离心泵的串联
- 格式:ppt
- 大小:721.01 KB
- 文档页数:7
双级离心泵的工作原理
双级离心泵是一种特殊的离心泵,它由两个叶轮串联构成。
第一级叶轮将液体从入口吸入并赋予一定的动能,然后液体进入第二级叶轮,在第二级叶轮中继续获得动能,最终从出口高速喷出。
1. 工作过程
- 液体从泵入口进入,首先被第一级叶轮吸入。
- 在第一级叶轮的作用下,液体获得一定的动能和压力。
- 液体经过一个扩压室,流向第二级叶轮。
- 进入第二级叶轮后,液体获得进一步的动能和压力增加。
- 最后,液体从出口高速喷出,完成输送。
2. 优点
- 双级结构可提高单级泵的扬程,从而使泵能输送液体到更高的位置。
- 效率较高,能耗较低,适用于大流量、高扬程的输送场合。
- 结构紧凑,占地面积小。
3. 应用
双级离心泵广泛应用于城市供水系统、工业循环冷却系统、消防给水系统等领域,尤其适合于需要较高扬程的场合。
双级离心泵利用两级叶轮的串联作用,将液体赋予较高的动能和压力,从而实现高扬程、大流量的输送,是一种高效、紧凑的泵类型。
离心泵的串并联实验讲义一、实验目的1.了解离心泵结构与特性,学会离心泵的操作2.测量不同转速下离心泵的特性曲线。
3.测量离心泵串联时的压头和流量的关系。
4.测量离心泵并联时的压头和流量的关系。
二、实验原理1.单台离心泵的特性曲线离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量V 之间的关系曲线,它是流体在泵内流动规律的外部表现形式。
由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。
1)扬程H 的测定与计算在泵进、出口取截面列柏努利方程:gu u Z Z g p p H 221221212-+-+-=ρ 式中:p 1,p 2——分别为泵进、出口的压强 N/m 2 ρ——流体密度 kg/m 3u 1, u 2——分别为泵进、出口的流量m/s g ——重力加速度 m/s 2当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为:gp p H ρ'1'2-= 由上式可知:只要直接读出真空表和压力表上的数值,就可以计算出泵的扬程。
2)轴功率N 的测量与计算轴的功率可按下式计算: w N ∙=94.0式中,N —泵的轴功率,W w —电机输出功率,W由上式可知:测定泵的轴功率,只需测定电机的输出功率,乘上功率转换中的倍率即可。
3)效率η的计算泵的效率η是泵的有效功率Ne 与轴功率N 的比值。
有效功率Ne 是单位时间内流体自泵得到的功,轴功率N 是单位时间内泵从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。
泵的有效功率Ne 可用下式计算:Ne=HV ρg 故η=Ne/N=HV ρg/N4)离心泵性能参数的换算泵的特性曲线是在指定转速下的数据,就是说在某一特性曲线上的一切实验点,其转速都是相同的。
但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量的变化,多个实验点的转速将有所差异,因此在绘制特性曲线之前,须将实测数据换算为平均转速下的数据。
离心泵串并联安全生产注意事项1、离心泵串联和并联的目的有哪些当第一台水泵的出水管连接在第二台泵的吸人管时称为两台水泵串联见图1--34(b);当第一台水泵与第二台水泵的吸入管连接在一起,出水管也连接在一起时称为水泵的并联见图1--34(a)。
在理想状态下,同型号同规格的两台水泵其流量与扬程关系是:串联时:Q=Q1=Q2H=H1=H2从上两式得知,当两台或两台以上水泵串联时流量并无大的改变而扬程叠加。
并联时:Q =Q1+Q2H=H1+H2即当两台或两台以上水泵并联时,其系统的扬程无大改变,但流量叠加。
水泵的串联常用于给水管网加压,室外给水管网的加压泵站即采用水泵串联方式。
水泵并联常用于单台水泵不能满足流量要求时,或选择系统流量过大的单台水泵会造成运转费用增加时。
并联可根据用水量的多少及用水高峰调节开启水泵的台数,降低运行成本。
采暖系统中循环水泵经常采用并联的方法以满足流量要求,备用水泵也采用并联方式。
在水泵并联、串联时,应采用同种类型及同种规格的水泵连接,因同类型水泵特性曲线基本相同,流量及扬程易接近较理想状态。
水泵的串联运行有时一台水泵的扬程不够,更换一台扬程高一点的离心泵又没有合适的,这时可以用两台扬程较低的水泵串联起来工作,所谓两台水泵串联就是第一台水泵的出口接第二台水泵的入口,但不是随便两台泵都能串联工作的,兴崛供水设备水泵的串联运行必须具备以下条件:1.两台泵的流量基本上相等,至少两台水泵的最大流量基本上相等。
2.后一台泵的强度应能承受两台泵的压力总和。
串联运行后的总扬程是两台泵扬程的总和,其流量还是一台泵的流量。
串联对应把扬程低的那一台放在前面,扬程高的那一台放在后面,这样有利于泵对压力的承受,若串联的两台泵扬程都很高,后一台泵的强度不能承受两台泵的扬程总和时,可采取第一台泵将水送到一定高度后,再接第二台泵。
水泵的并联运行水泵的并联运行就是一台泵的流量不够,或者输水管道流量变化很大时,可以用两台或几台泵的出水管合用一条输水管道,水泵并联运行也并不是随便几台泵都能并联工作的。
离心泵串并联及工况调节综合实验
一、实验目的
1.绘制两台离心泵串联运行工况调节图;
2.绘制两台离心泵并联运行工况调节图(共用管路节流调节方式):
二.实验装置
1.离心泵、电动机、管路系统(包括管路、阀门、水箱等);
2.真空表、压力表;玻璃转子流量计
三.实验原理
离心泵实验系统布置图如下图
图1 离心泵实验系统布置图
1—电动机;2—离心式水泵;3—压力表;4—转子流量计;5—2”弯头;6—真空表
7—三通;8—闸阀;9—水箱;;10—逆止阀
四.实验步骤
1.检查管路是否接好,流量计中水是否充满。
2.离心泵阀门全开,联好线路,打开电源开关。
3.将管路调制离心泵串联运行,稳定后,从小到大调节阀门开度,观察记录压力表,真空表和流量计的读数,流量每次增加3~5格,共做十一次。
4.将管路调制离心泵并联运行,稳定后,从小到大调节共用管路阀门开度,观察记录压力表,真空表和流量计的读数,流量每次增加3~5格,共做十一次。
五.实验数据记录与处理
1.原始数据
当地重力加速度:g= m/s2;水池距离地面高度: cm;
测试水温:t= ℃;该温度下水的密度:ρ= kg/m3(查表);
1#离心泵出口截面中心与进口截面中心的高度差∆z= m;
2#离心泵出口截面中心与进口截面中心的高度差∆z= m;
2实验数据记录与处理
表2
3.两台离心泵串联运行工况调节图
4.两台离心泵并联运行工况调节图(共用管路节流调节)
六、注意事项
1.实验过程中,禁止沙粒抽进泵体。
2.长期停用时,开启前请先拨动叶片,确定转动灵活再接电源。
3.越冬前,请排净泵内积水一方冻裂。
第一章 流体流动一、压强1、单位之间的换算关系:221101.3310330/10.33760atm kPa kgf m mH O mmHg ====2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。
(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。
表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式0p p gh ρ=+二、牛顿粘性定律F du A dyτμ== τ为剪应力;du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp111Pa s P cP ==液体的粘度随温度升高而减小,气体粘度随温度升高而增大。
三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。
111222u A u A ρρ=对不可压缩流体1122u A u A = 即体积流量为常数。
四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hf ρ∆∆∆++=-∑ 22u p gz E ρ++=称为流体的机械能 单位重量流体的能量衡算方程:Hf He gp g u z -=∆+∆+∆ρ22z :位压头(位头);22u g:动压头(速度头) ;p g ρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η=五、流动类型 雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。
(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。
圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型 (2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。
离心泵的工作点与调节(一)管路特性曲线与泵的工作点当离心泵安装在特定的管路系统中工作时,实际的工作压头和流量不仅与离心泵本身的性能有关,还与管路的特性有关,即在输送液体的过程中,泵和管路是互相制约的。
所以,在讨论泵的工作情况前,应先了解与之相联系的管路状况。
在图2—17所示的输送系统中,若贮槽与受液槽的液面均保持恒定,液体流过管路系统时所需的压头(即要求泵提供的压头),可由图中所示的截面1—1,与2-2,间列柏努利方程式求得,即H e = (2-28)在特定的管路系统中,于一定的条件下进行操作时,上式的均为定值,即若贮槽与受液槽的截面都很大,该处流速与管路的相比可以忽略不计,则。
式2-28可简化为H e =K+H f (2-29)若输送管路的直径均一,则管路系统的压头损失可表示为(2-30) 式中 Q e —管路系统的输送量,m 3/h ;A —管路截面积,m 2。
对特定的管路,上式等号右边各量中除了和Q e 外均为定值,且也是Q e 的函数,则 可得(2-31)f Hg u g p Z +22∆+∆+∆ρg pZ ρ∆∆与K g p Z =+ρ∆∆022≈∆g u =++=∑g u d l l H e c ef 2)2ζζλ+(g A Q d l l e e c e 2)3600/()2ζζλ+(++∑λλ)(e f Q f H =将式2-31代人式2-29中可得(2-32)式2-32或式2-29即为管路特性方程。
若流体在该管路中流动已进入阻力平方区,又可视为常量,于是可令则式2-30可简化为H e = B所以,式2-29变换为 H e =K+B (2-33)由式2-33可看出,在特定的管路中输送液体时,管路所需的压头H e 随液体流量Q e 的平方而变。
若将此关系标在相应的坐标图上,即得如图2—18所示的H e —Q e 曲线。
这条曲线称为管路特性曲线,表示在特定管路系统中,于固定操作条件下,流体流经该管路时所需的压头与流量的关系。
离心泵工作点的调节方式 离心泵是广泛应用于化工泵工业系统的一种通用流体机械。
它具有性能适应范围广(包括流量、压头及对输送介质性质的适应性)、体积小、结构简单、操作容易、操作费用低等诸多优点。
通常,所选离心泵的流量、压头可能会和管路中要求的不一致,或由于生产任务、工艺要求发生变化,此时都要求对泵进行流量调节,实质是改变离心泵的工作点。
离心泵的工作点是由泵的特性曲线和管路系统特性曲线共同决定的,因此,改变任何一个的特性曲线都可以达到流量调节的目的。
目前,离心泵的流量调节方式主要有调节阀控制、变速控制以及泵的并、串联调节等。
由于各种调节方式的原理不同,有自己的优缺点. 1、改变管路特性曲线 改变离心泵流量最简单的方法就是利用泵出口阀门的开度来控制,其实质是改变管路特性曲线的位置来改变泵的工作点。
2、改变离心泵特性曲线 根据比例定律和切割定律,改变泵的转速、改变泵结构(如切削叶轮外径法等)两种方法都能改变离心泵的特性曲线,从而达到调节流量(同时改变压头)的目的。
但是对于已经工作的泵,改变泵结构的方法不太方便,并且由于改变了泵的结构,降低了泵的通用性,尽管它在某些时候调节流量经济方便[1],在生产中也很少采用。
这里仅分析改变离心泵的转速调节流量的方法。
从图1中分析,当改变泵转速调节流量从Q1下降到Q2时,泵的转速(或电机转速)从n1下降到n2,转速为n2下泵的特性曲线Q-H与管路特性曲线He=H0G1Qe2(管路特曲线不变化)交于点A3(Q2,H3),点A3为通过调速调节流量后新的工作点。
此调节方法调节效果明显、快捷、安全可靠,可以延长泵使用寿命,节约电能,另外降低转速运行还能有效的降低离心泵的汽蚀余量NPSHr,使泵远离汽蚀区,减小离心泵发生汽蚀的可能性[2]。
缺点是改变泵的转速需要有通过变频技术来改变原动机(通常是电动机)的转速,原理复杂,投资较大,且流量调节范围小。
3、泵的串、并连调节方式 当单台离心泵不能满足输送任务时,可以采用离心泵的并联或串联操作。