产出剖面测井技术及应用
- 格式:ppt
- 大小:1.70 MB
- 文档页数:36
油田高含水开发期,更多的会应用水平井,为提高油田开发的效率,就需要对水平井进行懂爱测试,以充分了解水平段的产液状况,其中产业剖面测井技术是当前测井找水方法中最为直观且实际的方法。
通过动态监测出水规律,能够有效指导油田开发方案的制定与调整,实现对堵水等措施提供充足的依据,从而提高水平井开发的水平。
一、产业剖面测井技术概述产液剖面测井主要是在产油气井正常生产过程中,对储层产液性质信息进行检测。
具体而言就是通过涡轮流量或者是示踪流量来计算分层中的产液量,通过对持水率曲线(有时加测流体密度、持气率)的计算,结合实验室图版来计算分层产液的性质,其中井温和压力曲线可以对分析产出段定性,而磁定位和自然伽马曲线可以用来做深度的校正,以更好的了解井内管串结构。
要注意的是,通常对水平井产业剖面测井的解释,需要与井眼轨迹以及阵列电容持水率CAT、阵列电阻持水率RAT还有示踪流量和井温等相关测井资料来进行综合的分析。
二、水平井产液剖面测井所需仪器与应用1.水平井测井爬行器输送工艺当前,水平井产业剖面测井的主要工艺有管具输送法、爬行器输送法以及挠性管输送法。
其中管具输送法的工艺存在一定的不足,在应用中有所限制,难以进行水平井产出剖面、注入剖面等带压的测井项目施工。
而挠性管技术对于水平井生产测井施工而言,相对价格又比较高。
因此在当前的水平井测井工作中,广泛采用的是爬行器输送工艺。
通常爬行器系统由三个部分组成。
首先是高效的电机供电,能够确保爬行器进行双向爬行,同时也能够与地面进行实时的通讯。
采用的爬行器通常有MaxTrac爬行器与SONDEX公司所生产的爬行器。
其中MaxTrac爬行器的液压制动腿,能够针对井内套管或者是油管的尺寸来改变伸缩半径,伸开后就能够卡住井壁并沿着仪器的方向进行滑动,从而到达测试层。
这一一起的牵引力比较大,能够很好的适应不同直径的套管,井筒内的岩屑基本不会对其产生影响。
Sondex爬行器主要是提供了一个办法,通过单芯电缆能够在水平井和大斜度井中下放仪器和装置。
产液剖面测井技术在塔河油田的应用摘要:产液剖面测井技术是一项比较成熟的生产测井技术,但是在塔河油田的开发过程中,依然接受着严峻的挑战;胜利测井公司针对塔河油田的水平井、超深井、高硫化氢井等井况复杂井,逐渐摸索出一套适合、有效的产液剖面测井工艺,本文介绍了胜利测井公司在塔河油田的部分产液剖面测井实例,对了解储层的产液情况效果明显。
关键词:产液剖面测井施工工艺水平井引言塔河油田的储层多是奥陶系碳酸盐岩油藏,常需要对裸眼完井井段酸化压裂,在地层中建立人工酸蚀裂缝,沟通井筒周围的储集体,为了了解酸压效果,各段产液情况,需进行产液剖面测井,以下选择几口在塔河油田的产液剖面测井实例,供生产测井技术人员交流、探讨。
1 产液剖面测井技术简介产液剖面测井资料是在油井正常生产条件下获得的有关储层产液性质的信息,测井参数主要包括:自然伽马、磁定位、井温、压力、持水率、流量、流体密度、持气率等。
利用涡轮流量或者示踪流量计算分层产液量,利用持水率曲线(有时加测流体密度、持气率)结合实验室图版计算分层产液性质,井温、压力曲线用来定性分析产出段,自然伽马和磁定位曲线用来深度校正、了解井内管串结构。
水平井产液剖面测井需要结合井眼轨迹以及阵列电容持水率cat、阵列电阻持水率rat以及井温、示踪流量等测井资料综合分析。
2 测井施工工艺2.1密闭施工工艺针对塔河油田的生产井井口情况:高油压、高气量、高含硫化氢,需要配备达到耐压要求的防喷设备:防喷控制头、防喷管、防掉器、井口防喷器、注脂系统等,确保施工安全。
在冬季施工还需对注脂系统缠绕加热带保温,保证密封脂的正常注入。
2.2测前施工设计测前了解到井内高含硫化氢的井应使用防硫电缆;高压井、超深井、硫化氢浓度不高的井也应进行详细的施工设计,优化入井仪器系列,尽量减少入井时间,最大程度降低对电缆、井下仪器的损伤,保证测井的一次成功率。
气举产液过程中应尽量维持地层出液稳定,保证测井资料的正常录取。
注产剖面测井技术及应用刘晓亮(大庆油田第四采油厂第五油矿,黑龙江大庆+)**+))摘要:随着勘探开发的深入,为满足油田快速上产需要,开展了不同类型油藏注入剖面和产出剖面测井技术研究,了解已开发油田不同储层的冬泳状况及其动态变化,指导油田综合调整和开发调整!文章介绍了注入剖面五参数组合测井和产出剖面组合测井技术基础上,重点介绍了注入井示踪剂相连续测井等注入剖面测井新技术和溢气型同轴线相位法环空找水#低产液井油流量等产出剖面测井新技术,以及这些技术在某油田的部分应用!关键词:注入剖面测井;产出剖面测井;井温;资料解释中图分类号:()*+,/M+文献标识码:-文章编号:+&&)"’./+($&+))&’"&++#"&*注入剖面和产出剖面测井作为油田动态开发必要的监测手段,为油田开发调整提供了一定的技术支撑!随着油田增储上产步伐加快和要求的逐步提高,各种新的技术问题不断出现!研究适用于某油田各区块的注产剖面测井技术适应不同类型复杂断块油藏日常动态分析,开发效果评价,年度综合调整和开发调整,为不断改善油田开发效果,实现油田$稳油控水%是非常必要的!目前,油田主要开展注入剖面五参数组合测井#阻抗式过环空产液剖面组合测井#同轴线相位法找水产出剖面测井,在此基础上研究了使用注入井示踪相关联续测井#集流式电磁流量测井等注入剖面测井新技术和同轴线相位法找水#低产液井油流量等产出剖面测井新技术!+在注入剖面解释中的应用+,+确定吸水层位及吸水级别由于受同位素载体下沉#沾污#粒径选择不当等因素的影响,有时同位素曲线异常较大的层位不一定是主力吸水层,而同位素曲线无明显异常的层位也不一定不吸水,所以若单纯用同位素示踪测井资料解释注入剖面,有时会有较大误差!静态井温是关井$>之后测量的井温曲线!由于注入水温度降低,静态井温一般比地层原始温度(下简称地温)低!吸水地层冷却带半径大且温降幅度大,未吸水层冷却带半径小且温降小!关井后,吸水层温度归地温的速率比未吸水层慢得多,从而吸水层静态井温呈现负异常!在井温曲线折向地温的深度以下地层不吸水!静态井温资料可以辅助确定吸水层位!+,$验证停注层段是否真正停注停注层段依然吸水的原因可有封隔器漏失#配水器死嘴不严#管外窜槽等!细分的停注层段往往对着井下工具,同位素示踪测井时易造成较严重的沾污,解释中常用的扣除+*沾污量的做法显然不可靠!结合停注层段井温变化情况,可判断停注层段是否吸水以及吸水的原因!&若配水器位置显示温度异常,沾污造成的同位素曲线幅度异常比该井不吸水段配水器处更明显且与吸水段配水器处相当,吸水是死嘴不严造成的!’若停注层段显示低温异常,其封隔器处沾污造成的同位素曲线的幅度异常比该井其它密封的封隔器处更明显,伴随封隔器附近同位素曲线抬高,则吸水是封隔器不严造成的!(若非配水器或封隔器漏失造成停注层段吸水,吸水原因则可能是管外窜槽#接箍松动或管柱穿孔!+,*识别大孔道层存在大孔道的地层处,同位素载体不能滤积在井眼附近,深入地层的同位素所发射的伽马射线无法被测井仪器探测到,所以此时同位素曲线叠合面积不能体现实际注入量!静态井温在大量吸水的地层会显示较大的低温异常,结合地层系数大#注水时#++$&+)年第’期内蒙古石油化工收稿日期:$&+)D&*D$/间长#注入排量高等特点,可识别出大孔道层!图+某井注入剖面组合测井解释成果图例如某井,全井地层非均质性较强,$&&+年)月实施注入剖面组合测井,当时注入量%&/]*IE,井口压力+$,)T(8,部分井段的测井结果见图+!同位素示踪曲线显示,葡:+P葡:*(相对注水量为/&,)n;葡:$&地层系数高达),/*%4]$],但相对注水量仅为.,*n,而同一配注段内葡:$’层地层系数为$,&)*4]$],相对注水量则为*+,+n!井温曲线在葡:$&P葡:*(显示较大隆起状低温异常,以葡:$&处最低!综合以上资料,判断葡:$&层存在大孔道!+,%辅助判断是否窜槽若存在管外窜槽,同位素示踪测井时同位素载体可沿着管外水泥环通道进入未射孔地层,资料常显示曲线在未射孔层段有较大的幅度异常,但这种曲线特征与沾污相似!若窜流流量较大,井温测井曲线则可能显示为从连通水泥环位置到未射地层有大段显著低温异常,这有助于判定窜槽!$在产出剖面解释中的应用$,+判断主产层位置井温曲线的高或低的非地温异常变化,都意味着流体交换(见图*)"可根据组合测井的各种曲线特征综合确定井内及管外流体的流量#含水及流向状况!由于比热和密度不同,相同体积流量的油和水进入井内后温度渐近线高#低不同,其与来自下部油层流体混合后温度也不相同!在利用井温异常幅度判断主要产层位置时,还要考虑含水率情况!当含水率较高时,可认为温度异常幅度最宽#异常深度范围较大的层为主要产层!图*产液层不同的温度曲线图%某井产出剖面解释成果图例如某井过环空五参数测井结果显示(见图%),井温资料与过环空找水仪测井的流量资料显示状况完全符合,解释结果较为准确!$,$分析大段内小层或厚层各部分产液状况过环空找水仪的皮球集流器易磨损且对薄的夹层封卡困难,在多油层井中一般要合并若干个层设计卡点进行定点测量!因而过环空找水仪测得的$分层产量%多为几小层共同产液量,未指出具体产液位置!结合井温等参数分析,会使这种状况得到极大改善!另一种情况是,厚层层内细分测量时,有时集流器封隔管内后流体从管外地层绕行,较难测准小层出液量!组合测井资料能够有效避免这种干扰,为动态调整提供可靠依据!$,*显示油井窜槽产液状况)++内蒙古石油化工$&+)年第’期井温曲线不仅能反映流体进入井筒后流动状况,也能反映管外水泥环中流体的流动状态!在窜槽处,井温会有大范围的低温隆起,伴随窜入层产液增加!如某井(见图#),过环空找水仪测井资料显示葡:%’层为主产层,产液量占全井产液量的%.n;井温曲线则显示从葡:%’底界向上+*]至未射孔的葡:*(#*’层均有较大幅度的异常,指示除了葡:%’层产液外,还有葡:*(#*’层产液沿着水泥环向下窜到葡:%’层的射孔位置进入井内! $,%显示油井套漏现象套漏或接箍不严可导致流体进入井内,这种现象在点测的过环空找水仪测井资料中不易被发现,而井温曲线一般会在漏入处显示出较大幅度的低温异常,指出漏失位置并可估计漏入程度!例如某井(见图)),厂家提供的过环空找水测井通知单上的设计为分葡:$&和*(两层测量,测井时分别在+&/&]和+&.&]定点集流测量流量,显示葡:$&层产液%+,/]*IE,占全井产液量的/),$n,葡*(层产液),’]*IE,占全井产液量的+*,/n!井温曲线则显示,葡:$&及*(层均无明显产液特征,而在+&/)]至+&.&,#]的底界处有+,.f的温度变化,为全井的主要产液位置;并且磁定位曲线在+&/),#P+&.&,*]显示出比射孔段更强的异常信号,井温和磁定位曲线综合指示该处有液体漏入!查阅井史资料发现,新近曾对葡:$&$层+&/),)#P+&/.,.]井段补射孔,射开*,*],有效厚度$,*],有效渗透率&,#%+4]$,证实了原先组合测井解释中对在+&/),#P+&.&,*]处液体从套管进入井内的判断!图#某井产出剖面解释成果图图)某井综合判断未知流体进入井内*结论及认识组合测井具有综合性和互补性的特点,利用所获得的资料能够较全面#细致#准确地分析解决某一单项测井资料解释不清的问题,因而带井温组合测井将在注#产出剖面测井得到越来越广泛的应用!测井与解释中,以下方面是不容忽视的!获取静态井温测井资料时,井口不允许注入或泄漏流体!如果溢流量大引起地层反吐,扰乱井温剖面,会给分析吸水层位及吸水程度造成很大障碍!关井时间长短会对静态井温资料的质量有较大影响!时间太短,吸水层温度异常不明显,近似动态井温;时间太长,不但影响注水,曲线近似地温梯度,影响对吸水层的分辨!产液剖面井温测井应在稳定生产条件下进行!应首先测量温度曲线,仪器上提到测量段上部停留足够时间后,再测重复曲线![参考文献][+]姜文达,放射性同位素示踪注水剖面测井[T],北京:石油工业出版社,+..),[$]乔贺堂,生产测井原理及资料解释[T],北京:石油工业出版社,+..$,[*][美]斯伦贝谢公司编,陆风根,马贵福译,生产测井解释及其流体参数换算[T],北京:石油工业出版社,+..*,’++$&+)年第’期刘晓亮注产剖面测井技术及应用。
浅析产出剖面测井仪器在油田的应用本文从指导油层改造阐述了产出剖面测井资料应用效果,揭示了产出剖面测井技术在油层改造等领域的应用前景,为高含水后期油田动态监测技术的不断优化和发展提供了技术思路。
标签:产出剖面测井资料;油田开发;应用分析1 前言产出剖面测井资料是在油井正常生产的条件下获得的有关油井的信息,主要包括井筒内不同深度处流体的温度、流量、持水率等,在油田开发中具有广泛的应用。
在油田开过程中,为了控制综合含水率的上升,保持油田的持续稳产和高产,提高开发水平和效益,必须对油井进行改造,改造的措施通常是对油井进行压裂、酸化及封堵高含水层位,产出剖面测井资料为油层改造提供了依据,并且为措施效果的检查提供了可靠的手段。
2 主流测井技术分析过流式低产液产出剖面测井仪在原理上具有2点技术特色,一是涡轮流量计的工艺优化设计与低流量段刻度曲线的分段拟合及解释,以此来降低流量测量的下限,提高精度;二是含水率计采用过流式电容法的工作方式,在一定程度上消除了因低产井井下间歇出油等因素带来的含水测量误差。
同时由于取消了取样继电器部件的设计,使仪器的可靠性得到提高,维护工作量也有所减少。
分离式低产液测井仪是一种比较新颖独特的找水技术,其基本原理是通过几组电极探测井下集流空间中油水分离界面的移动时差来推算油相的流量。
该仪器的突出特点在于它的流量测量下限低,测量精度和油水分辨率较高。
仪器测量精度不会受到电路温漂的影响,从而降低了设计和制造难度。
这种测量方法的关键是,为了消除分离空间已有油相存在的影响,在解释时必须搞清滑脱速度与持水率和油水密度差三者间的关系。
低产液测井技术在大庆油田外围及杏区应用较多。
在应用过程中又不断进行了改进完善工作,一是数据处理和解释方法的完备与自动化;二是高可靠性集流器的持续改进,因此技术实用性得到一定的提高。
油田自主研发的阻抗式产出剖面测井技术专门针对高含水井产出剖面测井而设计,含水率测量采用电导传感器,通过测量传感器内混相油水介质的阻抗变化来确定含水率。
产出剖面测井技术进展和发展方向在现场试验过程中发现,如果利用产出剖面原始测井资料直接进行递减解释,经常出现分层解释结果不切实际的情况。
44口试验井中,分层解释结果矛盾井的比例达到了59.1%,传统递减法解释无法得到合格的外报资料,而以往人为调整数据的方法又没有任何理论依据。
通过测井资料的优化处理,能够使资料解释摆脱人为干预、提高解释精度的同时,更能够使整个的资料解释过程和结果趋于规范、合理化。
⑴分层产液量优化解释试验表3-2为南1-丁6-更37井的现场测量结果与优化解释结果对比。
该井萨Ⅲ2层的测量产液量出现负值,无法解释。
优化解释将合层产液调整后,得到萨Ⅲ2层产液量为0,同时产液与含水得到了全局性的调整,可见优化解释最终的结果必趋向合理化。
表3-2 南1-丁6-更37井现场测量结果与优化解释结果对比层位合层产液(m3/d) 分层产液(m3/d) 合层含水(%) 合层产水(m3/d) 分层产水(m3/d) 分层含水(%)测量优化测量优化测量优化测量优化测量优化测量优化萨Ⅰ1--4+5 51.5 52.9 8.2 8.2 78 78.3 40.1 41.4 5.5 5.5 67.1 67.1Ⅱ10-11--12 43.3 44.7 11.2 11.2 80 80.3 34.6 35.9 7.1 7.1 63.4 63.4Ⅱ14 32.1 33.5 4.5 4.5 85.7 85.9 27.5 28.8 2.9 3.2 71.1 71.1Ⅲ2 27.6 29 -1.5 0 88 88.2 24.3 25.6 -1.3 0 0Ⅲ3--4 29.1 29 14.5 14.6 88 88.2 25.6 25.6 9.5 13.8 98.9 94.5Ⅲ9-10--10 14.5 14.4 5.5 5.5 81 81.2 11.7 11.7 4.1 4.2 74.6 76.4葡Ⅱ4-5 9 9 9 9 84 84.1 7.6 7.6 6.4 7.5 84 83.3⑵分层含水率优化解释试验在现场试验测井结果中发现,分层含水率大于100%的矛盾情况经常出现,44口井中出现的几率为54.5%,但在主、次产层中的发生情况并无规律。