七年级数学平面直角坐标系3
- 格式:pptx
- 大小:1.45 MB
- 文档页数:10
七年级下册数学平面直角坐标系的知识点归纳在学习平面直角坐标系的过程中,我们将一步步掌握如何识别坐标点、平移图形、计算长度、以及求解线性系统方程等基础知识,为深入学习统计分析和解析几何奠定坚实的理论基础。
七年级下册数学中的平面直角坐标系是一个非常重要的知识点,其重要性可见一斑,以下是对这部分知识的归纳:
一、认识坐标系
1. 坐标系是数学中用来表示一个点在一个平面上的方式,是一个由两个数学量(x, y)表示的点的坐标。
2. 坐标系中的x轴和y轴是相互垂直,而原点(0, 0)则是两者交汇的点。
二、用坐标系表示点
1. 一条线可能由无数个点组成,而每个点都可以用坐标系来表示。
2. 点的坐标是确定一个点的方式,可以让学生学习把一个点的位置表现出来。
三、画出坐标平面上的线
1. 通过给定的几点用坐标来表示,就可以画出平面上一条完整的线。
2. 学生要学会分析这几个点之间的位置关系,然后根据直角坐标系的概念画出一条符合要求的完整的线。
四、使用直角坐标系求解几何问题
1. 利用坐标系可以让学生对于几何图形识别和分析更加直观,从而更快更有效地解决问题。
2. 用坐标系去求解几何问题,需要学生做的是理解 num之间的概念,用坐标系来分析,然后解答问题。
总之,七年级下册数学中的平面直角坐标系是一部分十分重要的知识点,要掌握其相关的知识并熟练应用,可以帮助学生理解几何图形,也可以帮助学生解决相关的几何问题。
七年级数学第七章《平面直角坐标系》测试三(附解析)一、单选题1.如图,直角坐标系中,过点A(0,2)的直线a 垂直于y 轴,M(9,2)为直线a 上一点,若P 点从M 出发,以2cm/s 的速度沿着直线a 向左移动;点Q 从原点同时出发,以1cm/s 的速度沿x 轴向右移动,当PQ∥y 轴时,点P 的运动时间为()A.3s B.2s C.1s D.4s2.要将抛物线223y x x =++平移后得到抛物线2y x =,下列平移方法正确的是()A.向左平移2个单位,再向上平移3个单位B.向右平移2个单位,再向下平移3个单位C.向左平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位3.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是()A.()7,1-B.()3,1--C.()1,5D.()2,54.点P(1,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断移动,每次移动一个单位,依次得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…,那么A 2018的坐标为()A.(2018,0)B.(1008,1)C.(1009,1)D.(1009,0)6.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OAB C 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P 1(2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2018的坐标是()A.(1,4)B.(4,3)C.(2,4)D.(4,1)7.在平面坐标系中,正方形ABCD 的位置如右图所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ,延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,…按这样的规律进行下去,第2018个正方形的面积为()A.5·201732⎛⎫⎪⎝⎭B.5·201832⎛⎫⎪⎝⎭C.5·403632⎛⎫⎪⎝⎭D.5·403432⎛⎫⎪⎝⎭8.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2017秒时点P 的坐标是()A.(2016,0)B.(2017,1)C.(2017,-1)D.(2018,0)9.如图所示,在平面直角坐标系中,锐角三角形ABC 的三个顶点坐标分别是(,)A a b 、(,)B c d 、(,)C e d ,在直线BC 上有四个点坐标分别是(1,)D a d -、(1,)E a d +、(,)F a d 、(1,)G e d +,则点A 到直线BC 上的最短距离的点是()A.点D B.点E C.点F D.点G10.正方形的两条边在坐标轴上,其中一个顶点的坐标是(0,0),其他部分在第三象限,面积为4,那么这个正方形不在坐标轴上的顶点的坐标是()A.(2,2)B.(-2,-2)C.(-2,2)D.(2,-2)11.已知点(3,24)A x x +-在第四象限,则x 的取值范围是()A.32x -<<B.3x >-C.2x <D.2x >12.如图,在平面直角坐标系中,已知点B,C 在x 轴上,AB⊥x 轴于点B,DA ⊥AB.若AD=5,点A 的坐标为(-2,7),则点D 的坐标为()A.(-2,2)B.(-2,12)C.(3,7)D.(-7,7)13.如图,在平面直角坐标系中,点A 的坐标为(3,4),那么sinα的值是()A.B.C.D.14.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (4,0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以6个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是()A.(0,2)B.(﹣4,0)C.(0,﹣2)D.(4,0)15.在平面直角坐标系内,点()3,5P m m --在第三象限,则m 的取值范围是()A.5m <B.35m <<C.3m <D.3m <-二、填空题16.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______17.在平面直角坐标系中,已知A (0,a ),B (b ,0),其中a ,b 满足|a ﹣2|+(b ﹣3)2=0.点M 的坐标为(32-,1),点N 是坐标轴的负半轴上的一个动点,当四边形ABOM 的面积与三角形ABN 的面积相等时,此时点N 的坐标为___________________.18.如图,已知()0,A a ,(),0B b ,第四象限的点(),C c m 到x 轴的距离为3,若a ,b 满足2|2|(2)a b b -+++=C 点坐标为______;BC 与y 轴的交点坐标为_______.19.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),….根据这个规律,第2025个点的坐标为________.20.已知在平面直角坐标系中,P 点的坐标为(1,4),则在坐标轴上到P 点的距离是21.在平面直角坐标系中,已知点A (-4,0)、B (0,2),现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是___.22.在平面直角坐标系中,若点M(2,3)与点N(2,y)之间的距离是4,则y 的值是___________.23.如图,在平面直角坐标系中,有若干个整数点(纵横坐标都是整数的点),其顺序按图中“→”方向排列如(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)…根据这个规律探索可得,第2021个点的坐标为_____.24.已知点()24,1P m m +-.()1若点P 在x 轴上,则点P 的坐标为________;()2若点P 在第四象限,且到y 轴的距离是2,则点P 的坐标为________.25.将点A (﹣2,﹣3)向右平移3个单位长度得到点B ,则点B 在第_____象限.26.已知点A (1,0)、B (0,2),点P 在y 轴上,且△PAB 的面积是3,则点P 的坐标是_______.27.如图,已知长方形OABC,动点P 从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,第一次碰到长方形的边时的位置为P 1(3,0),当点P 第2016次碰到长方形的边时,点P 2016的坐标是_____.28.如果点P(a-1,a+2)向右平移2个单位长度正好落在y 轴上,那么点P 的坐标为__________.29.点A(a 2+1,﹣2﹣b 2)在第_____象限.30.在如图所示的平面直角坐标系中,△OA 1B 1是边长为2的等边三角形,作△B 2A 2B 1与△OA 1B 1关于点B 1成中心对称,再作△B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,如此作下去,则△B 20A 21B 21的顶点A 21的坐标是_____.参考答案1.A【分析】可设当PQ∥y 轴时,点P 的运动时间为xs,根据等量关系:AP=OQ,列出方程求解即可.【详解】设当PQ∥y 轴时,点P 的运动时间为xs,依题意有9-2x=x,解得x=3.故当PQ∥y 轴时,点P 的运动时间为3s,故选A.2.D【分析】先将解析式化为顶点式2223(1)2y x x x =++=++,由平移的性质可得2y x =从而得出正确选项.【详解】2223(1)2y x x x =++=++,由平移的性质向右平移1个单位,再向下平移2个单位可得2y x =,故选:D 3.D【分析】根据平行四边形的性质可知:平行四边形的对边平行且相等,连接各个顶点,数形结合,可以做出D 点可能的坐标,利用排除法即可求得答案。
七年级下数学第七章平面直角坐标系知识点总结一、本章的主要知识点(一)有序数对:有顺序的两个数a与b组成的数对。
1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。
a,)3、坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(b一一对应;其中,a为横坐标,b为纵坐标坐标;4、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;(二)平面直角坐标系平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形;2、构成坐标系的各种名称;水平的数轴称为x轴或横轴,习惯上取向右为正方向竖直的数轴称为y轴或纵轴,取向上方向为正方向两坐标轴的交战为平面直角坐标系的原点3、各种特殊点的坐标特点。
象限:坐标轴上的点不属于任何象限第一象限:x>0,y>0第二象限:x<0,y>0第三象限:x<0,y<0第四象限:x>0,y<0横坐标轴上的点:(x,0)纵坐标轴上的点:(0,y)(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。
二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。
a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;b) 在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。
c) 若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; d) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;XXX在第一、三象限的角平分线上 在第二、四象限的角平分线上四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数 关于y 轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数e) 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; f)点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;g) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称关于原点对称五、特殊位置点的特殊坐标: XXP X-六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:•建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;•根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;八、点到坐标轴的距离:点到x轴的距离=纵坐标的绝对值,点到y轴的距离=横坐标的绝对值。
期末复习(三) 平面直角坐标系考点一确定字母的取值范围【例1】若点P(a,a-2)在第四象限,则a的取值范围是( )A.-2<a<0B.0<a<2C.a>2D.a<0【分析】根据每个象限内的点的坐标特征列不等式(组)求解.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【解答】根据第四象限内的点横坐标为正,纵坐标为负,得0,20,aa>-<⎧⎨⎩解得0<a<2.故选B.【方法归纳】解答此类题的关键是根据平面直角坐标系内点的特征,列出一次不等式(组)或者方程(组),解所列出的不等式(组)或者方程(组),得到问题的解.1.如果m是任意实数,那么点P(m-4,m+1)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限2.点P(2a,1-3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P的坐标是__________.考点二用坐标表示地理位置【例2】2008年奥运火炬在我省传递(传递路线:昆明—丽江—香格里拉),某校学生小明在我省地图上设定临沧位置点的坐标为(-1,0),火炬传递起点昆明位置点的坐标为(1,1).如图,请帮助小明确定出火炬传递终点香格里拉位置点的坐标__________.【分析】因为设定临沧位置点的横坐标为-1,昆明位置点的横坐标为1,所以可以得到每个小方格的边长为1,且y轴在这两座城市之间的竖直直线上;同理得到x轴在临沧所在的水平线上,从而得到如右图的平面直角坐标系,利用平面直角坐标系得出香格里拉所在位置点的坐标.【解答】(-1,4)【方法归纳】在平面内如果已知两点的坐标求第三个点的坐标时,通常根据已知两点的横坐标和纵坐标分别确定y轴和x轴的位置,从而建立平面直角坐标系,然后求出第三个点的坐标.3.如图,如果用(0,0)表示梅花的中心O,用(3,1)表示梅花上一点A,请用这种方式表示梅花上点B为( )A.(1,-3)B.(-3,1)C.(3,-1)D.(-1,3)4.如图是小刚画的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成( )A.(1,0)B.(-1,0)C.(-1,1)D.(1,-1)5.中国象棋的走棋规则中有“象飞田字”的说法,如图,象在点P处,走一步可到达的点的坐标记作__________.考点三图形的平移与坐标变换【例3】已知△ABC在平面直角坐标系中的位置如图所示,将△ABC向下平移5个单位,再向左平移2个单位,则平移后C点的坐标是( )A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)【解析】由△ABC在平面直角坐标系中的位置可知点C的坐标为(3,3),将△ABC向下平移5个单位,再向左平移2个单位后,点C的横坐标减2,纵坐标减5,所以平移后C点的坐标是(1,-2).故选B.【方法归纳】在平面直角坐标系中点P(x,y)向右(或左)平移a个单位后的坐标为P(x+a,y)[或P(x-a,y)];点P(x,y)向上(或下)平移b个单位后的坐标为P(x,y+b)[或P(x,y-b)].6.如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度,再向下平移三个单位长度得到△A′B′C′,则点B′的坐标是( )A.(0,-1)B.(1,2)C.(2,-1)D.(1,-1)7.如图,A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,A1,B1的坐标分别为(2,a),(b,3),则a+b=__________.考点四直角坐标系内图形的面积【例4】在平面直角坐标系xOy中,若A点坐标为(-3,3),B点坐标为(2,0),则△ABO的面积为( ) A.15 B.7.5 C.6 D.3【解析】∵点A到x轴的距离为3,而OB=2,∴S△ABO=12×2×3=3.故选D.【方法归纳】求平面直角坐标系中平面图形的面积时,常常利用平行于坐标轴的线段当底,点的横或者纵坐标的绝对值当高.不规则图形的面积常常通过割补法转化为几个规则图形的面积求解.8.已知:点A、点B在平面直角坐标系中的位置如图所示,则:(1)写出这两点坐标:A__________,B__________;(2)求△AOB的面积.考点五规律探索型【例5】如图,已知A1(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、….则点A2 015的坐标为__________.【解析】要求A2 015的坐标,可先从简单的点的坐标开始探究,发现其中的规律.从各点的位置可以发现:A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1);A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2);A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3);….因为A3(-1,1),A7(-2,2),观察坐标系可知:A11(-3,3),A15(-4,4),其横、纵坐标互为相反数.把A3、A7、A11、A15右下角的数字提出来,可整理为:3=3+4×0;A3(-1,1)7=3+4×1;A7(-2,2)11=3+4×2;A11(-3,3)15=3+4×3 A15(-4,4)…………因为2 015=3+4×503,所以A2 015(-504,504).【方法归纳】规律探究题往往是从个例、特殊情况入手,发现其中的规律,从而推广到一般情况,用适当的式子表示出来即可,这是近几年来考试的一个热点.9.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A.(4,0)B.(5,0)C.(0,5)D.(5,5)复习测试一、选择题(每小题3分,共30分)1.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B,点B的坐标是( )A.(-5,3)B.(1,3)C.(1,-3)D.(-5,-1)2.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位4.在平面直角坐标系中,△ABC的三个顶点坐标分别是A(4,5),B(1,2),C(4,2),将△ABC向左平移5个单位后,A点的对应点A′的坐标是( )A.(0,5)B.(-1,5)C.(9,5)D.(-1,0)5.如图是中国象棋的一盘残局,如果用(4,0)表示“帅”的位置,用(3,9)表示“将”的位置,那么“炮”的位置应表示为( )A.(8,7)B.(7,8)C.(8,9)D.(8,8)6.已知A(-4,3),B(0,0),C(-2,-1),则三角形ABC的面积为( )A.3B.4C.5D.67.如图,与①中的三角形相比,②中的三角形发生的变化是( )A.向左平移3个单位B.向左平移1个单位C.向上平移3个单位D.向下平移1个单位8.若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g[f(2,-3)]=( )A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)9.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n 是自然数)的坐标为( )A.(1,2n)B.(2n,1)C.(n,1)D.(2n-1,1)10.如图,点A1,A2,A3,A4是某市正方形道路网的部分交汇点.某人从点A1出发,规定向右或向下行走,那么到达点A3的走法共有( )A.4种B.6种C.8种D.10种二、填空题(每小题4分,共20分)11.若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”.请写出一个“和谐点”的坐标为__________.12.若点A(x,y)的坐标满足(y-1)2+|x+2|=0,则点A在第__________象限.13.在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1)、N(0,1),将线段MN 平移后得到线段M′N′(点M、N分别平移到点M′、N′的位置),若点M′的坐标为(-2,2),则点N′的坐标为__________.14.如图是一组密码的一部分.为了保密,许多情况下可采用不同的密码,请你运用所学知识找到破译的“钥匙”.目前,已破译出“今天考试”的真实意思是“努力发挥”.若“今”所处的位置为(x,y),你找到的密码钥匙是__________,破译“正做数学”的真实意思是__________.15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2 015次运动后,动点P的坐标是__________.三、解答题(共50分)16.(8分)如图,是某学校的平面示意图.A,B,C,D,E,F分别表示学校的第1,2,3,4,5,6号楼.(1)写出A,B,C,D,E的坐标;(2)位于原点北偏东45°的是哪座楼,它的坐标是多少?17.(8分)如图是某市市区几个旅游景点示意图(图中每个小正方形的边长为1个单位长度),如果以O 为原点建立平面直角坐标系,用(2,2.5)表示金凤广场的位置,用(11,7)表示动物园的位置.根据此规定:(1)湖心岛、光岳楼、山陕会馆的位置如何表示?(2)(11,7)和(7,11)是同一个位置吗?为什么?18.(8分)某地为了城市发展,在现有的四个城市A,B,C,D附近新建机场E.试建立适当的直角坐标系,写出点A,B,C,D,E的坐标.19.(12分)如图,三角形ABC三个顶点坐标分别为A(3,-2),B(0,2),C(0,-5),将三角形ABC沿y轴正方向平移2个单位,再沿x轴负方向平移1个单位,得到三角形A1B1C1.(1)画出三角形A1B1C1,并分别写出三个顶点的坐标;(2)求三角形的面积A1B1C1.20.(14分)如图,四边形ABCD各个顶点的坐标分别为A(-2,8),B(-11,6),C(-14,0),D(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果把原来四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?参考答案变式练习1.D2.(-65,145) 3.B 4.A 5.(0,2),(4,2) 6.D 7.28.(1)(-1,2) (3,-2)(2)S△AOB=12×1×1+12×1×3=2.9.B复习测试1.B2.B3.D4.B5.A6.C7.A8.B9.B 10.B11.答案不唯一,如:(2,2)或(0,0) 12.二13.(2,4) 14.(x+1,y+2) “祝你成功”15.(2 015,2)16.(1)A(2,3)、B(5,2)、C(3,9)、D(7,5)、E(6,11);(2)在原点北偏东45°的点是点F,其坐标为(12,12).17.(1)湖心岛(2.5,5)、光岳楼(4,4)、山陕会馆(7,3).(2)不是,因为根据题目中点的位置确定可知水平数轴上的点对应的数在前,竖直数轴上的点对应的数在后,是有序数对.18.答案不唯一.如以点A作为坐标原点,经过点A的水平线作为x轴,经过点A的竖直线作为y轴,每个小方格的边长作为1单位长,建立平面直角坐标系,图略,A(0,0)、B(8,2)、C(8,7)、D(5,6)、E(1,8).19.(1)图略,△A1B1C1即为所求,三个顶点的坐标A1(2,0),B1(-1,4),C1(-1,-3).(2)由题意可得出:三角形的面积A1B1C1与△ABC面积相等,则三角形A1B1C1的面积为:12×3×7=21 2.20.(1)将四边形分割成长方形、直角三角形,图略,可求出各自的面积:S长方形①=9×6=54,S直角三角形②=12×2×8=8,S直角三角形③=12×2×9=9,S直角三角形④=12×3×6=9.所以四边形的面积为80.(2)如果把原来四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的四边形就是将原来的四边形向右平移两个单位长度形成的,所以其面积不变,还是80.我爸爸告诉我,你现在翻的一页书都是将来要数的一张张钞票,所以不让你学习的人,就是在抢你的财富,不想要的都是傻子。
平面直角坐标系学习目标:1、复习与平面直角坐标系相关的知识点 2、会应用知识点解答相关的题目 学习重点:点的坐标特征与点的平移 学习难点:点的坐标与图形的综合应用 课堂引入:1、平面直角坐标系的组成?2、几类特殊点的符号特征?3、点的坐标的平移规律?自学例题:如图,已知在平面直角坐标系中,ΔABC 的位置如图所示 (1)把ΔAB C 平移后,三角形某一边上一点P (x ,y )的对应点为()4,2P x y '+-,平移后所得三角形的各顶点的坐标分别为、 、(2)如果第一象限内有一点D ,与A 、B 、C 点同为平行四边形ABCD 的顶点,则点D 的坐标是 (3)请计算ΔABC 的面积。
当堂训练:1、如果点A (x ,y )在第三象限,则点B (-x ,y -1)在( )A .第一象限B .第二象限C .第三象限D .第四象限 2、已知点A (1,0),B (0,2),点P 在x 轴上,且三角形PAB 的面积为5,则P 点的坐标为( ) A .(-4,0) B .(6,0) C .(-4,0)或(4,0) D .(-4,0)或(6,0) 3、平面直角坐标系中,点A (-3,0),B (0,2),以O 、A 、B 为顶点作平行四边形,第四个顶点的坐标不可能是( ) A .(-3,2) B .(3,2) C .(3,-2) D .(-3,-2)4、已知点A 在x 轴上,位于原点右侧,距原点3个单位长度,则点A 关于y 轴的对称点坐标为 。
5、在平面直角坐标系中,点A 的坐标为(-1,3),线段AB ∥X 轴,且AB=4,则点B 的坐标为6、若过点P 和点(3,2)A 的直线平行于x 轴,过点P 和(1,2)B --的直线平行于y 轴,则点P 的坐标为( ) A 、(1,2)- B 、(2,2)- C 、(3,1)- D 、(3,2)-7、坐标平面内,点P 在y 轴右侧,且点P 到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标是 ( )A .(2,3)B .(3,2)C .(2,3)或(2,-3)D .(3,2)或(3,-2)8、我区某校七年级(1)班周末组织学生进行创新素质实践“活动”,参观了如图中的一些景点和设施,为了便于确定方位,带队老师在图中建立了平面直角坐标系(横轴和纵轴均为小正方形的边所在直线,每个小正方形边长为1个单位C BA-3-2-11234012345-4-1-2-3-4长度)(1)若带队老师建立的平面直角坐标系中,网球场的坐标为(—3,2),请你在图中画出这个平面直角坐标系。
第七章平面直角坐标系7.1 平面直角坐标系1.有序数对(1)定义:有顺序的两个数a与b组成的数对叫做__________.记作:(a,b).注意:(1)两数中间有“,”两边有括号;(2)数对(a,b)与(b,a)不同.(2)有序数对的作用:利用有序数对可以在平面内准确表示一个位置.2.平面直角坐标系(1)定义:满足一下条件的两条数轴叫做平面直角坐标系:①原点重合;②互相垂直;③习惯上取向__________、向__________为正方向,单位长度一般取相同.(2)由点找坐标的方法过点作x轴的垂线,垂足在x轴上对应的数a就是点的横坐标;过点作y轴的垂线,垂足在y轴上对应的数b就是点的纵坐标.有序数对(a,b)就是点的坐标.(3)由坐标找点的方法先找到表示横坐标与纵坐标的点,然后过这两点分别作x轴与y轴的垂线,垂线的交点就是该坐标对应的点.3.点的坐标特征4.特殊位置点的坐标(1)平行于坐标轴的点的坐标平行于横轴的直线上的点的纵坐标相同;平行于纵轴的直线上的点的横坐标相同.(2)象限角平分线上的点的坐标K知识参考答案:1.(1)有序数对(2)右,上K—重点理解有序数对的意义和作用,平面直角坐标系和点的坐标K—难点用有序数对表示点的位置,根据点的位置写出点的坐标,根据点的坐标描出点的位置K—易错确定点的坐标时误判横、纵坐标,确定所在象限时漏解一、有序数对1.理解有序数对的概念有两个要点:一是“有序”,二是“数对”,“数对”是指有两个数.2.有序数对一般用来表示位置,如用“排”“列”表示教师内座位的位置,用经纬度表示地球上的地点等.【例1】王东坐在教室的第3列第2行,用(3,2)表示,李军坐在王东正后方的第一个位置上,李军的位置是A.(4,3)B.(3,4)C.(1,3)D.(3,3)【答案】D【解析】王东坐在教室的第3列第2行,用(3,2)表示,王军坐在王东正后方的第一个位置上,则说明王军与王东在同一列,王军是在第2+1=3(行),所以王军的位置是(3,3),故选D.【例2】下列有污迹的电影票中能让小华准确找到座位的是A.B.C.D.【答案】D【解析】根据确定物体位置要2个数据可得:能让小华准确找到座位的是必须是排数,座位均清新的.分析可知只有D符合两项条件,故选D.【例3】课间操时,小聪、小慧、小敏的位置如图所示,小聪对小慧说,如果我的位置用(1,1)表示,小敏的位置用(7,7)表示,那么你的位置可以表示成A.(5,4)B.(4,4)C.(3,4)D.(4,3)【答案】B【解析】如图,小慧的位置可表示为(4,4).故选B.【例4】下列关于有序数对的说法正确的是A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,–2)与(–2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置【答案】C【解析】(3,2)与(2,3)表示的位置不相同,A选项错误;当a=b时,(a,b)与(b,a)表示的位置相同,B选项错误;(3,–2)与(–2,3)是表示不同位置的两个有序数对,C选项正确;(4,4)与(4,4)表示两个相同的位置,D选项错误.故选C.【例5】下列关于有序数对的说法正确的是A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置【例6】如果将一张“13排10号”的电影票记为(13,10),那么“3排8号”的电影票应记为__________,(10,13)表示的电影票是__________.【答案】(3,8);10排13号【解析】∵“13排10号”的电影票记为(13,10),∴“3排8号”的电影票应记为(3,8),(10,13)的电影票表示为10排13号,故答案为:(3,8);10排13号.二、平面直角坐标系1.在建立平面直角坐标系时要适当,一般建立时能使表示的点的坐标越简单、越容易表示就越适当.2.在建立平面直角坐标系时要首先规定谁是x轴、谁是y轴,谁是原点、正方向,并规定了适当的单位长度,然后再用坐标确定点的位置.3.在写点的坐标时,必须先写横坐标,再写纵坐标,中间用逗号隔开.平面上的任意一点都有唯一的一对有序数对(即这个点的坐标)与之对应,反过来,对于任意一对有序数对,平面上都有唯一的一个点与之对应.【例7】在平面直角坐标系中,点A(2,-3)在A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为点A(2,-3)的横坐标是正数,纵坐标是负数,所以点A在平面直角坐标系的第四象限故选D.【例8】在平面直角坐标系中,点P在x轴的下方,y轴右侧,且到x轴的距离为5,到y轴距离为1,则点P的坐标为A.(1,–5) B.(5,1)C.(–1,5) D.(5,–1)【答案】A【解析】∵点P在x轴下方,y轴的右侧,∴点P在第四象限.∵点P到x轴的距离为5,到y轴的距离为1,∴点P的横坐标为1,纵坐标为–5,∴点P的坐标为(1,–5).故选A.【例9】如图,小手盖住的点的坐标可能为A.(5,2) B.(–6,3)C.(–4,–6) D.(3,–4)【答案】C【解析】根据图示,小手盖住的点在第三象限,第三象限的点坐标特点是:横负纵负;分析选项可得只有C符合.故选C.【例10】已知点P(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是A.(3,3)B.(6,-6)C.(3,-3)D.(3,3)或(6,-6)【答案】D【解析】因为点P(2-a,3a+6)到两坐标轴的距离相等,所以|2-a|=|3a+6|,所以2-a=3a+6或2-a=-(3a+6),解得a=-1或a=-4.当a=-1时,2-a=2-(-1)=2+1=3;当a=-4时,2-a=2-(-4)=2+4=6,所以点P的坐标为(3,3)或(6,-6),故选D.【例11】象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“马”和“车”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为A.(3,2)B.(1,3)C.(0,3)D.(-3,3)【答案】B【解析】表示棋子“马”的点的坐标分别为(4,3),向左平移3个单位长度,得表示棋子“炮”的点的坐标为(1,3),故选B.【例12】在如图所示的直角坐标系中描出下列各点:A(-2,0),B(2,5),C(-52,-3).【解析】如图所示:【名师点睛】本题考查了点的坐标,熟练掌握平面直角坐标系中点的表示方法是解题的关键.【例13】如图,建立适当的直角坐标系,并写出这个四角星的八个顶点的坐标.【解析】建立如图所示的平面直角坐标系:八个顶点的坐标分别是:(6,0),(2,2),(0,6),(-2,2),(-6,0)(-2,-2),(0,-6),(2,-2).1.确定平面直角坐标系内点的位置是A.一个实数B.一个整数C.一对实数D.有序实数对2.下列描述,能够确定一个点的位置的是A.国家大剧院第三排B.北偏东30C.东经115,北纬35.5D.北京市西南3.在坐标平面内,下列各点中到x轴的距离最近的点是A.(2,5) B.(–4,1)C.(3,–4) D.(6,2)4.下列有污迹的电影票中能让小华准确找到座位的是A.B.C.D.5.若点P(m,1–2m)的横坐标与纵坐标互为相反数,则点P一定在A.第一象限B.第二象限C.第三象限D.第四象限6.若点A(–2,n)在x轴上,则点B(n–2,n+1)在A.第一象限B.第二象限C.第三象限D.第四象限7.已知M(1,–2),N(–3,–2),则直线MN与x轴,y轴的位置关系分别为A.相交,相交B.平行,平行C.垂直,平行D.平行,垂直8.电影院里的座位按“×排×号”编排,小明的座位简记为(12,6),小菲的位置简记为(12,12),则小明与小菲坐的位置为A.同一排B.前后同一条直线上C.中间隔六个人D.前后隔六排9.在平面直角坐标系xOy中,若A点坐标为(–3,3),B点坐标为(2,0),则三角形ABO的面积为A.15 B.7.5C.6 D.310.在平面直角坐标系中,点(-4,4)在第__________象限.11.若点A的坐标是(-3,5),则它到x轴的距离是__________,到y轴的距离是__________.12.已知点A(-3,2),点B(1,4).(1)若CA平行于x轴,BC平行于y轴,则点C的坐标是__________;(2)若CA平行于y轴,BC平行于x轴,则点C的坐标是__________.13.如下图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格14.如图中标明了小英家附近的一些地方,以小英家为坐标原点建立如图所示的坐标系.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英同学从家里出发,沿(3,2)→(3,-1)→(0,-1)→(-1,-2)→(-3,-1)的路线转了一下,又回到家里,写出路上她经过的地方.15.如图,正方形ABCD的点A和点C的坐标分别为(-2,3)和(3,-2),则点B和点D的坐标分别为A.(2,2)和(3,3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3)D.(2,2)和(-3,-3)16.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在象限是A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定17.已知点A(2a-6,-4)在二、四象限的角平分线上,则a=__________.18.(2018•大连)在平面直角坐标系中,点(–3,2)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限19.(2018•扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是A.(3,–4)B.(4,–3)C.(–4,3)D.(–3,4)20.(2018•临安区)P(3,–4)到x轴的距离是__________.21.(2018•柳州)如图,在平面直角坐标系中,点A的坐标是__________.22.(2018•鄂尔多斯)在平面直角坐标系中,对于点P(a,b),我们把Q(–b+1,a+1)叫做点P的伴随点,已知A1的伴随点为A2,A2的伴随点为A3,…,这样依次下去得到A1,A2,A3,…,A n,若A1的坐标为(3,1),则A2018的坐标为__________.1.【答案】D【解析】两个实数组成的有序数对,故选D.2.【答案】C【解析】A、国家大剧院第三排,不能够确定一个点的位置,故本选项错误;B、北偏东30,不能够确定一个点的位置,故本选项错误;C、东经115,北纬35.5,能够确定一个点的位置,故本选项正确;D、北京市西南,不能够确定一个点的位置,故本选项错误.故选C.3.【答案】B【解析】A选项中的点到x轴的距离是|5|=5,B选项中的点到x轴的距离是|1|=1,C选项中的点到x轴的距离为|–4|=4,D选项中的点到x轴的距离是|2|=2.故选B.4.【答案】D【解析】根据确定物体位置要2个数据可得:能让小华准确找到座位的必须是排数,座位均清晰的.分析可知只有D符合两项条件,故选D.8.【答案】A【解析】∵(12,6)表示12排6号,(12,12)表示12排12号,∴小明(12,6)与小菲(12,12)应坐的位置在同一排,中间隔5人.故选A.9.【答案】D【解析】易知点A到x轴的距离为3,OB=2,∴1332ABOS OB=⨯⨯=△,故选D.10.【答案】二【解析】在平面直角坐标系中,点(-4,4)在第二象限,故答案为:二.11.【答案】5;3【解析】根据平面直角坐标系的特点,点到x轴的距离是|y|=5,点到y轴的距离为|x|=3,故答案为:5;3.12.【答案】(1,2);(-3,4)【解析】(1)若CA平行于x轴,BC平行于y轴,则点C的横坐标等于点B的横坐标,点C的纵坐标等于点A的纵坐标,点C的坐标为:(1,2);(2)若CA平行于y轴,BC平行于x轴,则点C 的横坐标等于点A的横坐标,点C的纵坐标等于点B的纵坐标,点C的坐标为:(-3,4),故答案为:(1,2);(-3,4).13.【解析】如下图所示,可知小明与小刚相距3个格.14.【解析】(1)汽车站(1,1),消防站(2,-2).(2)小英经过的地方:游乐场,公园,姥姥家,宠物店,邮局.17.【答案】5【解析】由题意得2a-6=4,解得a=5,故答案为:5.18.【答案】B【解析】点(–3,2)所在的象限在第二象限.故选B.19.【答案】C【解析】由题意,得x=–4,y=3,即M点的坐标是(–4,3),故选C.20.【答案】4【解析】根据点在坐标系中坐标的几何意义可知,P(3,–4)到x轴的距离是|–4|=4.故答案为:4.21.【答案】(–2,3)【解析】由坐标系可得:点A的坐标是(–2,3).故答案为:(–2,3).。