高思导引 四年级第三讲 还原问题与年龄问题教师版
- 格式:doc
- 大小:109.00 KB
- 文档页数:7
四年级高斯数学导引第三讲超越篇(原创实用版)目录1.导引简介2.高斯数学导引的内容3.四年级高斯数学导引第三讲的主要内容4.超越篇的含义和作用5.超越篇的主要知识点6.总结正文一、导引简介《四年级高斯数学导引》是一本针对小学四年级学生的数学辅导教材,以德国数学家高斯的教学理念为基础,结合我国的教育实际,为学生提供系统、全面的数学知识。
本书的内容涵盖了四年级数学课程的全部知识点,旨在帮助学生更好地理解和掌握数学知识,提高学生的数学素养和解题能力。
二、高斯数学导引的内容《四年级高斯数学导引》共分为十讲,内容包括:算术、代数、几何、测量、组合、概率、逻辑、方法、策略、竞赛等。
每讲都按照知识点的难易程度和学生的接受能力进行编排,既有基本概念的讲解,也有综合运用的训练,让学生在掌握知识的同时,也能学会解题的方法和技巧。
三、四年级高斯数学导引第三讲的主要内容第三讲为超越篇,主要介绍了一些基本的超越数及其性质。
超越数是指不能表示为两个整数的比值的实数,例如圆周率π和自然对数的底数 e等。
本讲的主要内容包括:超越数的概念、性质、分类和一些著名的超越数等。
四、超越篇的含义和作用超越篇的含义是指那些不能用有理数表示的实数,它们在数学中有着广泛的应用。
学习超越数,有助于学生更好地理解实数的概念,丰富学生的数学知识,提高学生的数学素养。
同时,超越数的学习也为以后学习更高级的数学知识打下基础。
五、超越篇的主要知识点1.超越数的概念:不能表示为两个整数的比值的实数。
2.超越数的性质:无理数、无限不循环小数、不能表示为整系数方程的根等。
3.超越数的分类:代数无理数、无理代数数、超越代数数等。
4.著名的超越数:圆周率π、自然对数的底数 e、黄金分割比例φ等。
六、总结《四年级高斯数学导引》第三讲超越篇为学生介绍了一些基本的超越数及其性质,让学生了解到超越数的概念、性质、分类和一些著名的超越数等知识。
三年级上(二升三暑假&三年级秋季)第1讲乘除法巧算三年级导引第1讲第2讲枚举法中的字典排列三年级导引第3讲第3讲移多补少与等量代换三年级导引第8讲第4讲寻找隐藏周期三年级导引第7讲第5讲植树问题三年级导引第19讲第6讲复杂间隔问题三年级导引第19讲第7讲和倍与和差三年级导引第5讲第8讲归一问题三年级导引第2讲第9讲假设法解鸡兔同笼三年级导引第8讲第10讲分组法解鸡兔同笼三年级导引第8讲第11讲乘法分配律三年级导引第13讲第12讲差倍三年级导引第5讲第13讲多个对象和差倍三年级导引第5讲第14讲树形图三年级导引第14讲第15讲多重周期问题三年级导引第7讲第16讲复杂周期问题三年级导引第7讲第17讲数字趣题三年级导引第23讲第18讲假设法进阶三年级导引第17讲第19讲分组法进阶三年级导引第17讲第20讲等差数列初步三年级导引第9讲第21讲等差数列求和三年级导引第9讲第22讲等差数列应用三年级导引第9讲第23讲基本盈亏问题三年级导引第11讲三年级下(三年级寒假&三年级春季)第1讲和差倍中的隐藏条件三年级导引第15讲第2讲复杂和差倍三年级导引第15讲第3讲假设分组综合提高三年级导引第17讲第4讲数字计数三年级导引第14讲第5讲巧填算符进阶三年级导引第20讲第6讲算符与数字三年级导引第20讲第7讲数阵图初步四年级导引第2讲第8讲盈亏条件的转化三年级导引第21讲第9讲复杂盈亏问题三年级导引第21讲第10讲四则混合运算三年级导引第13讲第11讲简单乘法竖式三年级导引第16讲第12讲简单除法竖式三年级导引第16讲第13讲简单抽屉原理四年级导引第6讲第14讲还原问题四年级导引第9讲第15讲长度计算三年级导引第22讲第16讲角度计算三年级导引第22讲第17讲找位置四年级导引第10讲第18讲阵列问题三年级导引第19讲第19讲几何图形剪拼四年级导引第4讲第20讲思维游戏四年级导引第23讲第1讲整数计算综合四年级导引第01讲第2讲和差倍中的分组比较四年级导引第08讲第3讲基本直线形面积公式四年级导引第07讲第4讲字母竖式四年级导引第03讲第5讲加法原理与乘法原理四年级导引第11讲第6讲相遇问题四年级导引第05讲第7讲追及问题四年级导引第05讲第8讲数列规律计算四年级导引第10讲第9讲统筹规划四年级导引第12讲第10讲游戏策略四年级导引第12讲第11讲整数数列计算四年级导引第01讲第12讲乘法原理进阶四年级导引第11讲第13讲变倍问题四年级导引第08讲第14讲年龄问题四年级导引第09讲第15讲逻辑推理一四年级导引第24讲第16讲多位数巧算四年级导引第13讲第17讲复杂竖式四年级导引第15讲第18讲火车行程初步四年级导引第18讲第19讲火车行程进阶四年级导引第18讲第20讲底高的选取与组合四年级导引第07讲第21讲等积变形四年级导引第07讲第22讲数表规律计算四年级导引第10讲第23讲最值问题一四年级导引第23讲第1讲从洛书到幻方四年级导引第20讲第2讲小数巧算四年级导引第13讲第3讲多人多次相遇与追及四年级导引第18讲第4讲格点图形面积计算四年级导引第17讲第5讲割补法巧算面积四年级导引第17讲第6讲横式问题四年级导引第16讲第7讲平均数问题四年级导引第14讲第8讲复杂数阵图四年级导引第20讲第9讲排列组合公式四年级导引第21讲第10讲排列组合应用四年级导引第21讲第11讲分段计算的行程问题四年级导引第19讲第12讲直线形面积计算综合提高五年级导引第14讲第13讲多次往返相遇与追及四年级导引第19讲第14讲有特殊要求的挑选四年级导引第22讲第15讲捆绑法与插空法四年级导引第22讲第16讲奇偶性分析五年级导引第23讲第17讲牛吃草问题五年级导引第18讲第18讲整数裂项五年级导引第13讲第19讲容斥原理五年级导引第04讲第20讲复杂抽屉原理五年级导引第24讲第1讲整除问题初步五年级导引第2讲第2讲整除问题进阶五年级导引第2讲第3讲质数与合数五年级导引第3讲第4讲环形路线五年级导引第5讲第5讲分数基本计算五年级导引第1讲第6讲直线形计算中的倍数关系五年级导引第14讲第7讲解方程与方程组六年级导引第4讲第8讲分数计算与比较大小五年级导引第1讲第9讲流水行船问题五年级导引第5讲第10讲约数与倍数五年级导引第7讲第11讲分数与循环小数五年级导引第8讲第12讲几何计数五年级导引第6讲第13讲逻辑推理二无对应讲次第14讲公约数与公倍数初步五年级导引第7讲第15讲公约数与公倍数进阶五年级导引第7讲第16讲分数应用题五年级导引第11讲第17讲比例应用题五年级导引第12讲第18讲直线形计算中的比例关系五年级导引第19讲第19讲分数裂项六年级导引第1讲第20讲数字谜综合一五年级导引第10讲第21讲余数的性质与计算五年级导引第16讲第22讲物不知数与同余五年级导引第16讲第23讲工程问题五年级导引第17讲第24讲列方程解应用题六年级导引第4讲第25讲燕尾模型六年级导引第10讲第26讲比较与估算五年级导引第9讲第1讲圆与扇形初步五年级导引第15讲第2讲圆与扇形进阶五年级导引第15讲第3讲行程问题综合一无对应讲次第4讲计算综合一五年级导引第13讲第5讲计数综合一无对应讲次第6讲钟表问题五年级导引第18讲第7讲位值原理五年级导引第21讲第8讲水管问题五年级导引第17讲第9讲立体几何六年级导引第9讲第10讲比例计算与列表分析六年级导引第3讲第11讲正反比例的概念与应用六年级导引第3讲第12讲行程问题中的比例关系六年级导引第14讲第13讲沙漏与金字塔五年级导引第19讲六年级导引第10讲第14讲数论相关的计数五年级导引第22讲第15讲数字谜中的计数五年级导引第22讲第16讲不确定性问题五年级导引第12讲第17讲浓度问题六年级导引第5讲第18讲经济问题六年级导引第5讲第19讲变速行程问题一五年级导引第20讲第20讲行程问题中的分段与比较五年级导引第20讲第1讲比赛中的推理六年级导引第6讲第2讲计算综合二六年级导引第2讲第3讲递推计数六年级导引第12讲第4讲对应计数六年级导引第13讲第5讲进位制六年级导引第19讲第6讲取整问题六年级导引第19讲第7讲不定方程六年级导引第8讲第8讲复杂直线形计算六年级导引第10讲第9讲几何综合六年级导引第11讲第10讲复杂应用题串讲六年级导引第17讲第11讲间隔发车问题六年级导引第14讲第12讲复杂行程问题六年级导引第14讲第13讲概率初步六年级导引第23讲第14讲工程问题综合无对应讲次第15讲整除问题综合无对应讲次第16讲约数与倍数综合无对应讲次第17讲整数型计算综合无对应讲次第18讲最值问题二六年级导引第7讲第19讲计数综合二无对应讲次第20讲计数综合三无对应讲次第21讲数字谜综合二六年级导引第16讲第22讲分数、百分数应用题综合无对应讲次第23讲行程问题综合二无对应讲次第24讲构造论证二六年级导引第22讲第25讲直线形计算综合无对应讲次第26讲应用题综合六年级导引第18讲第1讲浓度与经济问题综合无对应讲次第2讲余数问题综合无对应讲次第3讲分数计算综合无对应讲次第4讲曲线形计算综合无对应讲次第5讲抽屉原理综合六年级导引第24讲第6讲变速行程问题二无对应讲次第7讲计算综合练习第8讲几何综合练习第9讲应用题综合练习第10讲数字谜综合练习第11讲数论综合练习第12讲计数综合练习第13讲组合综合练习第14讲小升初综合模拟测试一第15讲小升初综合模拟测试二第16讲小升初综合模拟测试三第17讲小升初综合模拟测试四第18讲小升初综合模拟测试五第19讲小升初综合模拟测试六第20讲小升初综合模拟测试七第21讲小升初综合模拟测试八第22讲小升初综合模拟测试九。
一、概述在四年级的学习中,我们会遇到一些关于芳龄的问题,如“你几岁了?”、“你哥哥比你大几岁?”等等。
芳龄是一个十分基础但又十分重要的概念,它不仅涉及到我们个人的生活,还涉及到我们和周围人的关系。
我们有必要对芳龄进行进一步的了解和讲解。
二、什么是芳龄芳龄是指一个人从诞辰到现在所经历的时间长短。
我们通常使用岁来表示芳龄,例如5岁、10岁等等。
当我们谈论芳龄时,我们通常是从诞辰的年份开始计算,比如说1990年诞辰的人,今年是2023年,那他的芳龄就是2023减去1990,等于33岁。
三、芳龄的加减1. 计算芳龄差当我们想要计算两个人之间的芳龄差时,我们需要使用减法。
比如说,A比B大5岁,那么我们可以用A的芳龄减去B的芳龄,就可以得到他们之间的芳龄差。
2. 计算未来或过去的芳龄当我们知道一个人的诞辰年份和现在的年份时,我们可以用现在的年份减去诞辰年份,就可以得到这个人的芳龄。
而如果我们知道一个人的芳龄,想要知道他在未来或过去的某一年的芳龄,只需要将他的芳龄加上(或减去)所需的年数即可。
3. 芳龄的变化芳龄是随着时间的推移而不断增长的,所以当我们谈论未来或过去的芳龄时,需要根据实际情况进行加减运算。
四、芳龄问题的实际应用芳龄问题并不仅仅存在于数学课堂上,它还有很多实际的应用,比如:1. 体育比赛中的芳龄分组在一些体育比赛中,会根据参赛者的芳龄来划分组别,从而保证比赛的公平竞争。
2. 教育系统中的年级划分学校根据学生的芳龄来决定他们的年级,这样可以保证学生在相对合适的芳龄段接受相应的教育。
3. 社会保障和医疗保险一些社会福利和医疗保险也会根据参与者的芳龄来确定相关政策和待遇。
五、结语芳龄是我们生活中一个基础且普遍的概念,对于芳龄的加减运算需要我们灵活运用数学知识来解决实际问题。
希望通过对芳龄问题的讲解,能够帮助大家更好地理解这一概念,并将它应用到实际生活中。
六、芳龄和人生芳龄不仅仅是一个数字,它还承载着人生的阶段和经历。
第3讲还原问题与年龄问题内容概述学会用逆推法求解还原问题,处理多个对象时可采用列表的形式,在年龄问题中,通常采用和差倍问题的分析方法,有时需注意任意两人的年龄差保持不变。
典型问题兴趣篇1. 某数加上6,再乘以6,再减去6,再除以6,其结果等于6,则这个数是多少?答案:这个数是详解:+6 x6 -6 +662. 有一个人非常喜欢喝酒,他每经过一个酒店都要买酒喝. 这个人出门带了一个酒葫芦,看到一个酒店就把酒葫芦中的酒加一倍,然后喝下8两酒,这天他一共遇到3家酒店,在最后一家酒店喝完酒后,葫芦里的酒刚好喝完. 问:原来酒葫芦里有多少两酒?答案:7两酒。
详解:每经过一个酒店,葫芦里酒的数量就先乘2,再减8,利用倒推法,我们反过来应该先加8,再除以2.那么到酒店C之前葫芦里应该有(0+8)÷2=4两酒,他在到酒店B的时候应该有(4+8)÷2=6两酒,所以他原来的酒葫芦应该有(6+8)÷2=7两酒。
0+8=8,8÷2=4,4+8=12,12÷2=6,6+8=14,14÷2=73. 某人发现了一条魔道,下面有一个存钱的小箱子,当他从魔道走过去的时候,箱子里的一些钱会飞到人的身上使人身上的钱增加一倍,这人很高兴;当他从魔道走回来时,身上的钱会飞到箱子里,使箱子里的钱增加一倍;这人一连走了3个来回后,箱子里的钱和人身上的钱都是64枚一元的硬币,那么原来这人身上有多少元?箱子里有多少元?答案:原来这个人身上有43元,箱子里有85元。
详解:4. 三棵树上共有48只鸟. 后来,第一棵树上有一半的鸟飞到了第二棵树上;之后,第二棵树上又有与第三棵树同样数目的鸟飞到了第三棵树上;最后,第三棵树上又有10只鸟飞到了第一棵树上,此时三棵树上的鸟一样多. 问:一开始三棵树上各有几只鸟?答案:第一棵树上有12,第二棵23,第三棵13详解:5. 1997年张伯伯45岁,小方9岁,在哪一年张伯伯的年龄是小方年龄的4倍?答案:小方12岁那年。
第三讲 游戏与对策一、基本前提游戏双方足够聪明,目的都是获胜。
二、方法:倒推三、游戏类型(一)拿火柴棍/抢数如:桌子上放着10根火柴,二人轮流每次取走1—2根,规定谁取走最后一根火柴谁获胜。
你知道必胜的方法吗?分析:如果从开始分析,“局面”太大,有太多种取法要讨论。
所以我们尝试从结果倒推。
如上图,要必胜,也就是要让自己拿到10号火柴,那就应给对方留下8,9,10三根火柴供他取,这样对方不管取一根还是两根,自己都能拿到最后的10号火柴。
照这样分析,自己应该拿到7号火柴(这样就是给对方留下了8,9,10号三根)就必胜。
同理分析,要想取7号,就应该取4号,要想取4号,就应该取1号。
那么,本题的制胜点就是1,4,7,10号火柴,对于足够聪明的人来说,拿到第一个制胜点1号火柴,一定能拿到其余的制胜点。
所以本题要必胜,就要抢先取1根,然后对方取a 根,自己就取3-a 根,这样保证自己能取到每一个制胜点,最终取到10号火柴。
总结一下,同学们应该能看出,这里面有周期现象(只是周期是从后往前排布的),周期是几呢?是可取的最大限度2再加1等于3,制胜点是哪些呢?是每个周期的最后一根。
掌握此规律,就不难总结出这类题的解题方法了:解题方法:(1)找周期:周期等于可拿最大限度+1(2)总数÷周期1 桌子上放着60根火柴,聪明昊、神奇涛二人轮流每次取走1—3根,规定谁取走最后一根火柴谁获胜。
你知道必胜的方法吗?解析: 周期为 3+1=4(根)60÷4=15(组) (整除,应该抢后)制胜点:4,8,12 (60)做法:1、让对方先取2、对方取a 根,自己就取4-a 根2 有一种抢数游戏,是两个人从自然数1开始轮流报数,规定每次至少报几个数与至多报几个数(都是自然数),最后谁报到规定的“某个数字”为胜。
如“抢50”,规定每次必须报1或2个1 2 3 4 5 6 7 8 9 10有余数:抢先拿余数整除(余数为0):抢后自然数,从1开始,谁抢报到50为胜。
学习-----好资料第3讲还原问题与年龄问题内容概述学会用逆推法求解还原问题,处理多个对象时可采用列表的形式,在年龄问题中,通常采用和差倍问题的分析方法,有时需注意任意两人的年龄差保持不变。
典型问题兴趣篇1. 某数加上6,再乘以6,再减去6,再除以6,其结果等于6,则这个数是多少?答案:这个数是详解:+6 x6 -6 +636761422. 有一个人非常喜欢喝酒,他每经过一个酒店都要买酒喝. 这个人出门带了一个酒葫芦,看到一个酒店就把酒葫芦中的酒加一倍,然后喝下8两酒,这天他一共遇到3家酒店,在最后一家酒店喝完酒后,葫芦里的酒刚好喝完. 问:原来酒葫芦里有多少两酒?答案:7两酒。
详解:每经过一个酒店,葫芦里酒的数量就先乘2,再减8,利用倒推法,我们反过来应该先加8,再除以2.那么到酒店C之前葫芦里应该有(0+8)÷2=4两酒,他在到酒店B的时候应该有(4+8)÷2=6两酒,所以他原来的酒葫芦应该有(6+8)÷2=7两酒。
2=714÷2=6,6+8=14,,,8÷2=4,4+8=1212÷0+8=83. 某人发现了一条魔道,下面有一个存钱的小箱子,当他从魔道走过去的时候,箱子里的一些钱会飞到人的身上使人身上的钱增加一倍,这人很高兴;当他从魔道走回来时,身上的钱会飞到箱子里,使箱子里的钱增加一倍;这人一连走了3个来回后,箱子里的钱和人身上的钱都是64枚一元的硬币,那么原来这人身上有多少元?箱子里有多少元?答案:原来这个人身上有43元,箱子里有85元。
详解:箱子里的钱身上的钱85 43 开始时86 42 第一次走过去后44 84 第一次走回来后88 40 第二次走过去后48 80 第二次走回来后96 32 第三次走过去后64 64 第三次走回来后后来,第一棵树上有一半的鸟飞到了第二棵树上;之后,第二棵树只鸟. 4. 三棵树上共有48只鸟飞到了第上又有与第三棵树同样数目的鸟飞到了第三棵树上;最后,第三棵树上又有10 问:一开始三棵树上各有几只鸟?一棵树上,此时三棵树上的鸟一样多.13 ,第三棵12,第二棵23答案:第一棵树上有详解:第三棵第一棵第二颗131223开始时61329第一棵飞到第二棵后616 26 第二棵飞到第三棵后16 16 16 第三棵飞到第一棵后更多精品文档.好资料学习-----倍?45岁,小方9岁,在哪一年张伯伯的年龄是小方年龄的45. 1997年张伯伯岁那年。
讲义是乐谱,学生是听众,老师是指挥家,每节课都是一篇乐章,老师您辛苦了!——学而思小学奥数讲义组第五讲还原问题与年龄问题教学目标1.掌握倒推法解决还原问题;2.能够独立解决较复杂的年龄问题;想小头爸爸与大头儿子玩扑克游戏,小头爸爸手中的牌“J”代表11,“Q”代表12,“K”代表13(大小王拿掉),小头爸爸叫大头儿子任意抽一张牌,把代表这张牌的数字先乘4,再加上8,然后除以2,最后减去9,大头儿子依次算好后告诉小头爸爸最后得数是“1”,挑战吗小头爸爸马上告诉大头儿子答案了,大头儿子非常惊讶,你知道小头爸爸是怎样猜出来的呢? ?分析:小头爸爸根据最后的得数1进行还原,这个1是最后减去9得到的,所以把1加上9得10,这个10又是一个数除以2得到的,所以再把10乘2得20,这个20又是一个数加上8得到的,所以再把20减去8得12,而这个12就是抽到的那张牌的数字乘4得来的,只要把12除以4就可算出那张牌的数字,刚才的计算过程列式如下:[(1+9)×2—8]÷4=3。
还原问题像上面“想挑战吗”这种问题,依照题意叙述由后往前推算,最终解决问题的方法,叫做还原法(或称倒推法).这种问题叫做还原问题.解答还原问题的一般方法是:1.从最后的结果出发,采用与原题中相反的逆运算方法,原题加的用减,减的用加,乘的用除,除的用乘.2.根据原题的叙述顺序,从上面列出数量关系式,再用逆运算方法得出原数.【例1】两个两位数相加,其中一个加数是73,另一个加数不知道,只知道另一个加数的十位数字增加5,个位数字增加1,那么求得的和的后两位数字是72,问另一个加数原来是多少?分析:和的后两位数字是72,说明另一加数变成99,所以原加数是99-51=48.[前铺]某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是多少?分析:(6×6+6)÷6-6=1,这个数是1.学而思教育08年寒假四年级基础班第五讲教师版Page31[拓展]马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111.问正确答案应是几?分析:马小虎错把减数个位上1看成7,使差减少7-1=6,把十位上的7看成1,使差增加70—10=60.因此归结为某数减6,加60得111,求某数是几的问题.111-(70—10)+(7—1)=57。
第3讲还原问题与年龄问题内容概述学会用逆推法求解还原问题,处理多个对象时可采用列表的形式,在年龄问题中,通常采用和差倍问题的分析方法,有时需注意任意两人的年龄差保持不变。
典型问题兴趣篇1. 某数加上6,再乘以6,再减去6,再除以6,其结果等于6,则这个数是多少?2. 有一个人非常喜欢喝酒,他每经过一个酒店都要买酒喝. 这个人出门带了一个酒葫芦,看到一个酒店就把酒葫芦中的酒加一倍,然后喝下8两酒,这天他一共遇到3家酒店,在最后一家酒店喝完酒后,葫芦里的酒刚好喝完. 问:原来酒葫芦里有多少两酒?3. 某人发现了一条魔道,下面有一个存钱的小箱子,当他从魔道走过去的时候,箱子里的一些钱会飞到人的身上使人身上的钱增加一倍,这人很高兴;当他从魔道走回来时,身上的钱会飞到箱子里,使箱子里的钱增加一倍;这人一连走了3个来回后,箱子里的钱和人身上的钱都是64枚一元的硬币,那么原来这人身上有多少元?箱子里有多少元?4. 三棵树上共有48只鸟. 后来,第一棵树上有一半的鸟飞到了第二棵树上;之后,第二棵树上又有与第三棵树同样数目的鸟飞到了第三棵树上;最后,第三棵树上又有10只鸟飞到了第一棵树上,此时三棵树上的鸟一样多. 问:一开始三棵树上各有几只鸟?5. 1997年张伯伯45岁,小方9岁,在哪一年张伯伯的年龄是小方年龄的4倍?6. 今年,小明的年龄等于他父母的年龄差;4年后,小明的年龄等于他父母年龄差的3倍. 今年小明多少岁?7. 今年,父亲年龄是儿子年龄的5倍;15年后,父亲年龄是儿子年龄的2倍. 问:现在父子的年龄各是多少?8. 兄弟两个年龄之和是32岁. 当哥哥是弟弟现在这么大时,哥哥的年龄是当时弟弟年龄的3倍.求哥哥现在的年龄.9. 学生问老师多少岁,老师说:“当我像你这么大时,你刚3岁;当你像我这么大时,我已经39岁了.”求老师和学生现在的年龄.10. 今年,费叔叔的年龄比小悦、冬冬、阿奇三人年龄的总和还多6岁, 多少年后,费叔叔的年龄将比他们三人年龄的总和少6岁?拓展篇1. 有一个数,把它加上37,再乘以18,减去323,得到的结果用23去除,商是16,余数是11.这个数原来是多少?2. 果园里有一棵桃树. 有一天,三只猴子吃了两个桃子并摘下了剩下桃子的一半,最后第三只猴子吃了三个桃子并摘下了剩下桃子的一半. 这时树上刚好还有四个桃子,原来树上一共有几个桃子?3. 地上有26地砖,兄弟二人争着去挑. 弟弟抢在前面,刚挑起一些砖,哥哥赶到了,挑了剩下的砖. 哥哥看弟弟挑得太多,就从弟弟那儿抢过一半. 弟弟不肯,又从哥哥那儿抢走一半. 哥哥不服,弟弟只好再给哥哥5块,这时哥哥比弟弟多挑2块,请问:最初弟弟准备挑多少块砖?4. 甲、乙各有糖若干块,每操作一次是由糖多的人给糖少的人一些糖,使得糖少的人的糖数增加一倍,经过三次这样的操作后,甲有5块糖,乙有12块糖,两个人原来的糖数分别是多少?5. 甲、乙、丙三人的钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数都比原来增加了2倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数各增加了2倍,结果丙的钱最多;最后丙又拿出一些钱给甲和乙,使他们的钱数和增加2倍,结果三人的钱数一样多,如果他们三人共有81元,那么三人原来分别有多少钱?6. 今年张明15岁,他父亲45岁,请问:多少年后,父亲年龄是张明年龄的2倍?多少年前,父亲年龄是张明年龄的4倍?7. 12年前,父亲的年龄是女儿年龄的11倍;今年,父亲的年龄是女儿年龄的3倍. 请问:多少年后父亲年龄是女儿年龄的2倍?8. 去年哥哥的年龄是明年兄弟二人年龄和的一半,前年哥哥的年龄是弟弟的2倍. 求哥哥和弟弟现在的年龄。
第3讲还原问题与年龄问题内容概述学会用逆推法求解还原问题,处理多个对象时可采用列表的形式,在年龄问题中,通常采用和差倍问题的分析方法,有时需注意任意两人的年龄差保持不变。
典型问题兴趣篇1. 某数加上6,再乘以6,再减去6,再除以6,其结果等于6,则这个数是多少?答案:这个数是详解:+6 x6 -6 +662. 有一个人非常喜欢喝酒,他每经过一个酒店都要买酒喝. 这个人出门带了一个酒葫芦,看到一个酒店就把酒葫芦中的酒加一倍,然后喝下8两酒,这天他一共遇到3家酒店,在最后一家酒店喝完酒后,葫芦里的酒刚好喝完. 问:原来酒葫芦里有多少两酒?答案:7两酒。
详解:每经过一个酒店,葫芦里酒的数量就先乘2,再减8,利用倒推法,我们反过来应该先加8,再除以2.那么到酒店C之前葫芦里应该有(0+8)÷2=4两酒,他在到酒店B的时候应该有(4+8)÷2=6两酒,所以他原来的酒葫芦应该有(6+8)÷2=7两酒。
0+8=8,8÷2=4,4+8=12,12÷2=6,6+8=14,14÷2=73. 某人发现了一条魔道,下面有一个存钱的小箱子,当他从魔道走过去的时候,箱子里的一些钱会飞到人的身上使人身上的钱增加一倍,这人很高兴;当他从魔道走回来时,身上的钱会飞到箱子里,使箱子里的钱增加一倍;这人一连走了3个来回后,箱子里的钱和人身上的钱都是64枚一元的硬币,那么原来这人身上有多少元?箱子里有多少元?答案:原来这个人身上有43元,箱子里有85元。
详解:4. 三棵树上共有48只鸟. 后来,第一棵树上有一半的鸟飞到了第二棵树上;之后,第二棵树上又有与第三棵树同样数目的鸟飞到了第三棵树上;最后,第三棵树上又有10只鸟飞到了第一棵树上,此时三棵树上的鸟一样多. 问:一开始三棵树上各有几只鸟?答案:第一棵树上有12,第二棵23,第三棵13详解:5. 1997年张伯伯45岁,小方9岁,在哪一年张伯伯的年龄是小方年龄的4倍?答案:小方12岁那年。
详解;我们把小方的年龄看成“1”份,那么张伯伯的年龄就是“4”份,那么他们的年龄差就是“3”份,因此“1”份是36÷3=12岁。
于是小方的年龄应该是12岁,张伯伯的年龄是小方的4倍。
6. 今年,小明的年龄等于他父母的年龄差;4年后,小明的年龄等于他父母年龄差的3倍. 今年小明多少岁?答案:2岁。
详解:父母的年龄差是不变的,所以我们把父母的年龄差看成“1”份,那么小明现在的年龄是“1”份,而4年后小明的年龄变成了“3”份。
画出线段图。
今年小明年龄;4年后小明年龄:4岁小明张了4岁,那么他变大的4岁就是“2”份,所以“1”份就是4÷2=2岁,也就是小明今年2岁。
7. 今年,父亲年龄是儿子年龄的5倍;15年后,父亲年龄是儿子年龄的2倍. 问:现在父子的年龄各是多少?答案:儿子5岁。
父亲25岁。
详解:根据分析,父亲和儿子的年龄差是今年儿子年龄的4倍,也是15年后儿子年龄的1倍。
所以我们把年龄差看成“4”份,那么今年儿子的年龄是“1”份,15年后儿子的年龄就是“4”份。
15年后儿子的年龄是比今年的年龄多了“3”份,正好是15岁。
因此“1”份就是15÷3=5岁。
于是今年儿子5岁,父亲今年是5×5=25岁8. 兄弟两个年龄之和是32岁. 当哥哥是弟弟现在这么大时,哥哥的年龄是当时弟弟年龄的3倍.求哥哥现在的年龄.答案:20详解:32÷(3+3+2)=4(岁)32-(4×3)=20(岁)9. 学生问老师多少岁,老师说:“当我像你这么大时,你刚3岁;当你像我这么大时,我已经39岁了.”求老师和学生现在的年龄.答案:学生15岁,老师27岁。
详解:39岁与3岁的差别正好是年龄差的3倍,所以师生的年龄差为(39-3)÷3=12岁。
那么学生现在3+12=15岁老师现在15+12=27岁。
10. 今年,费叔叔的年龄比小悦、冬冬、阿奇三人年龄的总和还多6岁, 多少年后,费叔叔的年龄将比他们三人年龄的总和少6岁?答案:6年后。
详解:现在费叔叔的年龄比小悦、冬冬、阿奇三人年龄总和还多6岁,那么6÷2=3年之后,费叔叔的年龄就和他们三人年龄的总和一样多。
同样的,再过3年,费叔叔的年龄就会比小悦、冬冬、阿奇三人年龄总和少6岁,所以要3+3=6年之后费叔叔的年龄才会比小悦、冬冬、阿奇三人年龄总和少六岁。
拓展篇1. 有一个数,把它加上37,再乘以18,减去323,得到的结果用23去除,商是16,余数是11.这个数原来是多少?答案:要求的数是2.详解:倒推一下:23×16+11=379 379+323=702 702÷18=39 39-37=22. 果园里有一棵桃树. 有一天,三只猴子吃了两个桃子并摘下了剩下桃子的一半,最后第三只猴子吃了三个桃子并摘下了剩下桃子的一半. 这时树上刚好还有四个桃子,原来树上一共有几个桃子?答案:原来树上有49个桃子。
详解:第三只猴子摘下剩下桃子的一半,剩下另一半是4个,所以在它摘桃子前,树上有4×2=8个桃子,而在它吃桃子之前,树上有8+3=11个桃子。
类似的,在第二只猴子吃桃子前,树上有11×2+2=24个桃子,在第一只猴子吃桃子前,树上有24×2+1=49个桃子。
3. 地上有26地砖,兄弟二人争着去挑. 弟弟抢在前面,刚挑起一些砖,哥哥赶到了,挑了剩下的砖. 哥哥看弟弟挑得太多,就从弟弟那儿抢过一半. 弟弟不肯,又从哥哥那儿抢走一半. 哥哥不服,弟弟只好再给哥哥5块,这时哥哥比弟弟多挑2块,请问:最初弟弟准备挑多少块砖?答案:最初弟弟挑了16块砖。
详解:4.增加一倍,经过三次这样的操作后,甲有5块糖,乙有12块糖,两个人原来的糖数分别是多少?答案:甲原来有7块糖,乙原来有10块糖。
详解:5. 甲、乙、丙三人的钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数都比原来增加了2倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数各增加了2倍,结果丙的钱最多;最后丙又拿出一些钱给甲和乙,使他们的钱数和增加2倍,结果三人的钱数一样多,如果他们三人共有81元,那么三人原来分别有多少钱?答案:甲原来有55元,乙原来有19元,丙原来有7元。
详解:6. 今年张明15岁,他父亲45岁,请问:多少年后,父亲年龄是张明年龄的2倍?多少年前,父亲年龄是张明年龄的4倍?答案:15年后,5年前。
详解:张明和他父亲的年龄差不变,始终是45-15=30岁。
当“父亲年龄是张明年龄的2倍”时,假设张明年龄是1份,那么父亲的年龄是2份,两人的年龄差也是“1”份,由于年龄差是30岁,那么此时张明的年龄就是30×1=30岁,是现在的30-15=15年后当“父亲年龄是张明年龄的4倍”时,假设张明年龄是1份,那么父亲的年龄是4份,年龄差就是“3”份,这时“1”份对应30÷3=10岁,张明的年龄就是10岁,是现在的15-10=5年前。
7. 12年前,父亲的年龄是女儿年龄的11倍;今年,父亲的年龄是女儿年龄的3倍. 请问:多少年后父亲年龄是女儿年龄的2倍?答案:15年后详解:父亲和女儿的年龄差是今年女儿年龄的2倍,也是12年前女儿年龄的10倍,所以把父亲和女儿的年龄差设为10份,那么今年女儿的年龄就是5份,而12年前女儿的年龄是1份,12年前女儿的年龄是比今年的年龄多了4份,因此能算出1份是12÷4=3岁,于是今年女儿是5行=15岁,而父亲今年是15×3=45岁,父女年龄差45-15=30岁。
当父亲年龄是女儿年龄的2倍时,那时的女儿年龄就等于年龄差30岁,与女儿今年15岁相比,相当于30-15=15年后。
8. 去年哥哥的年龄是明年兄弟二人年龄和的一半,前年哥哥的年龄是弟弟的2倍. 求哥哥和弟弟现在的年龄。
答案:弟弟的年龄是6岁,哥哥是10岁。
详解:前年弟弟的年龄是1份、哥哥的年龄是2份,去年哥哥的年龄是2份+1岁,明年弟弟的年龄是1份+3岁,哥哥的年龄是2份+3岁。
所以(2份+1岁)×2=(1份+3岁)+( 2份+3岁) 1份是4岁。
弟弟的年龄是4+2=6岁,哥哥的年龄是2×4+2=10岁。
9. 今年父亲的年龄是48岁,哥哥的年龄是弟弟的2倍, 当弟弟长到哥哥现在的年龄时,父亲的年龄恰好等于兄弟俩年龄之和,请问:今年哥哥多少岁?答案:24岁。
详解:当弟弟长到哥哥现在的年龄是,弟弟年龄为2份,哥哥的年龄为2+1=3份,父亲的年龄是兄弟的年龄和2+3=5份,由此得到今年父亲的年龄是5-1=4份,为48岁,所以今年弟弟的年龄是48÷4=12岁,哥哥今年的年龄是12÷2=24岁。
10. 学生问老师多少岁,老师说:“当我像你这么大时,你刚5岁;当你像我这么大时,我已经50岁了。
“求老师和学生现在的年龄。
答案:学生20岁,老师35岁详解:5岁50岁☆:师生现在的年龄◇:将来学生像老师这么大时△:过去老师像学生这么大时从上面可以看出,50-5=45岁正好是3个年龄差,所以师生的年龄差为45÷3=15岁所以现在学生为5+15=20岁,老师魏15+20=35岁。
11. 有老师和甲、乙、丙三个学生,现在老师年龄恰为三个学生年龄之和;9年后,老师年龄为甲、乙两学生年龄之和;又过了3年,老师年龄为甲、丙学生年龄之和;再过3年,老师年龄为乙、丙两学生年龄之和,求现在各人的年龄。
答案:甲15岁,乙12岁,丙9岁,老师36岁。
详解:老师是1人增加年龄,而学生是3人增加年龄,9年后增加的正好是丙的年龄。
同理(9+3}年后增加的是乙的年龄,(9+3+3)年后增加的是甲的年龄。
15+12+9=36(岁)12. 1年前,父母的年龄和兄弟二人年龄和的7倍;4年后,父母的年龄和是兄弟二人年龄和的4倍,已知爸爸比妈妈大2岁,妈妈今年多少岁?答案:35岁详解:设一年前兄弟的年龄和为1份,那么1年前父母年龄和为7份,比兄弟年龄和大6份,4年后,也就是说比1年前多了4+1=5年,父母年龄和增加了5×2=10岁,兄弟年龄和也增加了10岁,父母的年龄和还是比兄弟的年龄和大6份,此时父母年龄和是兄弟年龄和的4倍,所以4年后,兄弟的年龄和是6÷(4-1)=2,比1年前兄弟的年龄和增加了1份,因此1份就是10岁,1年前父母的年龄和就是10×7=70岁。
爸爸比妈妈打2岁,根据和差关系可以求出1年前妈妈是(70-2)÷2=34岁,那么妈妈今年就是34+1=35岁。
超越篇1、口渴的三个和尚分别捧着一个水罐。
最初,老和尚的水最多,并且有一个和尚没水喝。