类似地,可以定义函数z=f(x,y)在区域D内对自变 量y的偏导函数为
f ( x, y + ∆y) − f ( x, y) lim ∆y→0 ∆y
∂z ∂f 记作 , , f y ( x, y)或zy ( x, y) ∂y ∂y
偏导数的概念可以推广到二元以上函数 如 u = f ( x, y, z ) 在 ( x, y, z ) 处
= 2×1 + 3× 2 = 8 , = 3×1 + 2× 2 = 7 .
x =1 y= 2
问题: 问题:计算偏导数 f x ( x0 , y0 )时能否将 y = y0 先代入
f ( x, y ) 中再对 求导? 中再对x求导 求导?
分析: 分析:
f (x0 + ∆x, y0 ) − f (x0, y0 ) f x (x0, y0 )= lim ∆x→0 ∆x
是曲线 斜率. 斜率 在点M 在点 0 处的切线 M0Ty 对 y 轴的
例4
xy , x2 + y2 ≠ 0, 2 f ( x, y) = x + y2 0, x2 + y2 = 0 ,
设
求f(x,y)在原点(0,0)处的偏导数. 解 原点(0,0)处对x的偏导数为
f (0 + ∆x,0) − f (0,0) fx (0,0) = lim ∆x→0 ∆x (∆x) ⋅ 0 −0 2 (∆x) + 0 = lim = lim0 = 0. ∆x→0 ∆x→0 ∆x
内这两个二阶混合偏导数必相等. 内这两个二阶混合偏导数必相等 . 元函数的高阶混合导数也成立. 本定理对 n 元函数的高阶混合导数也成立
例如, 例如 对三元函数 u = f (x , y , z) , 当三阶混合偏导数 连续时, 在点 (x , y , z) 连续时 有