信息光学第5
- 格式:ppt
- 大小:16.46 MB
- 文档页数:131
《信息光学》课程教学大纲一、课程基本信息二、课程简介信息光学是应用光学、计算机和信息科学相结合而发展起来的一门新的光学学科,是信息科学的一个重要组成部分,也是现代光学的核心。
本课程主要介绍信息光学的基础理论及相关的应用,内容涉及二维傅里叶分析、标量衍射理论、光学成像系统的频率特性、部分相干理论、光学全息照相、空间滤波、相干光学处理、非相干光学处理、信息光学在计量学和光通信中的应用等。
三、课程目标本课程是光电信息科学与工程专业的主要专业课程之一,设置本课程的目的是让学生掌握信息光学的基本概念、基础理论及光信息处理的基本方法,了解光信息处理的发展近况和运用前景。
为今后从事光信息方面的生产,科研和教学工作打下基础。
四、教学内容及要求第一章信息光学概述(2学时)1.信息光学的基本内容和发展方向2.光波的数学描述和基本概念3.相干光和非相干光4.从信息论看光波的衍射要求:1.了解信息光学的内容和发展方向2.掌握相干光和非相干光的特点3.掌握从信息论的观点看光波的衍射。
重点:空间频率,等相位面。
从信息光学看衍射的基本观点。
难点:空间频率,光波的数学描述。
第二章二维傅里叶分析(8+2学时)1.光学常用的几种非初等函数2.卷积与相关3.傅里叶变换的基本概念4.线性系统分析5.二维采样定理要求:1.了解光学中常用非初等函数的定义、性质,熟悉它们的图像及在光学中的作用2.了解卷积与相关的定义及基本性质3.熟悉傅里叶变换的基本原理,性质和几何意义4.熟悉系统的基本概念及线性系统分析的基本理论5.了解二维采样定理及其应用6.本章强调概念的物理意义理解,以定性和应用为主。
避免与《信号与系统》课程重复。
重点:δ函数的意义和运算特性,傅里叶变换性质、定理,相关和卷积的意义及运算,线性空间不变系统的特性。
难点:卷积,傅里叶变换、系统分析。
第三章标量衍射理论(6+2学时)1.基尔霍夫衍射理论2.菲涅耳衍射和夫琅和费衍射3.夫琅和费衍射计算实例4.菲涅尔衍射计算实例5.衍射的巴俾涅原理要求:1.了解基尔霍夫衍射理论2.熟悉菲涅耳- 基尔霍夫衍射公式及其物理意义3.熟悉菲涅耳衍射与夫琅和费衍射4.掌握常见夫琅和费衍射光场的分析与计算5.了解菲涅耳衍射光场的分析和计算6.了解巴俾涅原理及其应用重点:如何用二维傅里叶变换来分析和计算夫琅和费衍射。
中山大学信息光学习题课后答案--习题456作业习 题 44.1 尺寸为a b ⨯的不透明矩形屏被单位振幅的单色平面波垂直照明,求出紧靠零后的平面上透射光场的角谱。
4.2 采用单位振幅的单色平面波垂直照明具有下述透过率函数的孔径,求菲涅耳衍射图样在孔径轴上的强度分布:(1) 220000(,)circ()t x y x y =+ (2) 2200001,1(,)0,a x y t x y ⎧⎪≤+≤=⎨⎪⎩其它 4.3 余弦型振幅光栅的复振幅透过率为:00()cos(2/)t x a b x d π=+式中,d 为光栅的周期,0a b >>。
观察平面与光栅相距z 。
当z 分别取下述值时,确定单色平面波垂直照明光栅,在观察平面上产生的强度分布。
(1) 22r d z z λ== (2) 22r z d z λ== (3) 242r z d z λ== 式中:r z 为泰伯距离。
4.4 参看下图,用向P 点会聚的单色球面波照明孔径∑。
P 点位于孔径后面距离为z 的观察平面上,坐标为(0,)b 。
假定观察平面相对孔径的位置是在菲涅耳区内,证明观察平面上强度分布是以P 点为中心的孔径的夫琅禾费衍射图样。
4.5 方向余弦为cos ,cos αβ,振幅为A 的倾斜单色平面波照明一个半径为a 的圆孔。
观察平面位于夫琅禾费区,与孔径相距为z 。
求衍射图样的强度分布。
4.6 环形孔径的外径为2a ,内径为2a ε(01)ε<<。
其透射率可以表示为:001,()0,a r a t r ε≤≤⎧=⎨⎩其他用单位振幅的单色平面波垂直照明孔径,求距离为z 的观察屏上夫琅禾费衍射图样的强度分布。
4.7 下图所示孔径由两个相同的圆孔构成。
它们的半径都为a ,中心距离为d ()d a >>。
采用单位振幅的单色平面波垂直照明孔径,求出相距孔径为z 的观察平面上夫琅禾费衍射图样的强度分布并画出沿y 方向截面图。
信息光学智慧树知到课后章节答案2023年下北京工业大学北京工业大学绪论单元测试1.傅里叶光学是专门研究二维光信息的科学,是光学与通信理论的结合,是当代信息科学的一部分。
这一说法是否正确?A:错误 B:正确答案:正确第一章测试1.可用来描述点光源复振幅分布的基元函数是()。
A:脉冲函数(δ函数) B:三角形函数 C:矩形函数 D:圆柱函数答案:脉冲函数(δ函数)2.用来描述激光器出射光斑光场复振幅分布的基元函数是()。
A:三角形函数 B:矩形函数 C:高斯函数答案:高斯函数3.下列关于互相关与卷积运算关系的表达式正确的是()。
A:★B:★C:★D:★答案:★4.互相关是衡量两个信号之间相似度。
两个完全不同的、毫无关系的信号,对所有的位置,它们互相关的结果应该为()。
A:1 B:无穷大 C:0答案:05.函数的傅里叶变换为()。
A:0 B:1 C: D:答案:1第二章测试1.线性空间不变系统的输入与输出之间的关系可以通过()运算可以表示。
A:输入与脉冲响应相关 B:输入与脉冲响应乘积 C:输入与脉冲响应卷积答案:输入与脉冲响应卷积2.在傅里叶光学中,把光的传播、成像、信息处理等都以系统是()去分析各种光学问题的。
A:非线性系统 B:线性系统 C:其他系统答案:线性系统3.一个空间脉冲在输入平面位移,线性系统的响应函数形式不变,只产生相应的位移,这样的系统称为()。
A:空间不变系统或位移不变系统 B:其它系统 C:时不变系统答案:空间不变系统或位移不变系统4.对于线性不变系统,系统的输出频谱是输入函数频谱与系统()的乘积。
A:本征函数 B:脉冲响应 C:传递函数答案:传递函数5.根据抽样定理,对连续函数进行抽样时,在x、y方向抽样点最大允许间隔、分别表示该函数在频域中的最小矩形在和方向上的宽度。
)A: B:C:第三章测试1. 基尔霍夫衍射积分公式从理论上证明了光的传播现象能看作( )系统。
A:非线性系统 B:线性系统 C:线性空间不变系统 答案:线性空间不变系统2.圆对称函数的傅里叶变换式本身也是圆对称的,它可通过把空间坐标转换到极坐标系中计算求出,我们称这种变换的特殊形式为()。
信息光学知到章节测试答案智慧树2023年最新苏州大学绪论单元测试1.“信息光学”又称为 ____。
参考答案:null第一章测试1.高斯函数的傅里叶变换是()参考答案:2.函数的傅里叶变换是()。
参考答案:3.某平面波的复振幅分布为,那么它在不同方向的空间频率,也就是复振幅分布的空间频谱为()。
参考答案:,4.圆域函数Circ(r)的傅里叶变换是。
()参考答案:对5.尺寸a×b 的不透明矩形屏,其透过率函数为rect(x/a)rect(y/b)。
()参考答案:错6.卷积是一种 ____,它的两个效应分别是____和____,两个函数f(x, y)和h(x, y)卷积的积分表达式为____。
参考答案:null7.什么是线性空不变系统的本征函数?参考答案:null8.基元函数是不能再进行分解的基本函数单元,光学系统中常用的三种基元函数分别是什么?参考答案:null第二章测试1.在衍射现象中,当衍射孔径越小,中央亮斑就____。
参考答案:null2.点光源发出的球面波的等相位面为____,平行平面波的等相位面为____。
参考答案:null3.平面波角谱理论中,菲涅耳近似的实质是用____来代替球面的子波;夫琅和费近似实质是用____来代替球面子波。
参考答案:null4.你认为能否获得理想的平行光束?为什么?参考答案:null5.菲涅尔对惠更斯的波动光学理论表述主要有哪两方面的重要贡献?参考答案:null6.已知一单色平面波的复振幅表达式为,请问该平面波在传播方向的空间频率以及在x,y,z方向的空间频率分别是什么?参考答案:null第三章测试1.物体放在透镜()位置上时,透镜的像方焦面上才能得到物体准确的傅里叶频谱。
参考答案:前焦面2.衍射受限光学系统是指(),仅考虑光瞳产生的衍射限制的系统。
参考答案:不考虑像差的影响3.相干传递函数是相干光学系统中()的傅里叶变换。
参考答案:点扩散函数4.()是实现对空间物体进行信息处理和变换的基本光路结构。
第五章傅里叶变换光学与相因子分析方法5.1 衍射系统波前变换◆引言现代光学的重大进展之一,是引入“光学变换”概念,由此发展而形成了光学领域的一个新分支——傅里叶变换光学,泛称为变换光学(transform optics),也简称为博里叶光学,它导致了光学信息处理技术的兴起.现代变换光学是以经典波动光学的基本原理为基础,是干涉、衍射理论的综合和提高,它与衍射、尤其与夫琅禾费衍射息息相关.对于熟悉经典波动光学的人们来说,由于他们有着较充分的概念储备和较充实的物理图像,因而具备更为有利的条件,去深刻而灵活地掌握现代变换光学.◆衍射系统及其三个波前如图所示,一个衍射系统以衍射屏为界被分为前后两个空间.前场为照明空间,充满照明光波;后场为衍射空间,充满衍射光波.照明光波比较简单、常为球面波或平面波,这两种典型波的等幅面与等相面是重合的,属于均匀波,其波场中没有因光强起伏而出现的图样.衍射波较为复杂,它不是单纯的一列球面波或一列平面波,其等幅面与等相面—般地不重合,属于非均匀波,其波场中常有光强起伏而形成的衍射图样.在衍射系统的分析中,人们关注三个场分布:其中,入射场是照明光波到达衍射屏的波前函数;出射场是衍射屏的透射场或反射场,它是衍射空间初端的波前函数,它决定了整个衍射空间的光场分布;而衍射场是纵向特定位置的波前函数。
由此可见,整个衍射系统贯穿着波前变换:波前这是衍射屏的作用:波前这是波的传播行为.由一个波前导出前方任意处的另一个波前,这是波衍射问题的基本提法,亦即波传播问题的基本提法.标量波的传播规律己由惠更斯—菲涅耳—基尔霍夫理论(HFK 理论)给出.在常见的傍轴情形下,其表达式为其积分核为,这是一个球面波的相因子形式.换言之HFK理论是—个关于衍射的球面波理论——衍射场是衍射屏上大量次波点源所发射的球面被的相干叠加.◆衍射屏函数及其三种类型我们已经同多种衍射屏有过交道,现在给山衍射屏函数的一般性定义,以定量地描述衍射屏的自身特征:即,屏函数(screen function)等于出射波前函数与入射波前函数之比.对于透射屏,可称作复振幅透过率函数;对于反射屏,可称作复振幅反射率函数.无疑,屏函数通常也是复函数,含模函数和辐角函数.唯象地看,实际上的衍射屏可分为三种类型,振幅型、相位型和相幅型.若为常数,仅有函数,则该衍射屏为振幅型,凡孔型衍射屏均系振幅型.若为常数,仅有函数,则该衍射屏为相位型,这在此之前似乎少见,其实,闪耀光栅不论其为透射的或反射的,均是一个相位型衍射屏,下一节即将研究的透镜相位衍射元件.当然,更为一般的情况是相幅型衍射屏,、皆为函数形式,即不仅出射场的振幅分布有别于入射场的,而且出射场的相位分布也有别于入射场的。