦合,即所谓的雷达原理模型,发射出去的电磁波,碰到目标后反射,同时携带回目标信息,依据的是电磁波的空间传播规律,如图3所示。
电磁反向散射耦合方式一般适合于超高频、微波工作的远距离射频识别系统。
典型的工作频率有:433MHz、915MHz、、。
射频基本知识目录1. 射频概述 (2)1.1 射频定义与特点 (3)1.2 射频应用领域 (4)1.3 射频技术发展历史 (5)2. 射频信号及其特性 (6)2.1 电磁波与射频波 (7)2.2 频率范围与波长 (8)2.3 电磁波的时域和频域特性 (9)2.4 功率测量与单位 (10)2.5 幅度调制与相位调制 (12)3. 射频电路 (13)3.1 阻抗与反射系数 (14)3.2 匹配电路 (15)3.3 功率放大器 (16)3.4 滤波器与调谐电路 (17)3.5 衰减器与分频器 (19)4. 射频设备与系统 (20)4.1 信号源与检测器 (22)4.2 无线传输系统 (23)4.3 通信系统 (24)4.4 雷达系统 (25)4.5 测试与测量设备 (26)5. 射频技术应用案例 (28)5.1 5G 通信技术 (29)5.2 物联网应用 (30)6. 射频技术未来发展趋势 (31)1. 射频概述射频(Radio Frequency,简称RF)通信技术是现代通信的重要组成部分,它涉及无线电波的传输。
射频技术是通过发射机和接收机之间的无线电波来传输信号的,这些信号用于各种通信应用,如无线广播、移动通信系统、卫星通信和无线网络等。
在射频领域中,电磁波被用来承载信息,从简单的调幅(AM)广播到复杂的数字广播以及移动电话网络的高速数据传输,射频技术无处不在。
射频信号的特征可以从它们的波长和频率来描述,通常情况下,射频波的波长介于几厘米到几米之间,对应的频率范围从大约30 kHz 到300 GHz。
这个宽度频段使得射频技术可以涵盖从低频的无线电广播到高频的微波和无线宽带通信等多个应用领域。
射频系统通常包括调制和解调两个关键步骤,调制是将低频基带信号转换成高频的射频信号,使得信号可以通过无线电波传播。
这个过程涉及将基带信号的特性(如幅度和频率)嵌入到一个更高的射频载波上。
解调则在接收端进行,是将射频信号转换回可识别的低频信号,以便于进一步处理。
无线射频基础知识介绍无线射频(Radio Frequency, RF)技术是一种利用无线电频率范围内的电磁波进行数据传输和通信的技术。
它广泛应用于无线通信、广播、雷达等领域,并且在物联网和5G等新兴领域中扮演着重要角色。
一、无线射频的基本概念无线射频是指频率范围在3kHz到300GHz之间的电磁波。
它是通过振荡器产生的电磁波,并通过天线进行辐射和接收。
射频信号的特点是可以传输较长距离,穿透能力强,适用于无线通信和广播。
二、无线射频的特性1.频率范围广泛:从低频到高频,无线射频可以覆盖从几kHz到几GHz的频率范围。
2.能量传播:无线射频信号以电磁波的形式传播,可以穿透大部分非金属材料,如墙壁、树木等。
3.多径传播:由于无线信号会反射、绕射和衍射,从而形成多个路径的传播,可能导致信号干扰和衰减。
4.抗干扰能力:无线射频系统具有一定的抗干扰能力,可以通过调制技术、编码技术和频谱分配等方式来减小干扰。
三、无线射频的应用领域1.无线通信:无线射频技术是现代移动通信系统的基础,包括手机、无线局域网(Wi-Fi)、蓝牙和卫星通信等。
2.广播:广播电台利用无线射频技术传输音频信号,实现广播节目的传播。
3.雷达:雷达系统利用射频信号来探测目标的位置、速度和距离,广泛应用于军事和民用领域。
5.定位和导航:利用无线射频信号和三角测量原理,可以实现定位和导航功能,如GPS系统。
6.医疗:医疗设备中的无线射频技术可以用于监测患者的生命体征、无线手术和无线成像等。
7.物联网:物联网系统中的无线射频技术实现物体之间的无线连接和通信,促进设备之间的互联互通。
四、无线射频的未来发展随着科技的不断进步,无线射频技术也在不断发展。
未来,无线射频技术可能会有以下趋势:1.5G技术的推广:5G技术将提供更高的速度和更低的延迟能力,将推动无线通信技术的进一步发展和应用。
2.物联网应用的普及:物联网将实现设备之间的互联互通,无线射频技术在物联网中将发挥更加重要的作用。
模拟电子技术基础知识射频电路设计与优化射频(Radio Frequency,简称RF)电路设计是在模拟电子技术中具有重要地位和应用前景的领域。
正确、高效地进行射频电路设计与优化能够提高射频系统的性能,实现更好的信号传输和接收效果。
本文将介绍射频电路设计与优化的基础知识,并探讨相关的设计方法和技巧。
1. 射频电路设计基础知识1.1 无线通信系统简介:随着无线通信技术的迅猛发展,人们对无线通信系统的需求也逐渐增加。
无线通信系统主要包括发送端和接收端两个部分,其中射频电路是发送端和接收端之间的关键连接。
射频电路的设计与优化直接关系到整个无线通信系统的性能和稳定性。
1.2 射频电路的特点:射频电路的工作频率范围通常在几十千赫兹到几百兆赫兹之间,其特点主要包括高频、宽带、低噪声和高增益等。
因此,在设计射频电路时需要考虑电磁干扰、串扰以及信号的衰减等问题。
2. 射频电路设计方法2.1 电路规划和布局设计:在进行射频电路设计之前,需要进行电路规划和布局设计。
首先,需要根据系统要求确定电路的拓扑结构、工作频率和带宽。
然后,合理布局电路的各个元器件,避免电路中的零部件相互干扰。
2.2 射频电路元器件的选择:在射频电路设计中,选择合适的元器件是至关重要的。
常用的射频电路元器件包括功率放大器、低噪声放大器、混频器和滤波器等。
选用合适的元器件能够提高电路的性能和稳定性。
2.3 射频电路仿真和优化:在射频电路设计过程中,仿真和优化是必不可少的步骤。
利用专业的软件工具进行电路仿真,可以通过参数调整和优化,得到更好的电路性能。
常用的仿真软件有ADS、CST等。
3. 射频电路设计的常见问题和解决方法3.1 电磁干扰与排布问题:射频电路中常常存在电磁干扰和排布问题,这些问题直接影响着电路的性能和稳定性。
为解决这些问题,可以采取合理的电路布局、增加地线等措施,降低电路中的干扰。
3.2 信号衰减与放大问题:射频电路中,信号衰减和放大是常见的问题。
●极低频 ELF (3Hz–30Hz) 极长波 100,000千米– 10,000千米潜艇通讯或直接转换成声音。
●超低频 SLF (30Hz–300Hz) 超长波 10,000千米– 1,000千米直接转换成声音或交流输电系
统(50-60赫兹)。
●特低频 ULF (300Hz–3KHz) 特长波 1,000千米– 100千米矿场通讯或直接转换成声音。
●甚低频 VLF (3KHz–30KHz) 甚长波 100千米– 10千米直接转换成声音、超声、地球物理
学研究。
●低频 LF (30KHz–300KHz) 长波 10千米– 1千米国际广播。
●中频 MF (300KHz–3MHz) 中波 1千米– 100米调幅(AM)广播、海事及航空通讯。
●高频 HF (3MHz–30MHz) 短波 100米– 10米短波、民用电台。
●甚高频 VHF (30MHz–300MHz) 米波 10米– 1米调频(FM)广播、电视广播、航空通讯。
●特高频 UHF (300MHz–3GHz) 分米波 1米– 100毫米电视广播、无线电话通讯、无线网络、
微波炉。
●超高频 SHF (3GHz–30GHz) 厘米波 100毫米– 10毫米无线网络、雷达、人造卫星接收。
●极高频 EHF (30GHz–300GHz) 毫米波 10毫米– 1毫米射电天文学、遥感、人体扫描安检
仪。
●300GHz以上 - 红外线、可见光、紫外线、射线等。
●构成数据的最小单位是比特,发射机采用某种方式发送0和1,以便在两地之间传输数
据。
交流或直流信号本身不具备传输数据的能力,不过如果信号发生哪怕是微小的波动或变化,发送端和接收端就可以将信号解析出来,从而成功地收发数据。
转换后的信号可以区分0和1,一般将其称为载波信号。
调整信号以产生载波信号的过程称为调制。
●载波是指被调制以传输信号的波形,一般为正弦波。
一般要求正弦载波的频率远远高于
调制信号的带宽,否则会发生混叠,使传输信号失真。
●可以这样理解,我们一般需要发送的数据的频率是低频的,如果按照本身的数据的频率
来传输,不利于接收和同步。
使用载波传输,我们可以将数据的信号加载到载波的信号上,接收方按照载波的频率来接收数据信号,有意义的信号波的波幅与无意义的信号的波幅是不同的,将这些信号提取出来就是我们需要的数据信号(调制与解调,后面内容有涉及)。
●可以对电波的3种分量进行调制以产生载波信号,这3种分量是振幅、频率和相位。
●射频通信的基本过程如下:射频发射机产生无线电信号,并被另一端的接收机拾取。
射
频波与海洋或湖波中的波浪类似。
波主要由波长和振幅两部分组成。
● 2.4GHz无线电波的波长是12.5厘米。
●5GHz无线电波的波长是6厘米。
● 5.8GHz无线电波波长是5.2厘米。
●振幅是波的高度、力度或能量。
当波浪从大海袭向岸边时,大波浪的力量要比小波浪的
力量强的多。
发射机的工作原理与其类似,不过发射机发射的是无线电波。
电波越小,越不易被接收天线识别。
电波越大,所产生的电信号越大,越容易被接收天线接收。
接收机根据振幅来区分波的大小。
●振幅单位用米(m)或厘米(cm)表示。
●振幅描述了物体振动幅度的大小和振动的强弱。
●在无线网络里,无线电波的振幅反映无线信号的强弱。
相位是一个相对术语,它描述了两个同频波之间的关系。
为测定相位,将波长划分为360份,每一份称为1°。
我们将度作为波传播的起始时间,如果一个波在0°点时开始
传播,另一个波在90°点时开始传播,就称二者90°异相。
两个频率相同的无线信号在到达接收端的时候彼此相位相同,则两个信号会叠加,信号
增强。
两个频率相同的无线信号在到达接收端的时候彼此相位相反,即相差180°,则两个信
号会衰减,信号减弱。
频率描述了波的行为。
波从产生它的原点处向外传播。
波传播速度的快慢称为频率,更
具体地说,频率是1秒钟内产生的波的数量。
●根据所控制的信号参量的不同,调制可分为:
☐调幅:调幅是使高频载波信号的振幅随调制信号的瞬时变化而变化。
也就是说,通过用调制信号来改变高频信号的幅度大小,使得调制信号的信息包含入高频
信号之中,通过天线把高频信号发射出去,然后就把调制信号也传播出去了。
这时候在接收端可以把调制信号解调出来,也就是把高频信号的幅度解读出来
就可以得到调制信号了。
☐调频:调频是使载波频率按照调制信号改变的调制方式。
已调波频率变化的大小由调制信号的大小决定,变化的周期由调制信号的频率决定。
已调波的振幅
保持不变。
调频波的波形,就像是个被压缩得不均匀的弹簧。
☐调相:载波的相位对其参考相位的偏离值随调制信号的瞬时值成比例变化的调制方式,称为相位调制,或称调相。
即载波的初始相位随着基带数字信号而变
化,例如数字信号1对应相位180°,数字信号0对应相位0°。
课程名称P-10
华为技术有限公司版权所有未经许可不得扩散。