55KW变频器配套用制动单元制动电阻
- 格式:pdf
- 大小:1.02 MB
- 文档页数:7
变频器为什么要连接制动电阻从变频器的工作原理可知,改变电机工作电源频率需要经过整流-->逆变的过程,制动电阻就处在整流后的位置,见下图⑧和⑨之间的电阻:那么制动电阻是起什么作用呢?下图示例中:当电机处在减速阶段时,电机开始向变频器反馈能量,即P-brake;然后直流侧电压开始升高,当电压升高到一定阈值后,制动斩波器(BRC)处于ON的状态,此时反馈的能量开始释放到制动电阻上,即Pv由于多余的能量通过制动电阻以热能的形式消耗掉,因此直流侧电压开始降低,当降低到一定阈值后,制动斩波器(BRC)处于OFF的状态,制动电阻不再工作。
以上就是制动电阻工作的原理及流程。
一般情况下,由于各厂家的设计理念不同,直流侧的电容在设计上可能存在差异。
有些产品电容大,在工作时,能够吸收较多的能量,当工况不十分严苛时,可能就不需要制动电阻也能正常工作。
有些产品电容小,无法吸收反馈能量,此时加制动电阻就十分必要的,像SEW的MDX61B或者MC07B不加制动电阻时,如果报警F04或者F07,很有可能就是因为没有制动电阻的原因。
制动电阻的作用1、保护变频器不受再生电能的危害电机在快速停车过程中,由于惯性作用,会产生大量的再生电能,如果不及时消耗掉这部分再生电能,就会直接作用于变频器的直流电路部分,轻者,变频器会报故障,重者,则会损害变频器;制动电阻的出现,很好的解决了这个问题,保护变频器不受电机再生电能的危害。
2、保证电电源网络的平稳运行制动电阻将电机快速制动过程中的再生电能直接转化为热能,这样再生电能就不会反馈到电源电网络中,不会造成电网电压波动,从而起到了保证电源网络的平稳运行的作用。
变频器配制动电阻,主要是想通过制动电阻来消耗掉直流母线电容上的一部分能量,避免电容的电压过高。
理论上如果电容存储的能量多,可以用来释放出来驱动电机,避免能量浪费,但是电容的容量有限,而电容的耐压也是有限的,当母线电容的电压高到一定程度,就可能会损坏电容了,有些还可能损坏IGBT,所以需要及时通过制动电阻来释放电,这种释放,是白白浪费掉的,是一种没有办法的做法。
变频器制动电阻的确定0 引言在通用变频器、异步电动机和机械负载所组成的变频调速传动系统中,当电动机减速或所传动的位能负载下放时,异步电动机将处于再生发电制动状态。
传动系统中所储存的机械能经异步电动机转换成电能,通过逆变器的续流二极管整流后回馈到直流侧,致使直流侧储能电容器的电压上升。
如果电动机的制动并不快,电容器的电压升高就不十分明显。
相反,如果电动机制动较快时,电容器的电压会上升很高,过高的电压会使变频器中的“制动过电压保护”动作,甚至造成变频器损坏。
目前,在变频调速系统中,电动机的快速制动或准确停车,一般采用动力制动和再生制动。
对于动力制动方式,系统所需的制动转矩在电动机额定转矩的20%以下且制动并不快时,则不需要外接制动电阻,仅电动机内部的有功损耗,就可以使直流侧电压限制在过电压保护的动作值以下。
反之,则需要选择制动电阻来耗散电动机再生的这部分能量。
1 变频器动力制动原理1.1 变频器电压检测及驱动电路为了实现电气制动,变频器的直流侧必须设置电压检测电路,检测电容器的电压,以实现能耗制动。
图1为一种电压检测电路的工作原理图。
电压检测电路主要由电压采样电阻R1、R2、R3,滞环比较器LM399,逻辑转换器件等组成。
电压采样回路直接检测变频器直流侧电容器C 两端的电压,当被检测电压值超过设定的允许值时,滞环比较器翻转,输出端接近0 V,经逻辑转换后,触发制动晶体管V 导通,经过电阻R0释放,使电压下降;反之,当检测电压低于设定值时,滞环比较器翻转回原状态,使V关断。
特别强调的是,滞环比较器上下限值的设定很重要。
一般选择原则:上限电压设定为正常直流电压的1.3倍,下限电压应考虑电网正常电压的波动,一般整定为略高于电网电压向上波动的最大值。
1.2 变频器制动单元如图2 虚线框所示为制动单元PW 的实际电路,包括晶体管V、二极管D1、D2和制动电阻RB。
如果回馈能量较大或要求强制动时,还可以选用接于H、G两点间的外接制动电阻REB。
变频器制动电阻的选择及安装和配线注意事项在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。
当同步转速小于转子转速时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩,使电机的转速迅速下降,电机处于再生制动状态。
电机再生的电能经续流二极管全波整流后反馈到直流电路。
由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压升高。
过高的直流电压将使各部分器件受到损害。
因此,对于负载处于发电制动状态中必须采取必需的措施处理这部分再生能量。
处理再生能量的方法:能耗制动和回馈制动。
能耗制动的工作方式能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动。
这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。
制动单元制动单元的功能是当直流回路的电压Ud超过规定的限值时(如660V或710V),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。
制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。
从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路。
制动电阻制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。
通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。
变频器制动电阻介绍及阻值和功率计算方法
1 引言目前市场上变频器的制动方法大致有三种:能耗制动,直流制动,回馈(再生)制动。
目前关于制动电阻的计算方法有很多种,从工程的角度来讲要精确的计算制动电阻的阻值和功率在实际应用过程中不是很实际,主要是部分参数无法精确测量。
目前通常用的方法就是估算方法,由于每一个厂家的计算方法各有不同,因此计算的结果不大一致。
2 制动电阻的介绍制动电阻是用于将电动机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。
通常在工程上选用较多的是波纹电阻和铝合金电阻两种:波纹电阻采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命,台达原厂配置的就是这样的电阻;铝合金电阻易紧密安装、易附加散热器,外型美观,高散热性的铝合金外盒全包封结构,具有极强的耐振性,耐气候性和长期稳定性;体积小、功率大,安装方便稳固,外形美观,广泛应用于高度恶劣工业环境使用。
3 制动电阻的阻值和功率计算 3.1 刹车使用率ED% 制动使用率ED%,也就是台达说明书中的刹车使用率ED%。
刹车使用率ED%定义为减速时间T1 除以减速的周
期T2,制动刹车使用率主要是为了能让制动单元和刹车电阻有充分的时间来散
除因制动而产生的热量;当刹车电阻发热时,电阻值将会随温度的上升而变高,制动转矩亦随之减少。
刹车使用率ED%=制动时间/刹车周期=T1/T2*100%。
(其中:制动电压准位电机的额定电流为了保证变频器不受损坏,强制限定当流过制动电阻的电流为额定电流时的电阻数值为制动电阻的最小数值。
选择制动电阻的阻值时,不能小于该阻值。
根据以上所叙,制动电阻的阻值的选择范围为:。
电动机知识变频器外围配置之制动电阻在电压型变频器中通常采用图3-25所示的再生制动电路。
下面介绍制动电阻的选择方法和步骤。
(1)计算制动转矩首先按下式计算制动转矩TB (Nm):(4-16)式中JM――电动机转动惯量,kgm2 ;JL――负载转动惯量(折算到电动机轴的),kgm2;n1――减速开始速度,r/min;n2――减速结束速度,r/min;ts――减速时间,s;TL――负载转矩,Nm。
(2)计算制动电阻的阻值在进行再生制动时,即使不加放电的制动电阻,电动机内部也有20%的铜损被转换为制动转矩。
考虑到这个因素,可以先按下式初步计算制动电阻的预选值。
(4-17)式中Uc――直流电路电压(200V级为380V,400V级为760V),V;TB――制动转矩.Nm;TM――电动机额定转矩,Nm;n1――减速开始速度,r/min。
若在式(4-17)中,TB -0.2 TM <0,则没有必要加制动电阻。
如图4-32所示,放电电路由制动电阻和三极管组成,而电路电流的最大允许值则取决于三极管本身的允许电流Ic,即制动电阻所能选择的最小值Rmin为(4-18)因比,制动电阻RB的阻值应由式(4-19)决定:RminBOB (4-19)有时厂家也为自己的产品给出制动电阻最小值的参考值供用户选择。
(3)计算制动电阻的平均消耗功率Pr。
(kW)如前所述,占电动机额定转矩20%的制动转矩由电动机内部损失产生,因此,可按下式求得电动机制动时制动电阻上消耗的平均功率Domain: 直流减速电机More:2saffa (4―20)(4)计算制动电阻的额定功率Pr(kW)制动电阻的选择根据电动机是否处于反复加减速模式而异。
图4-32给出了减速模式,而图4-33则给出了通常作为制动电阻使用的一种电阻的功率增加率特性示意图。
在选择制动电阻时,应根据电动机的减速模式首先利用图4-33求出功率增加率m,并利用前面求得的制动电阻的平均消耗功率Pr。