制动电阻选型公式-鹰峰电子
- 格式:pdf
- 大小:238.93 KB
- 文档页数:1
精心整理
正确选型制动单元和制动电阻
1、变频器能耗制动工作原理
在同一个电力拖动系统中,当电机转速高于变频器输出频率所对应的同步转速时,处于发电状态的电动机及负载的惯性能量将反馈到变频器中
(这种情况一般发生在电机被拖着走的时候,如起重机重物下降)。
但通用变频器大多没有设计使再生能量反馈到三相电源的功能,
因此所有变频器从电机吸收的能量都会保存在电解电容中,最终导致变频器中的直流母线电压因电容充电升高。
如处理不当,变频器就会报警停机。
制动电2PE PW GM 最大下降重量单位:牛
VM 最快下降速度单位:米/秒
η电机和变频器的内耗功率系数,一般为20%
计算出制动功率PW 后再计算制动电阻阻抗。
R<U dc 2/PW
其中:
U dc 在制动过程中,电阻两端的电压,例如:
1.35·1.2·415VDC(当输入电压是380—415VDC),
1.35·1.2·500VDC(当输入电压是440—500VDC),或
1.35·1.2·690VDC(当输入电压是525—690VDC)。
精心整理
R电阻器阻抗(欧姆)
再参照厂家提供的手册(如下表)配置相应的制动单元和制动电阻,选择合适的阻值,通过公式计
/R以及制动电阻的功率
算通过制动电阻的直流电流Imax=U
dc
P=I2*R,为了保证制动电阻的使用寿命选型时对制动电阻额定电流要适当放大为1.5*Imax。
制动电阻选型一、能耗制动的工作方式在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。
当同步转速w1小于转子转速w时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩Te,使电机的转速迅速下降,电机处于再生制动状态。
电机再生的电能P经续流二极管全波整流后反馈到直流电路。
由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压Ud升高。
过高的直流电压将使各部分器件受到损害。
能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动(如下图所示)。
这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。
制动单元V B制动单元的功能是当直流回路的电压Ud 超过规定的限值时(如660V 或710V ),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。
制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。
从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路制动电阻R B制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。
通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。
精品文档制动电阻的选型:动作电压 710V1)电阻功率(千瓦) =电机千瓦数 *(10%--50%),1)制动电阻值(欧姆)粗略算法:R=U/2I~U/I在我国,直流回路电压计算如下:U=380*1.414*1.1V=600V 其中,R :电阻阻值U :直流母线放电电压,I :电机额定电流2)最小容许电阻(欧姆):max(驱动器technical data 中要求,放电电压/额定电流),制动单元与制动电阻的选配A、首先估算出制动转矩=((电机转动惯量 +电机负载测折算到电机测的转动惯量) * (制动前速度 - 制动后速度)) /375* 减速时间 -负载转矩一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的 18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置;B、接着计算制动电阻的阻值=制动元件动作电压值的平方 /(0.1047*(制动转矩-20%电机额定转矩) *制动前电机转速)在制动单元工作过程中,直流母线的电压的升降取决于常数 RC R即为制动电阻的阻值,C为变频器内部电解电容的容量。
这里制动单元动作电压值一般为710V。
C、然后进行制动单元的选择在进行制动单元的选择时,制动单元的工作最大电流是选择的唯一依据,其计算公式如下:制动电流瞬间值 =制动单元直流母线电压值 /制动电阻值D最后计算制动电阻的标称功率由于制动电阻为短时工作制,因此根据电阻的特性和技术指标,我们知道电阻的标称功率将小于通电时的消耗功率,一般可用下式求得:制动电阻标称功率 = 制动电阻降额系数 X 制动期间平均消耗功率 X 制动使用率 %制动特点能耗制动(电阻制动)的优点是构造简单,缺点是运行效率降低,特别是在频繁制动时将要消耗大量的能量,且制动电阻的容量将增大。
精品文档制动电阻计算方法 :制动力矩制动电阻92% R=780/电动机 KW100% R=700/电动机 KW110% R=650/电动机 KW120% R=600/电动机 KW注:①电阻值越小,制动力矩越大,流过制动单元的电流越大;②不可以使制动单元的工作电流大于其允许最大电流,否则要损坏器件 ; ③制动时间可人为选择;④小容量变频器(< 7.5KW)一般是内接制动单元和制动电阻的;⑤当在快速制动出现过电压时 , 说明电阻值过大来不及放电,应减少电阻值 .电阻功率计算方法 :制动性质电阻功率一般负荷 W(Kw)=电阻KV X 10%频繁制动(1分钟5次以上)W(Kw)=电阻KV X15%长时间制动(每次4分钟以上) W(Kw)=电阻KV X 20%精品文档欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
制动电阻的选型:动作电压710V1) 电阻功率(千瓦)=电机千瓦数*(10%--50%),1) 制动电阻值(欧姆)粗略算法:R=U/2I~U/I 在我国,直流回路电压计算如下:U=380*1.414*1.1V=600V 其中,R:电阻阻值U:直流母线放电电压,I:电机额定电流2) 最小容许电阻(欧姆):max(驱动器technical data中要求,放电电压/额定电流),制动单元与制动电阻的选配A、首先估算出制动转矩=((电机转动惯量+电机负载测折算到电机测的转动惯量)*(制动前速度-制动后速度))/375*减速时间-负载转矩一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置;B、接着计算制动电阻的阻值=制动元件动作电压值的平方/(0.1047*(制动转矩-20%电机额定转矩)*制动前电机转速)在制动单元工作过程中,直流母线的电压的升降取决于常数RC,R即为制动电阻的阻值,C为变频器内部电解电容的容量。
这里制动单元动作电压值一般为710V。
C、然后进行制动单元的选择在进行制动单元的选择时,制动单元的工作最大电流是选择的唯一依据,其计算公式如下:制动电流瞬间值=制动单元直流母线电压值/制动电阻值D、最后计算制动电阻的标称功率由于制动电阻为短时工作制,因此根据电阻的特性和技术指标,我们知道电阻的标称功率将小于通电时的消耗功率,一般可用下式求得:制动电阻标称功率 = 制动电阻降额系数 X 制动期间平均消耗功率 X 制动使用率%制动特点能耗制动(电阻制动)的优点是构造简单,缺点是运行效率降低,特别是在频繁制动时将要消耗大量的能量,且制动电阻的容量将增大。
制动电阻计算方法:制动力矩制动电阻92% R=780/电动机KW100% R=700/电动机KW110% R=650/电动机KW120% R=600/电动机KW注:①电阻值越小,制动力矩越大,流过制动单元的电流越大;②不可以使制动单元的工作电流大于其允许最大电流,否则要损坏器件;③制动时间可人为选择;④小容量变频器(≤7.5KW)一般是内接制动单元和制动电阻的;⑤当在快速制动出现过电压时,说明电阻值过大来不及放电,应减少电阻值.电阻功率计算方法:制动性质电阻功率一般负荷 W(Kw)=电阻KWΧ10℅频繁制动(1分钟5次以上) W(Kw)=电阻KWΧ15℅长时间制动(每次4分钟以上) W(Kw)=电阻KWΧ20℅欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
制动电阻选型方法
1、制动力矩或制动电阻计算(380V系列)
92% R=780/电动机KW
100% R =700/电机功率
110% R=650/电动机KW
120% R=600/电动机KW (大于7.5KW电机)
R=400/电动机KW (小于7.5KW电机)
注:①电阻值越小,制动力矩越大,流过制动单元的电流越大;②不可以使制动单元的工作电流大于其允许最大电流,否则要损坏器件;
③制动时间可人为选择;④小容量变频器(≤7.5KW)一般是内接制动单元和制动电阻的;⑤当在快速制动出现过电压时,说明电阻值过大来不及放电,应减少电阻值。
2、电阻功率计算方法:
电阻功率=电机功率*(10%--15%)
一般负荷W(Kw)=电机功率* 10℅
频繁制动(1分钟5次以上)W(Kw)=电机功率* 15℅
长时间制动(每次4分钟以上)W(Kw)=电机功率* 20℅
一般制动电阻器的选择应使制动电流Is不超过变频器的额定电流Ie,制动电阻最大功率Pmax要小于1.5倍的变频器功率,然后与过载系数相乘。
过载系数与减速时间和持续制动时间有关,具体要厂家提供电阻器过载系数及参数样本
表1:制动电阻快速选型速查表
RZX制动电阻箱。
变频器制动电阻计算制动单元与制动电阻的选配A、首先估算出制动转矩一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置;B、接着计算制动电阻的阻值在制动单元工作过程中,直流母线的电压的升降取决于常数RC,R即为制动电阻的阻值,C为变频器内部电解电容的容量。
这里制动单元动作电压值一般为710V。
C、然后进行制动单元的选择在进行制动单元的选择时,制动单元的工作最大电流是选择的唯一依据,其计算公式如下:D、最后计算制动电阻的标称功率由于制动电阻为短时工作制,因此根据电阻的特性和技术指标,我们知道电阻的标称功率将小于通电时的消耗功率,一般可用下式求得:制动电阻标称功率 = 制动电阻降额系数 X 制动期间平均消耗功率 X 制动使用率%2.6 制动特点能耗制动(电阻制动)的优点是构造简单,缺点是运行效率降低,特别是在频繁制动时将要消耗大量的能量,且制动电阻的容量将增大。
制动力矩计算要有足够的制动力矩才能产生需要的制动效果,制动力矩太小,变频器仍然会过电压跳闸。
制动力矩越大,制动能力越强,制动性能约好。
但是制动力矩要求越大,设备投资也会越大。
制动力矩精确计算困难,一般进行估算就能满足要求。
按100%制动力矩设计,可以满足90%以上的负载。
对电梯,提升机,吊车,按100%开卷和卷起设备,按120%计算离心机100%需要急速停车的大惯性负载,可能需要120%的制动力矩普通惯性负载80%在极端的情况下,制动力矩可以设计为150%,此时对制动单元和制动电阻都必须仔细合算,因为此时设备可能工作在极限状态,计算错误可能导致损坏变频器本身。
超过150%的力矩是没有必要的,因为超过了这个数值,变频器本身也到了极限,没有增大的余地了。
电阻制动单元的制动电流计算(按100%制动力矩计算)制动电流是指流过制动单元和制动电阻的直流电流。
380V标准交流电机:P――――电机功率P(kW)k――――回馈时的机械能转换效率,一般k=0.7(绝大部分场合适用)V――――制动单元直流工作点(680V-710V,一般取700V)I――――制动电流,单位为安培计算基准:电机再生电能必须完全被电阻吸收电机再生电能(瓦)=1000×P×k=电阻吸收功率(V×I)计算得到I=P。
atv320制动电阻选型手册【最新版】目录1.ATV320 制动电阻概述2.ATV320 制动电阻选型要求3.ATV320 制动电阻选型步骤4.ATV320 制动电阻选型注意事项5.结论正文【1.ATV320 制动电阻概述】ATV320 制动电阻是一款适用于电动机制动系统的电阻,它能够将电动机的动能转化为热能,以实现快速、平稳的制动效果。
在工业生产领域,特别是电梯、起重机械等设备中,ATV320 制动电阻的应用十分广泛。
【2.ATV320 制动电阻选型要求】在选择 ATV320 制动电阻时,需要考虑以下几个方面的因素:(1)电阻值:根据电动机的功率和制动力矩要求,选择合适的电阻值。
(2)额定电压:电阻的额定电压应与电动机的工作电压相匹配,以确保制动电阻在正常工作范围内。
(3)额定电流:根据电动机的工作电流选择合适的制动电阻额定电流。
(4)散热性能:制动电阻在工作过程中会产生大量热量,因此需要考虑其散热性能,以保证制动电阻的使用寿命。
【3.ATV320 制动电阻选型步骤】(1)确定电动机的功率和制动力矩要求,根据这些参数计算所需的电阻值。
(2)选择电阻值合适的 ATV320 制动电阻,并检查其额定电压和额定电流是否与电动机相匹配。
(3)分析制动电阻的散热性能,确保其能够在长时间工作过程中保持稳定。
(4)根据以上分析,选择最合适的 ATV320 制动电阻。
【4.ATV320 制动电阻选型注意事项】(1)在选型过程中,应充分考虑电动机的实际工作条件,如海拔高度、环境温度等,以确保所选制动电阻的可靠性。
(2)在安装和使用 ATV320 制动电阻时,应严格按照产品说明书的要求进行,以确保制动电阻的安全性能和使用寿命。
(3)在选购 ATV320 制动电阻时,应选择信誉良好的供应商,以确保产品质量。
【5.结论】ATV320 制动电阻选型对于电动机制动系统的性能和安全至关重要。
起重机调速技术已有了较长的发展历史,从直流调速到交流调速,从AC定子调速技术到DC晶闸管调速装置,再发展到今天广泛应用的转子串电阻调速技术。
但这些技术都存在着元件易损、维修不便、设备冲击大、调速范围小等许多缺点。
进入20世纪90年代以来,变频调速技术的日臻成熟,以其调速范围大、结构简单、维修方便、减小噪音、节约电力等优点,开始在起重领域得到广泛应用。
在起重变频调速系统运行中,当停车或下降时,重物产生的位势负载使电机处于发电状态,能量向电源侧回馈,由于大多数变频器没有电能回馈装置,此时必须通过制动单元将这部分能量由制动电阻以热能的形式释放掉,所以制动单元和制动电阻在起重变频调速系统中起着非常重要的作用。
本文重点介绍如何正确匹配计算制动电阻。
到目前为止,已经发现有多种版本的匹配计算方法出现,归纳大致如下;方法一、制动电阻的阻值和功率计算1.1刹车使用率ED%制动使用率ED%,也就是台达说明书中的刹车使用率ED%。
刹车使用率ED%定义为减速时间T1除以减速的周期T2,制动刹车使用率主要是为了能让制动单元和刹车电阻有充分的时间来散除因制动而产生的热量;当刹车电阻发热时,电阻值将会随温度的上升而变高,制动转矩亦随之减少。
刹车使用率ED%=制动时间/刹车周期=T1/T2*100%。
(图1)图1刹车使用率ED%定义现在用一个例子来说明制动使用率的概念:10%的制动频率可以这样理解,如果制动电阻在10秒钟能够消耗掉100%的功率,那么制动电阻至少需要90秒才能把产生的热量散掉。
1.2 制动单元动作电压准位当直流母线电压大于等于制动电压准位(甄别阈值)时,刹车单元动作进行能量消耗。
台达制动电压准位如表1所示。
点击看原图1.3 制动电阻设计(1)工程设计。
实践证明,当放电电流等于电动机额定电流的一半时,就可以得到与电动机的额定转矩相同的制动转矩了,因此制动电阻的粗略计算是:其中:制动电压准位电机的额定电流。
为了保证变频器不受损坏,强制限定当流过制动电阻的电流为额定电流时的电阻数值为制动电阻的最小数值。
Calculating brake resistor sizesDynamic braking resistors (DBR’s) for inverters and DC drive systemsA drive motor can also act as a generator. If the drive system is built so as to allow reverse power to flow then this power can be fed into a resistor, thus taking energy out of the system and causing whatever is driving the motor to slow down. The rate of braking is determined by how fast the energy is put into the DBR.The DC link capacitance of any inverter drive can itself absorb 3-5% of the regenerated power. For non-critical applications these losses, together with the mechanical losses in the drive system, may provide enough braking. Higher powers, up to 100% or more of the motor’s full load torque rating, can be absorbed and then dissipated by a DBR connected across the DC bus.Where the braking power is only a few tens or hundreds of watts a resistor mounted internally to the drive itself may be suitable, but above these levels the amount of heat generated means that a separately mounted DBR with appropriate cooling provision is needed.The DBR is switched on by a separate control unit, activated by a sensor which is monitoring the voltage level of the DC bus and switching on the DBR when this voltage rises above some preset trigger level as a result of the reverse power flowing into the drive. There may be temperature sensing in the DBR to prevent overloading of the drive.All the energy is used in heating the resistor; some is dissipated at once, the rest after the stop while the resistor cools. This is why we must know the characteristics of the duty cycle before we can specify the right size for the DBR.What is the stopping energy?The DBR turns the stop energy into heat. Both types of energy are measured in Joules (J); one Joule is a very small quantity, so we usually talk about kJ or MJ.In order to design a braking system we have to consider both the amount of heat (in Joules) and the rate at which it is generated. This is Joules/second, usually known as watts, and for the same reason usually measured in kW or MW.We therefore need to know the quantity of energy per stop, and the stop frequency.Energy per stop: determines the DBR peak powerEnergy per stop + frequency: determines the DBR average powerWe all have a good idea of what any given length, weight or time interval represents; this is usually not so for energy. By way of illustration here are some everyday examples:Man on a bike stopping: 2kJLift with four people in it: 25kJCar stopping from 50mph: 250kJFlywheel 600mm x 300mm thick, 1500rpm: 375kJ40’ container lowered on to a ship:2MJEddie Stobart’s lorry from 65mph:15MJLondon Underground train from 50mph: 50MJHow do you calculate the stopping energy put into a DBR?Stop energy (Remember friction, drag, etc all work in your favour)Remember first of all to convert everything into the right units: metres, kilograms, seconds and (for rotational energy) radians.Kinetic energy = m v2/2e.g. man on bike (60kg man, 20kg bike, 15mph or 7m/s)= 80 x 7 x 7 / 2≈ 2000J≈ 2kJRotating energy = J.ω2/2eg flywheel 600mm diameter x 300mm thick at 1500rpm(J is the moment of inertia of the flywheel)= (m.r2/2) x ω2/2= (ρπr2d x r2/2) x ω2/2= (8000 x π x 0.34 x 0.3/2) x (2π x 1500/60)2/2≈ 375,000J≈ 375kPotential energy = m.g.he.g. crane with a 10ton container lowered 20m on to a ship= 10,000 x 10 x 20= 1,000,000J= 2MJHow do you calculate the size of a DBR?To specify the resistor we need to know three things: the energy per stop, the duty cycle and the ohmic value. The first two are usually combined into one variable, the power of the resistor.PowerIn an ideal world you calculate the mechanical energy involved in each stop, using one or more of the above formulae. This will be the sum of the kinetic, rotational and potential energies, less any friction losses if these are significant, less the electrical losses in the motor/inverter system.Unfortunately the real world is different and it is much more likely that you will have little or no hard information about the application. As resistor manufacturers we like this – for safety you will probably order a bigger DBR than you really need – but you still need to make a decision. Our suggestion is as follows: if you know what the drive is being used for and can guess at the run-up time, then:stop energy = start energy (approximately)= start time x power during starting= start time x max. power/2= start time x drive power/2Knowing the stop energy and the duty cycle you can calculate the average power into the resistor and for most duty cycles this will be the right power to specify.When the stop time is short in relation to the total duty cycle we may also need to consider the thermal capacity of the resistor, to ensure that it does not overheat during a single stop. This is tabulated graphically below, showing the short-term power ratings for different sizes of our resistor range.OhmsThe ohmic value sets the rate at which we put the energy into the resistor – the braking power. The lower the ohmic value, the higher the power.The minimum ohms are set by the drive manufacturer, and will produce braking power at the peak rating of the drive (or its braking module).Ohms = (DC bus volts)2/(Peak power)Higher ohmic values can be used; they will reduce the braking power proportionally, and hence increase the stop times for any given load.台达变频器制动电阻设计来源:/autooo/yundongkongzhi/jishu/2008-01-13/46525.html 摘要:变频器的应用越来越广泛,台达变频器依靠自己强大的OEM能力和持续不断的研发能力其市场规模越来越壮大。
变频器制动电阻介绍及计算方法2010-08-05 10:16本站整理佚名我要评论(0)我要去社区论坛 ->1 引言目前市场上变频器的制动方法大致有三种:能耗制动,直流制动,回馈(再生)制动。
目前关于制动电阻的计算方法有很多种,从工程的角度来讲要精确的计算制动电阻的阻值和功率在实际应用过程中不是很实际,主要是部分参数无法精确测量。
目前通常用的方法就是估算方法,由于每一个厂家的计算方法各有不同,因此计算的结果不大一致。
2 制动电阻的介绍制动电阻是用于将电动机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。
通常在工程上选用较多的是波纹电阻和铝合金电阻两种:波纹电阻采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命,台达原厂配置的就是这样的电阻;铝合金电阻易紧密安装、易附加散热器,外型美观,高散热性的铝合金外盒全包封结构,具有极强的耐振性,耐气候性和长期稳定性;体积小、功率大,安装方便稳固,外形美观,广泛应用于高度恶劣工业环境使用。
3 制动电阻的阻值和功率计算3.1刹车使用率ED%制动使用率ED%,也就是台达说明书中的刹车使用率ED%。
刹车使用率ED%定义为减速时间T1除以减速的周期T2,制动刹车使用率主要是为了能让制动单元和刹车电阻有充分的时间来散除因制动而产生的热量;当刹车电阻发热时,电阻值将会随温度的上升而变高,制动转矩亦随之减少。
刹车使用率ED%=制动时间/刹车周期=T1/T2*100%。
(图1)图1刹车使用率ED%定义现在用一个例子来说明制动使用率的概念:10%的制动频率可以这样理解,如果制动电阻在10秒钟能够消耗掉100%的功率,那么制动电阻至少需要90秒才能把产生的热量散掉。
3.2制动单元动作电压准位当直流母线电压大于等于制动电压准位(甄别阈值)时,刹车单元动作进行能量消耗。
台达制动电压准位如表1所示。
3.3制动电阻设计(1)工程设计。
------------------------------------------------------------------------------------Please send your FAQs (.DOC-File)TOA&D AS CS3Nürnberg-Moorenbrunnvia E-Mail : csweb@ad.siemens.deTel. +49 (0) 911 895 2651Template for FAQs------------------------------------------------------------------------------------TOPIC: MM440SUBJECT/TITLE:如何正确选择制动电阻DATE: 03/09/2003QUESTION:怎样为MM440选择制动电阻?ANSWER:75kW以下MM440均内置了制动单元,所以可以直接接制动电阻来消耗掉电机回馈的能量,这称为动能制动。
动能制动是一种能耗制动,它将电动机运行在发电状态下所回馈的能量消耗在制动电阻中,从而达到快速停车的目的;当变频器带大惯量负载快速停车,或位能性负载下降时,电机可能处于发电运行状态,回馈的能量将造成变频器直流母线电压升高,从而导致变频器过压跳闸。
所以应该安装制动电阻来消耗掉回馈的能量。
75kW以下MM440均内置了制动单元,可直接连接制动电阻;90kW以上MM440需外接制动单元后方可连接制动电阻;选择正确的制动电阻是保证制动效果并避免设备损坏的必要条件:首先要计算制动功率并绘制正确的制动曲线;再根据制动曲线确定制动周期及制动功率;根据所确定的制动功率及制动周期,同时参考电压、阻值等条件选择合适的制动电阻;所选制动电阻阻值不能小于选型手册中规定的数值,否则将直接造成变频器损坏!这在电阻选型时应予以说明。
有时候制动功率不好确定,或为了确保安全,可选择制动功率较大的电阻;西门子标准传动产品提供的MM4系列制动电阻均为5%制动周期的电阻,所以在选型时应加以注意;制动周期在参数P1237中选择;同时应将P1240设置为0用以禁止直流电压控制器;制动周期的计算有时候容易混乱。
变频器制动电阻的计算方法收藏此信息打印该信息添加:不详来源:未知A、首先估算出制动转矩一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置;B、接着计算制动电阻的阻值在制动单元工作过程中,直流母线的电压的升降取决于常数R C,R即为制动电阻的阻值,C为变频器内部电解电容的容量。
这里制动单元动作电压值一般为710V。
C、然后进行制动单元的选择在进行制动单元的选择时,制动单元的工作最大电流是选择的唯一依据,其计算公式如下:D、最后计算制动电阻的标称功率由于制动电阻为短时工作制,因此根据电阻的特性和技术指标,我们知道电阻的标称功率将小于通电时的消耗功率,一般可用下式求得:制动电阻标称功率= 制动电阻降额系数X 制动期间平均消耗功率X 制动使用率% 2.6 制动特点能耗制动(电阻制动)的优点是构造简单,缺点是运行效率降低,特别是在频繁制动时将要消耗大量的能量,且制动电阻的容量将增大。
制动力矩计算要有足够的制动力矩才能产生需要的制动效果,制动力矩太小,变频器仍然会过电压跳闸。
制动力矩越大,制动能力越强,制动性能约好。
但是制动力矩要求越大,设备投资也会越大。
制动力矩精确计算困难,一般进行估算就能满足要求。
按100%制动力矩设计,可以满足90%以上的负载。
对电梯,提升机,吊车,按100% 开卷和卷起设备,按120%计算离心机100% 需要急速停车的大惯性负载,可能需要120%的制动力矩普通惯性负载8 0% 在极端的情况下,制动力矩可以设计为150%,此时对制动单元和制动电阻都必须仔细合算,因为此时设备可能工作在极限状态,计算错误可能导致损坏变频器本身。
超过1 50%的力矩是没有必要的,因为超过了这个数值,变频器本身也到了极限,没有增大的余地了。
电阻制动单元的制动电流计算(按100%制动力矩计算)制动电流是指流过制动单元和制动电阻的直流电流。
1」The block diagain is shc^ belowtK meta*iovi5T& KMHzs-phmrpui)X E LS.rvomnptiif!DJ 眼流底邕MoistfinerEttrfli rcfl^neretvB mitor {QS1K*CptofiUVQSI OlinjOSf 03----------- -------- 外£«生电eShK-wtorrtens e rentsftMM(OriyiKQSI W Ml 3512^^ 內 S 再生电 SBServogcc«cr\o<rtszev !汕'rh•限流电阻的使用•再生电阻的使用♦动态制动电阻的使用PR 流电阳.再牛QiPfb 制动电阴的便用场所如图所示JiK 动器率号不同向决定足杏带俗内W 轉生电阻.外胃再生电阳由客户选型・fttiW.口Peittcvr 05191♦限流电阻的便川方法山于电容•血动机(迫感)尊原fT 的存金.投入电源的瞬何电路小通过很府的电渝•仃 时if 右达平常时的100倍•它对能造成开关的烧损•悚险绞祈断电气部y 揃坏等•必 鉞加以限制. 方法X1 •电路中血接m 联电阻电路简单.但正常状态时也一立消耗电力,造成一定电用降,除一斗消耗电流很小 场合,儿乎很中川2.电路联热敏电阻(负温度特件)电路中出联的是热放电PH (负温度特竹)•这样,电源投入时温度低ifijPHtfl 岛. 可以限制电渝,一段H -KNJJUI I I y-a 体发烁 温度升W 血川(ft 降低,电力拗失卜• 降・錶点,电源切I 析后》吉上又投入时•3・rtiPll 勺开关采用如图所示的电路•电源投入时由开 光断开•由电阳限流.一段时间后开关 动作闭合.将电PII 知略•报警62#主冋路电压不足除操作说期炉"所记或的电源电爪不足等広! W 外•诸注盘以卜r*况: 1. 限流电阻(PRS )斯賂廉W :频累地开.关电源•造成限流电阻一 IH 匚作•持续流过局电流而饶坏. 请检仕电源的接线圧否松动电源的ON-OFF 频率不能粗过5次〃卜时。