模型参考自适应控制 PPT
- 格式:ppt
- 大小:901.50 KB
- 文档页数:80
第4章模型参考自适应控制系统4.1 概述⏹MRAC系统具有多种结构形式,互相之间可以互相转换。
最典型的一类MRAC系统结构框图如图4.1.1所示,由参考模型、被控对象、参数可调控制器和自适应机构组成。
⏹其中参数可调控制器由一个前馈调节器和一个反馈调节器组成,它与被控对象形成一个常规的反馈控制系统,这个系统相对于MRAC系统来说是一个“内环”。
⏹另外,MRAC系统还有一个由自适应机构组成的自适应反馈回路,称为“外环”,用来调节内环参数可调控制器中的相关参数。
⏹MRAC系统的参考模型体现了人们对闭环控制系统的性能要求。
也就是说,这个参考模型反映了人们期望闭环控制系统如何响应指令信号。
图4.1.1 典型MRAC系统的结构框图到目前为止,已有许多种类型的MRAC系统,并且采用不同分类标准就有不同的分类方法。
⏹如按结构特征来分类,可将MRAC系统分为并联MRAC系统、串联MRAC系统以及串并联MRAC系统。
一般,这三种结构是从不同的观点来讨论的,但是用统一的方法对它们进行分析和综合也是可能的。
⏹根据自适应机构对系统的影响方式可以分为参数自适应方式和信号综合自适应控制方式。
前者表示自适应机构根据参考模型与被控对象之间的误差直接修改控制器的参数,如图4.1.1中从自适应机构出发的实线所代表的方式;后者是由自适应机构产生一个辅助输入信号来修改加在被控对象的信号,如图4.1.1中从自适应机构出发的虚线所代表的方式。
根据MRAC系统的设计方法可以分为如下三类:基于局部参数最优化的方法、基于Lyapunov稳定性理论的方法以及基于Popov超稳定性理论的方法。
⏹基于局部参数最优化的方法是最早采用的MRAC系统设计方法,通常称为MIT律。
⏹基于Lyapunov稳定性理论的方法是Butcharty及Parks于六十年代中期相继提出的,这种方法与局部参数最优化方法相比,不仅可保证系统的稳定性,还具有自适应速度快的优点。
⏹由法国学者Landau于1969年提出的基于Popov超稳定性理论的方法,主要是以Popov超稳定性理论为基础,由于不需要选择Lyapunov函数,并且能给出一族自适应规律,从而该方法有利于设计者结合实际系统灵活地选择合适的自适应规律。
第九章模型参考自适应控制(Model Reference AdaptiveControl )简称MRAC介绍另一类比较成功的自适应控制系统,已有较完整的设计理论和丰富的应用成果(驾驶仪、航天、电传动、核反应堆等等) 。
§ 9—1 MRAC的基本概念系统包含一个参考模型,模型动态表征了对系统动态性能的理想要求,MRAC力求使被控系统的动态响应与模型的响应相一致。
与STR不同之处是MRAC没有明显的辨识部分,而是通过与参考模型的比较,察觉被控对象特性的变化,具有跟踪迅速的突出优点。
设参考模型的方程为*X m~ A m X m Br式(9-1-1)y m = CX m 式(9-1-2)被控系统的方程为■X s A s B s r式(9-1-3)y s - CX s 式(9-1-4) 两者动态响应的比较结果称为广义误差,定义输出广义误差为e = y m -y s 式(9-1-5);状态广义误差为:=X m — s 式(9-1-6)。
自适应控制的目标是使得某个与广义误差有关的自适应控制性能指标J达到最小。
J可有不同的定义,例如单输出系统的J —;e2( )d式(9-1-7)或多输出系统的t TJ 二e T( )e( )d式(9-1-8) MRAC的设计方法目的是得出自适应控制率,即沟通广义误差与被控系统可调参数间关系的算式。
有两类设计方法:一类是“局部参数最优化设计方法”,目标是使得性能指标J达到最优化;另一类是使得自适应控制系统能够确保稳定工作,称之为“稳定性理论的设计方法。
§ 9 —2局部参数最优化的设计方法一、利用梯度法的局部参数最优化的设计方法这里要用到非线性规划最优化算法中的一种最简单的方法梯度法(Gradient Method )。
1. 梯度法考虑一元函数f(x),当:汀(x)/= 0,且f2 (x) / ;x2> 0时f(x)存在极小值。
问题是怎样调整x使得f (x)能达到极小值?x有两个调整方向:当rf(x)/::x > 0时应减小x ;当rf(x)/::x < 0时应增加x。