掺混合材料的硅酸盐水泥品种
- 格式:ppt
- 大小:1.67 MB
- 文档页数:21
土木工程材料练习题C答案一、解释下列名词与符号【每小题5分,共30分】1、材料的空隙率:空隙率是指在某堆积体积中,散粒材料颗粒之间的空隙体积所占的比例。
2、5 :是指钢材的试件标距长度为5倍直径时的伸长率。
3、硅酸盐水泥:凡由硅酸盐水泥熟料、0~5%石灰石或粒化高炉矿渣、适量石膏磨细制成的水硬性胶凝材料,称为硅酸盐水泥。
4、水泥的水化:是指水泥熟料矿物与水发生的水解或水化作用统称为水泥的水化。
5、砂子的颗粒级配:颗粒级配,砂的颗粒级配表示了砂的大小颗粒之间的搭配情况。
在混凝土中应尽量减小砂粒之间的空隙。
6、沥青的针入度:粘稠石油沥青的相对粘度是用针入度仪测定的针入度来表示。
粘稠沥青针入度的测定方法:是在规定的温度25℃条件下,以规定重量100g的标准针,经历规定时间5s贯入试样中的深度,以1/10mm为单位表示。
二、何为钢材疲劳强度?建筑钢材疲劳强度是如何确定的?【5分】1、钢材的疲劳强度:是指在疲劳试验中,试件在交变应力作用下,于规定的周期数内不发生断裂所能承受的最大应力。
2、测定钢筋疲劳极限时,通常采用拉应力循环,对于非预应力钢筋的应力比为0.1~0.8;预应力钢筋则采用0.7~0.85。
普通结构用钢材周期基数取200万次或,对于比较重要结构用钢筋周期基数取400万次。
三、试说明硅酸盐水泥的凝结硬化过程。
其水化与凝结硬化分几个阶段?【15分】1、硅酸盐水泥的凝结硬化过程:水泥颗粒的水化从其表面开始。
水和水泥一接触,水泥颗粒表面的水泥熟料先溶解于水,然后与水反应,或水泥熟料在固态直接与水反应,形成相应的水化物,水化物溶解于水。
由于各种水化物的溶解度很小,水化物的生成速度大于水化物向溶液中扩散的速度。
水泥水化反应发生后的几分钟内,水泥颗粒周围的溶液成为水化物的过饱和溶液,先后析出水化硅酸钙凝胶、水化硫铝酸钙、氢氧化钙和水化铝酸钙晶体等水化物,包在水泥颗粒表面。
在水化初期,水化物不多,包有水化物膜层的水泥颗粒之间还是分离着的,水泥浆具有可塑性。
掺混合材料硅酸盐水泥的种类
掺混合材料硅酸盐水泥种类较多,常见的有以下几种:
1. P.O 4
2.5级水泥:这是掺杂混合材料后常用的一种硅酸盐水泥,能够满足强度要求同时具有较好的工艺性能。
2. P.C 32.5R级水泥:这是一种较为经济实惠的掺合材料后硅酸
盐水泥,可以通过掺杂矿渣、粉煤灰、矿渣粉等进一步减少成本。
3. 矿物掺合材料水泥:这种水泥主要以矾土、粉煤灰、矿渣等掺
杂物为主,能够在保证强度的前提下减少水泥用量,同时还能改善混
凝土的耐久性等性能。
4. 玻璃微珠掺合材料水泥:这是新型的微珠掺合材料水泥,晶粒
细小、有机械强度高、热稳定性好等特点,可以提高混凝土结构的强
度和耐久性。
总之,市场上的掺混合材料硅酸盐水泥种类丰富多样,根据不同
的需求和条件可以选择不同的材料以达到更优的效果。
五种常用硅酸盐系水泥的成分、特性的适用范围(一)硅酸盐水泥PI PII成分:1. 水泥熟料及少量石膏(Ⅰ型) ;2. 水泥熟料、5%以下混合材料、适量石膏(Ⅱ型)主要特征:1. 早期强度高;2. 水化热高;3. 耐冻性好;4. 耐热性差;5. 耐腐蚀性差;6. 干缩较小。
适用范围:1. 制造地上地下及水中的混凝土、钢筋混凝土及预应力混凝土结构,包括受循环冻融的结构及早期强度要求较高的工程;2. 配制建筑砂浆不适用处:1. 大体积混凝土工程;2. 受化学及海水侵蚀的工程(二)普通水泥(P.O)成分:在硅酸盐水泥中掺活性混合材料6%~15%或非活性混合材料10%以下主要特征:1. 早强;2. 水化热较高;3. 耐冻性较好;4. 耐热性较差;5. 耐腐蚀性较差;6.干缩较小;适用范围:与硅酸盐水泥基本相同不适用处:同硅酸盐水泥(三)矿渣水泥(P·S)成分:在硅酸盐水泥中掺入20%~70%的粒化高炉矿渣主要特征:1. 早期强度低,后期强度增长较快;2. 水化热较低;3. 耐热性较好;4. 对硫酸盐类侵蚀抗和抗水性较好;5. 抗冻性较差;6. 干缩较大;7. 抗渗性差;8. 抗碳化能力差抵适用范围:1. 大体积工程;2. 高温车间和有耐热耐火要求的混凝土结构;3. 蒸汽养护的构件;4. 一般地上地下和水中的混凝土及钢筋混凝土结构;5. 有抗硫酸盐侵蚀要求的工程;6. 配建筑砂浆不适用处:1. 早期强度要求较高的混凝土工程;2. 有抗冻要求的混凝土工程(四)火山灰水泥(P·P)成分:在硅酸盐水泥中掺入20%~50%火山灰质混合材料主要特征:1. 早期强度低,后期强度增长较快;2. 水化热较低;3. 耐热性较差;4. 对硫酸盐类侵蚀抵抗力和抗水性较好;5. 抗冻性较差;6. 干缩较大;7. 抗渗性较好适用范围:1. 地下、水中大体积混凝土结构;2. 有抗渗要求的工程;3. 蒸汽养护的工程构件;4. 有抗硫酸盐侵蚀要求的工程;5. 一般混凝土及钢筋混凝土工程;6. 配制建筑砂浆不适用范处:1. 早期强度要求较高的混凝土工程;2. 有抗冻要求的混凝土工程;3. 干燥环境的混凝土工程;4. 耐磨性要求的工程(五)粉煤灰水泥(P·F)成分:在硅酸盐水泥中掺入20%~40%粉煤灰主要特征:1. 早期强度低,后期强度增长较快;2. 水化热较低;3. 耐热性较差;4. 对硫酸盐类侵蚀和抗水性较好;5. 抗冻性较差;6. 干缩较小;7. 抗碳化能力较差适用范围:1. 地上、地下、水中和大体积混凝土工程;2. 蒸汽养护的构件;3. 有抗裂性要求较高的构件;4. 有抗硫酸盐侵蚀要求的工程;5. 一般混凝土工程;6. 配制建筑砂浆不适用处:1. 早期强度要求较高的混凝土工程;2. 有抗冻要求的混凝土工程;3. 抗碳化要求的工程。
1 范围本标准规定了通用硅酸盐水泥的术语和定义、分类、组分与材料、强度等级、技术要求、试验方法、检验规则和包装、标志、运输与贮存等。
本标准适用于通用硅酸盐水泥。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
GB/T 176 水泥化学分析方法(GB/T 176—1996,eqv ISO 680:1990)GB/T 203 用于水泥中的粒化高炉矿渣GB/T 750 水泥压蒸安定性试验方法GB/T 1345 水泥细度检验方法筛析法GB/T 1346 水泥标准稠度用水量、凝结时间、安定性检验方法(GB/T 1346--2001,eqv ISO 9597:1989)GB/T 1596 用于水泥和混凝土中的粉煤灰GB/T 2419 水泥胶砂流动度测定方法GB/T 2847 用于水泥中的火山灰质混合材料GB/T 5483 石膏和硬石膏GB/T 8074 水泥比表面积测定方法勃氏法GB 9774 水泥包装袋GB 12573 水泥取样方法GB/T 12960 水泥组分的定量测定GB/T 17671 水泥胶砂强度检验方法(ISO法)(GB/T 17671—1999,idt ISO 679:1989) GB/T 18046 用于水泥和混凝土中的粒化高炉矿渣粉JC/T 420 水泥原料中氯离子的化学分析方法JC/T 667 水泥助磨剂JC/T 742 掺入水泥中的回转窑窑灰3 术语和定义下列术语和定义适用于本标准。
通用硅酸盐水泥 common portland cement以硅酸盐水泥熟料和适量的石膏,及规定的混合材料制成的水硬性胶凝材料。
4 分类本标准规定的通用硅酸盐水泥按混合材料的品种和掺量分为硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥。
掺混合材料的硅酸盐水泥掺混合材料的硅酸盐水泥(Blended cement)是指通过将普通硅酸盐水泥与其他材料进行混合,形成一种新型水泥。
混合材料可以是粉煤灰、矿渣粉、石膏或其他具有水泥特性的材料。
这种混合材料的硅酸盐水泥在建筑领域得到广泛应用,因为它具有减少碳排放、提高混凝土性能和延长混凝土寿命等优点。
首先,掺混合材料的硅酸盐水泥可以大幅降低建筑产业的碳排放。
普通硅酸盐水泥的生产过程会产生大量的二氧化碳,这是因为石灰石在高温炉中被煅烧的过程中会释放出二氧化碳。
而混合材料的硅酸盐水泥可以减少单方生产原料的使用量,从而减少碳排放。
例如,当石灰石掺入粉煤灰或矿渣粉时,水泥的碳排放量可以降低30%以上。
这有助于减少建筑行业对于全球气候变化的影响。
其次,掺混合材料的硅酸盐水泥可以提高混凝土的性能。
混合材料中的粉煤灰或矿渣粉等物质具有活性,可以更加充分地发挥水泥的水化特性,提高混凝土的强度和耐久性。
特别是在高温环境下,掺混合材料的硅酸盐水泥可以减少水泥的受热膨胀,提高混凝土的稳定性。
此外,使用掺混合材料的硅酸盐水泥可以减少混凝土的收缩和开裂,提高整体结构的稳定性。
最后,掺混合材料的硅酸盐水泥可以延长混凝土的使用寿命。
普通硅酸盐水泥在使用一段时间后,容易发生钙碱反应,导致混凝土内部出现裂缝,降低结构的强度和稳定性。
然而,掺混合材料的硅酸盐水泥可以抑制钙碱反应的发生,延长混凝土的使用寿命。
此外,掺混合材料的硅酸盐水泥可以提高混凝土的耐久性,减少水泥的氯离子渗透,从而减少混凝土内部钢筋的腐蚀。
总之,掺混合材料的硅酸盐水泥在建筑领域具有广泛的应用前景。
它可以减少碳排放,提高混凝土性能和延长混凝土寿命。
随着环境问题和可持续发展的重要性不断提高,掺混合材料的硅酸盐水泥将逐渐取代传统的硅酸盐水泥,成为建筑行业的重要选择。
五种常用硅酸盐系水泥的成分、特性的适用范围作者:2008(一)硅酸盐水泥PI PII成分:1. 水泥熟料及少量石膏(Ⅰ型)2. 水泥熟料、5%以下混合材料、适量石膏(Ⅱ型)主要特征:1. 早期强度高2. 水化热高3. 耐冻性好4. 耐热性差5. 耐腐蚀性差6. 干缩较小适用范围:1. 制造地上地下及水中的混凝土、钢筋混凝土及预应力混凝土结构,包括受循环冻融的结构及早期强度要求较高的工程2. 配制建筑砂浆不适用处:1. 大体积混凝土工程2. 受化学及海水侵蚀的工程(二)普通水泥(P.O)成分:在硅酸盐水泥中掺活性混合材料6%~15%或非活性混合材料10%以下主要特征:1. 早强2. 水化热较高3. 耐冻性较好4. 耐热性较差5. 耐腐蚀性较差6. 干缩较小适用范围:与硅酸盐水泥基本相同不适用处:同硅酸盐水泥(三)矿渣水泥(P·S)成分:在硅酸盐水泥中掺入20%~70%的粒化高炉矿渣主要特征:1. 早期强度低,后期强度增长较快2. 水化热较低3. 耐热性较好4. 对硫酸盐类侵蚀抗和抗水性较好5. 抗冻性较差6. 干缩较大7. 抗渗性差8. 抗碳化能力差抵适用范围:1. 大体积工程2. 高温车间和有耐热耐火要求的混凝土结构3. 蒸汽养护的构件4. 一般地上地下和水中的混凝土及钢筋混凝土结构5. 有抗硫酸盐侵蚀要求的工程6. 配建筑砂浆不适用处:1. 早期强度要求较高的混凝土工程2. 有抗冻要求的混凝土工程(四)火山灰水泥(P·P)成分:在硅酸盐水泥中掺入20%~50%火山灰质混合材料主要特征:1. 早期强度低,后期强度增长较快2. 水化热较低3. 耐热性较差4. 对硫酸盐类侵蚀抵抗力和抗水性较好5. 抗冻性较差6. 干缩较大7. 抗渗性较好适用范围:1. 地下、水中大体积混凝土结构2. 有抗渗要求的工程3. 蒸汽养护的工程构件4. 有抗硫酸盐侵蚀要求的工程5. 一般混凝土及钢筋混凝土工程6. 配制建筑砂浆不适用范处:1. 早期强度要求较高的混凝土工程2. 有抗冻要求的混凝土工程3. 干燥环境的混凝土工程4. 耐磨性要求的工程(五)粉煤灰水泥(P·F)成分:在硅酸盐水泥中掺入20%~40%粉煤灰主要特征:1. 早期强度低,后期强度增长较快2. 水化热较低3. 耐热性较差4. 对硫酸盐类侵蚀和抗水性较好5. 抗冻性较差6. 干缩较小7. 抗碳化能力较差适用范围:1. 地上、地下、水中和大体积混凝土工程2. 蒸汽养护的构件3. 有抗裂性要求较高的构件4. 有抗硫酸盐侵蚀要求的工程5. 一般混凝土工程6. 配制建筑砂浆不适用处:1. 早期强度要求较高的混凝土工程2. 有抗冻要求的混凝土工程3. 抗碳化要求的工程国标po42.5水泥详细成分表目品种PII52.5R PO52.5R PO42.5R PC32.5R国标企标国标企标国标企标国标企标不溶物% ≤1.5 ≤1.3 / / / / / /氧化镁% ≤5.0 ≤3.0 ≤5.0 ≤3.0 ≤5.0 ≤3.0 ≤5.0≤3.0三氧化硫% ≤3.5 ≤3.0 ≤3.5 ≤3.0 ≤3.5 ≤3.0 ≤3.5 ≤3.0烧失量% ≤3.5 ≤3.0 ≤5.0 ≤4.5 ≤5.0 ≤4.5 / /比表面积M2/kg ≥300 ≥300 / / / / / /碱含量% / ≤0.60 / ≤0.60 / ≤0.60 / ≤0.6080um筛余% / / ≤10.0 ≤5.0 ≤10.0 ≤5.0 ≤10.0 ≤5.0安定性须合格须合格须合格须合格须合格须合格须合格须合格初凝Min ≥45 ≥45 ≥45 ≥45 ≥45 ≥45 ≥45 ≥45终凝Min ≤390 ≤270 ≤600 ≤300 ≤600 ≤300 ≤600 ≤330抗压度Mpa 3天≥27.0 ≥29.0 ≥26.0 ≥28.0 ≥21.0 ≥25.0 ≥16.0 ≥18.0 28天≥52.5 ≥56.0 ≥52.5 ≥56.0 ≥42.5 ≥46.0 ≥32.5 ≥36.0抗压强度Mpa 3天≥5.0 ≥5.5 ≥5.0 ≥5.0 ≥4.0 ≥5.0 ≥3.5 ≥4.028天≥7.0 ≥8.0 ≥7.0 ≥8.0 ≥6.5 ≥8.0 ≥5.5 ≥6.0。
常见的复合硅酸盐水泥有哪些种类在水泥生产时加入混合材料,可以节约熟料及相关的资源与能源,提高水泥产量,降低水泥成本,大量利用工业废渣还可以减少环境的污染。
同时,混合材料也可以改善水泥的某些性能,如降低水化热,提高耐久性能等。
我国通用水泥标准中允许掺加混合材料已有几十年的历史,目前掺加混合材料的硅酸盐水泥在国外也越来越多。
王幼云等人的大量试验证明,采用两种或两种以上混合材料复掺较单掺时能明显改善水泥的性能。
当然,并不是各类混合材料简单的混合,而是有意识地取长补短,产生单一混合材料不能有的优良效果。
我国水泥工业界已逐渐认识到复合水泥的优越性,在该水泥的研究、生产方面有了较大的发展,出现了多种体系的复合水泥,不仅有传统混合材料生产的复合水泥,也有新幵辟混合材料的复合水泥。
传统的混合材料为高炉矿渣、火山灰、粉煤灰、石灰石、砂岩、窑灰等; 新幵辟的混合材料有化铁炉渣、精炼铬铁渣、增钙液态渣、磷渣、钛渣等。
(1) 含矿渣的复合水泥粒化高炉矿渣在我国早已成为一种重要的水泥原料,由于其来源、分布方面的原因,致使许多地区矿渣资源很紧张,价格较高。
为了节约矿渣掺量,降低水泥成本,一些企业采用石灰石、沸石、磷渣、粉煤灰、钢渣、煤矸石等与矿渣双掺或三掺,因而形成了以矿渣为主要混合材料的系列复合水泥。
1) 矿渣、石灰石复合水泥据李东旭等人的研究,矿渣与石灰石双掺后,其3d抗压强度高于两者中任一种单掺时强度。
总掺量为20% ~50%时,复合水泥的抗压强度随石灰石掺量增加而降低。
当石灰石掺量控制在10%以内时,不会改变原矿渣水泥的性能。
中国水泥厂用矿渣(20% ~26%)、石灰石(5% ~9%)、窑灰(2% ~4%)三掺,生产出了28d抗压强度高于52.5MPa的复合水泥。
济南水泥厂以矿渣(28% )与石灰石为混合材料生产复合水泥,石灰石掺量为12% ~ 15%,其早期强度优于矿渣水泥,初凝时间也较理想。
以矿渣、石灰石、粉煤灰三掺时,粉煤灰不宜超过3%的掺加量,否则早期强度偏低,凝结时间也延长了。