第十四章 偏导数 全微分 第五节 曲面的切平面与法线
- 格式:ppt
- 大小:479.50 KB
- 文档页数:16
曲面的切平面方程和法线方程公式曲面是三维空间中的一类特殊图形,它是由一个或多个曲线旋转、平移、拉伸、变形等操作形成的。
在数学中,曲面是非常重要的研究对象,它不仅在几何学、拓扑学、微积分等数学领域中有广泛应用,还在物理学、工程学、计算机图形学等应用领域中得到了广泛的应用。
对于曲面的研究,其中一个重要的问题是如何确定曲面上任意一点的切平面和法线方程。
本文将介绍曲面的切平面方程和法线方程公式,以及如何应用这些公式解决实际问题。
一、曲面的切平面方程曲面的切平面是指与曲面在某一点相切的平面。
在数学上,我们可以通过求出曲面在该点的切向量来确定该点的切平面。
切向量是指曲面在该点的切线方向的向量,它与曲面在该点的法向量垂直。
设曲面的方程为F(x,y,z)=0,其中F(x,y,z)是曲面上任意一点(x,y,z)的函数,点P(x0,y0,z0)是曲面上的一个点,它的切向量为:grad F(x0,y0,z0) =(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))其中Fx、Fy、Fz分别表示F对x、y、z的偏导数。
因为切向量与切平面垂直,所以曲面在点P的切平面的法向量为:n = (Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0)) 假设切平面的方程为Ax+By+Cz+D=0,其中A、B、C是切平面的法向量的三个分量,D是一个常数。
由于点P在切平面上,所以有:Ax0 + By0 + Cz0 + D = 0将切平面的法向量代入上式得:Fx(x0,y0,z0)x0 + Fy(x0,y0,z0)y0 + Fz(x0,y0,z0)z0 + D = 0因此,切平面的方程为:Fx(x0,y0,z0)x + Fy(x0,y0,z0)y + Fz(x0,y0,z0)z + D = 0 其中D=-Fx(x0,y0,z0)x0 - Fy(x0,y0,z0)y0 -Fz(x0,y0,z0)z0。
曲面的切平面与法线方程设中曲面Σ的方程为F (x , y , z) = 0,函数F(x , y,z)在曲面Σ上点处可微,且,过点任意引一条位于曲面Σ上的曲线Γ.设其方程为,且对应于点;不全为零.由于曲线Γ在Σ上,则有及。
该方程表示了曲面上任意一条过点的曲线在该点的切线都与向量垂直,并且这些切线都位于同一平面上,这个平面就称为曲面Σ在点处的切平面。
点称为切点。
向量称为曲面Σ在点处的一个法向量。
记为。
基本方法:1、设点在曲面F(x, y,z)=0上,而F(x,y,z)在点处存在连续偏导数,且三个偏导数不同时为零,则曲面F(x,y,z)=0在点处的切平面方程为。
法线方程为.2、设点在曲面z = f (x, y)上,且z = f (x, y) 在点M0 (x0,y0)处存在连续偏导数,则该曲面在点处的切平面方程为。
过X0的法线方程为.注:方法2实际上是方法1中取的情形.3、若曲面∑由参数方程x = x(u, v) , y = y(u, v) , z = z(u,v)给出,∑上的点与uv平面上的点(u0 ,v0)对应,而x(u , v) , y(u , v) ,z(u,v)在(u0 ,v0)处可微.曲面∑在点X0处的切平面方程及法线方程分别为和三、答疑解惑问题:曲面∑的参数方程为x = x(u , v) , y = y(u , v) , z = z(u , v),∑上的点与u , v平面上的点(u0 ,v0)对应,怎样确定∑在点X0处的法向量?注释:设x(u , v) , y(u , v) , z(u , v)在(u0 ,v0)处可微,考虑在∑上过点X0的两条曲线。
Γ1:x = x(u ,v0) ,y = y(u,v0) , z = z(u,v0);Γ2:x = x(u0,v) , y = y(u0,v) ,z = z(u0 , v).它们在点X0处的切向量分别为当时,得∑在点X0处的法向量为则∑在点X0处的法向量为。
曲面的切平面方程和法线方程公式曲面是三维空间中的一个二维对象,它可以用数学公式来表示。
在研究曲面的性质时,我们需要了解曲面的切平面方程和法线方程。
本文将详细介绍这两个公式的含义和应用。
一、曲面的切平面方程曲面的切平面方程是指曲面上某一点处的切平面的方程。
切平面是指与曲面在该点处相切的平面。
在三维空间中,一个平面可以用一个法向量来表示。
因此,曲面的切平面方程可以表示为:Ax + By + Cz + D = 0其中,A、B、C是平面的法向量的三个分量,D是平面的截距。
为了求出切平面的方程,我们需要先求出曲面在该点处的法向量。
曲面的法向量可以通过求取曲面的梯度来得到。
梯度是一个向量,它指向函数在某一点处的最大增加方向。
对于曲面f(x,y,z),它的梯度可以表示为:grad f = (fx, fy, fz)其中,fx、fy、fz分别表示曲面在x、y、z三个方向上的偏导数。
因此,曲面在某一点处的法向量可以表示为:n = (fx, fy, fz)然后,我们可以将该向量作为平面的法向量,求出切平面的方程。
例如,对于曲面f(x,y,z) = x^2 + y^2 - z^2,在点(1,1,0)处的切平面方程可以表示为:2x(x-1) + 2y(y-1) - 2z = 0二、曲面的法线方程曲面的法线方程是指曲面上某一点处的法线的方程。
法线是指与曲面在该点处垂直的向量。
在三维空间中,一个向量可以用一个点和一个方向来表示。
因此,曲面的法线方程可以表示为:r = r0 + tn其中,r0是曲面上的一点,n是曲面在该点处的法向量,t是一个实数,r是曲面上的一条直线。
曲面的法线方程可以用于求取曲面上的切线。
通过将t取为0,我们可以得到曲面上与该点处切平面相切的一条直线。
例如,对于曲面f(x,y,z) = x^2 + y^2 - z^2,在点(1,1,0)处的法线方程可以表示为:r = (1,1,0) + t(2,2,0)通过令t=0,我们可以得到曲面在该点处的切线方程:x = 1 + 2ty = 1 + 2tz = 0三、曲面的应用曲面的切平面方程和法线方程在数学、物理、工程等领域都有广泛的应用。
曲面的切平面与法线方程设二中曲面工的方程为F (x , y , z ) = 0,函数F (x , y , z )在曲面工上点_ 1. . ■ 一处可微,且x=瑚Q£=胡,且f 叫对应于点肌;疋(订)』(讥*(耐)不全为零。
由于曲线I 在工上,则有任意一条过点‘‘-的曲线在该点的切线都与向量 一」'-L| -垂直,并且这些切线都位于同一平面上,这个平面就称为曲面工在点 ' -处的切平面.点]称为切点.向量'■ '-1--称为曲面工在点’-处的一个法向 量。
记为顶丽化gF, QO)基本方法:1、设点? ljl ' L 在曲面F (x , y , z )=0上,而F (x , y , z )在点「■'处存在连续偏导数,且三个偏导数不同时为零,则曲面 F (x , y , z )=0在点’「处的切平面方程为法线方程为L % _ F_ 片_ £_矶£(兀厂叮兀厂外匕)2、设点在曲面z = f (x , y )上,且z = f (x , y )在点M o (x o , y o )处存在连续偏导数,则该曲面在点•处的切平面方程为过X o 的法线方程为齐_ 爲 ______ _g~g» -£(心片)-刀仇」)1注:方法2实际上是方法1中取 埶兀”巧■”/(“)・0[加(血)朗(血)鹽他))n (滋 如 龛丿,过点-任意引一条位于曲面工上的曲线r 设其方程为该方程表示了曲面上的情形.3、若曲面刀由参数方程x = X(u, v), y = y(u, v) , z = z(u, v)给岀,刀上的点「「..'与uv 平面上的点(u o , v o)对应,而x(u , v) , y(u , v) , z(u , v)在(u o , v o)处可微.曲面刀在点X o处的切平面方程及法线方程分别为三、答疑解惑问题:曲面刀的参数方程为x = x(u , v) , y = y(u , v) , z = z(u , v),E上的点1与u , v平面上的点(u o , v o)对应,怎样确定刀在点X o处的法向量?注释:设x(u , v) , y(u , v) , z(u , v)在(u o , v o)处可微,考虑在刀上过点X o的两条曲线.r :x = x(u , v o) , y = y(u , v o) , z = z(u , v o);ir:x = x(u o, v) , y = y(u o , v) , z = z(u o , v).它们在点X o处的切向量分别为i*=a:糾冲,y:(埠冲吗必))£・(兀(如%),中阳心细畀J)当-i ' '-时,得刀在点X o处的法向量为%%)g.)则刀在点X o处的法向量为四、典型例题例1求椭球面X2+2 y2+3 z2= 6在(1,1,1 )处的切平面方程与法线方程.解设F(x, y, z) = X2+2 y2+3 Z2 -6,由于' ' " 在全平面上处处连续,在(1, 1, 1 )p1' = 2 J?1- 4 F -fi处 ''- -' ,椭球面在点(1,1,1)处的法向量为(2, 4, 6).则所求切平面方程为2(J-1)+ 4(y- l) + d(z-l) = 0 即X + 2 y + 3 Z = 6.A-1_ y-1 _ z-1所求法线方程为】- -,g=可-+y例2求曲面- 平行于Z = 2 X+2 y的切平面方程左亡心隔亡as^j 口ccis 冏sin^ -<7sm厲曹in给_#sm sin2- 2MO sin cos®%x 号=一+y £=工*£ = 2了解设切点为L J' ■.曲面-',因此」-.■- .则曲面在上” —」处的法向量为■> ■^■■,|■■■.曲面在点Xo处的切平面方程为心仗・心)+ 2"®■幷)■("习),又切平面与已知平面z = 2 x+2 y平行,因此况—认三TT解得切点坐标为 '-■'■■■ -1 - ■ ■ ■',所求切平面方程为J.. -■ I --.I 1 亠二:II即益+即-3-0.例 3 求曲面'_ 1 : 1 1■.:■ 1■ ■ - ■ 1 1' ■ . ■- _'■在点匚〔处的切平面方程和法线方程.解点'-'■■■宀对应曲面上的点L U ''■■■■■ ■' ■'其中,一! I ■:二| 一「:] I | - :::win 绻^cas 恤CDS给二,sill 2 轴CO56J-t/sm 轴sin 第sin2 sin^则曲面在点■■■-丨•处的法向量为■' 1 . 1 A 1. 1所求曲面在点X o处的切平面方程为& sin 职ccs^fx-ijsin % cos5(j) + asm1伽处sin 気)+ 应‘ sin 軌 cos 6^ (z - tf2cos - 0,即xstn cos^ + ysrn sin 4-zcos^ = ax- asincsb cosft p-应册)sin晞z-acos^n Hi - ~ ■ □ - «)- _ ~ Q q所求的法线方程为'■■-flsin^Gos^ _ y-CFSin^ siii^)驰即 _ ^ ^(3^-2j/-z -5 5f + 十=门2” - 2y +2^ =-例4求过直线,且与曲面^ -相切之切平面方程.解过直线的平面方程可设为-J' - : '..'J. 「I —.即壮丄二,其法向量为理忑”勿=2”处_|记-,则F;5,沪* ^>2设所求的切平面的切点为*"■" - '■ ■ ■'',则曲面上小汁"-门处的法向量为T I二■''.且有(34刃可+ 以・2)兀^(Z-1K-5 = O3 + /t 2-2由⑴、(3)解得152/ -1代入(2)得解得t i = 1, t2 = 3,故入 1 = 3 ,卮=7.则所求切平面方程为3x - - z - 5 + 3(J+ 丿+z)■ 0 3x- Ry -云一5 + 7(工十j十左)-0即6x + y + 2 z = 5 或10x + 5 y + 6 z = 5.r= vf-例5试证曲面•-上任一点处的切平面都过原点,其中f(x)为可微函数.证明故曲面上点L '■■■ ■■- '■-处的法向量为 .十' 丄则过曲面上点 s 「 ' J '■的切平面方程为整理后得可知其必定过原点从上述方程得切平面方程为。