基于STM32单片机的串口使用解析
- 格式:pdf
- 大小:64.69 KB
- 文档页数:4
STM32F103的串口收发原理基于串行通信协议。
串行通信是一种数据传输方式,数据在两个设备之间逐位传输。
在STM32F103中,串口(USART)模块用于实现串行通信。
串口收发的原理可以分为以下几个步骤:
1.初始化串口:在开始串行通信之前,需要配置串口的参数,如波特率、数据位、停止位、校验位
等。
这些参数可以根据需要进行设置,以匹配通信设备的规格和协议要求。
2.发送数据:当需要发送数据时,STM32F103会将数据写入串口的发送缓冲区。
然后,串口模
块会自动将数据一位一位地发送出去。
发送数据的顺序是从低位到高位依次发送。
3.接收数据:接收数据的过程与发送数据相反。
当接收到数据时,串口模块会将数据一位一位地读
取,并存储在接收缓冲区中。
然后,STM32F103可以从接收缓冲区中读取数据。
同样地,接收数据的
顺序也是从低位到高位依次读取。
4.错误检测与处理:为了确保数据的正确传输,可以在通信过程中加入校验和(checksum)或奇
偶校验(parity)等错误检测机制。
在接收数据时,接收方可以计算校验和或奇偶校验,并与发送方的数
据进行比较。
如果发现错误,可以请求重新发送数据。
需要注意的是,具体的串口配置和操作可能会根据不同的STM32系列和型号有所不同。
因此,在实际应用中,建议参考相关文档和参考手册,以了解特定型号的STM32的串口配置和操作方法。
stm32串口通信实验原理STM32是一款由STMicroelectronics公司推出的基于ARM Cortex-M 内核的32位微控制器。
在STM32系列中,串口通信是一种常见的外设模块,可以实现与其他设备之间的数据传输。
本文将介绍STM32串口通信的原理及实验方法。
一、串口通信的原理串口通信是一种通过串行方式传输数据的通信方式。
在串口通信中,数据是一位一位地依次发送或接收的。
与并行通信相比,串口通信只需要两根信号线即可实现数据的传输,因此在资源有限的嵌入式系统中被广泛应用。
STM32的串口通信模块包括多个寄存器,其中包括控制寄存器、状态寄存器、数据寄存器等。
通过配置这些寄存器,可以实现串口通信的参数设置和数据的发送接收。
二、STM32串口通信的实验步骤以下是一种基本的STM32串口通信实验步骤:1. 硬件连接:将STM32开发板的串口引脚与其他设备的串口引脚通过串口线连接起来。
一般来说,串口通信需要连接的引脚包括TX (发送引脚)、RX(接收引脚)、GND(地线)。
2. 引脚配置:通过STM32的引脚复用功能,将相应的GPIO引脚配置为串口功能。
具体的引脚配置方法可以参考STM32的开发板手册或者相关的资料。
3. 时钟配置:配置STM32的时钟源,使得串口通信模块能够正常工作。
一般来说,串口通信模块使用的时钟源可以选择系统时钟或者外部时钟。
4. 串口配置:配置串口通信模块的参数,包括波特率、数据位、停止位、校验位等。
这些参数的配置需要根据实际的通信需求来确定。
5. 数据发送:通过向数据寄存器写入数据,向其他设备发送数据。
在发送数据之前,需要通过状态寄存器的标志位判断串口是否空闲,以确保数据能够正常发送。
6. 数据接收:通过读取数据寄存器的数据,从其他设备接收数据。
在接收数据之前,需要通过状态寄存器的标志位判断是否有数据到达,以确保数据能够正确接收。
7. 中断处理:在串口通信过程中,可以使用中断来实现数据的异步传输。
嵌入式基于stm32串口通信课程设计嵌入式系统是近年来发展迅速的一种新型计算机系统,其特点是硬件与软件紧密结合,功能强大,具有体积小、功耗低、性能高等优点,广泛应用于工业控制、汽车电子、医疗设备等领域。
在嵌入式系统中,串口通信是一种常见且重要的通信方式,其通过串行传输数据,可以与其他设备进行数据交换。
在嵌入式系统的开发过程中,串口通信的设计是一项非常关键的工作。
本文将以基于STM32的串口通信课程设计为例,详细介绍串口通信的实现原理和相关技术。
首先,我们需要了解串口通信的基本原理。
串口通信一般包括发送端和接收端两个部分。
发送端将需要传输的数据转化为串行数据,并通过串口发送出去;接收端接收串口传输过来的数据,并将其转化为需要的格式。
串口通信需要通过一定的协议进行数据的传输,常见的协议有UART、USART、SPI等。
在基于STM32的串口通信课程设计中,我们可以使用STM32开发板作为嵌入式系统的硬件平台。
STM32是一款由ST公司推出的基于ARM Cortex-M内核的系列单片机,具有高性能、低功耗等特点。
在STM32中,有多个通用串行接口(USART)可用于实现串口通信功能。
我们可以通过编程控制STM32的USART模块,实现串口通信的发送和接收功能。
首先,我们需要初始化STM32的USART模块。
在初始化过程中,需要设置波特率、数据位数、校验位等参数,以适应不同的通信需求。
然后,我们需要编写发送函数和接收函数。
发送函数将需要传输的数据转化为串行数据,并通过USART发送出去;接收函数则负责接收USART传输过来的数据,并将其转化为需要的格式。
在接收函数中,我们还可以添加一些错误检测和容错机制,以确保数据的准确性。
在完成了USART的初始化工作后,我们还需要编写主程序来调用发送函数和接收函数,实现数据的发送和接收。
在主程序中,我们可以通过外部中断、定时器或其他触发方式来触发数据的发送和接收操作。
STM32HAL库之串⼝详细篇(基于HAL库)⼀、基础认识(⼀) 并⾏通信原理:数据的各个位同时传输优点:速度快缺点:占⽤引脚资源多,通常⼯作时有多条数据线进⾏数据传输8bit数据传输典型连接图:传输的数据是⼆进制:11101010,则通信使⽤8条线同时进⾏数据传输,发送端⼀次性发送8位数据,接收端⼀次性接收8位数据。
(⼆) 串⾏通信原理:数据按位顺序传输优点:占⽤引脚资源少缺点:速度相对较慢,通常⼯作时只有⼀条数据线进⾏数据传输8bit数据传输典型连接图:传输的数据是⼆进制:11101010,则通信使⽤8条线同时进⾏数据传输,发送端⼀次性发送8位数据,接收端⼀次性接收8位数据。
8bit数据传输典型连接图:传输的数据是⼆进制:11101010,则通信使⽤1条线进⾏数据传输,发送端⼀次性发送1位数据,接收端⼀次性接收1位数据。
串⾏通信的分类:1.单⼯:数据只能在⼀个⽅向上传输,通信双⽅数据只能由⼀⽅传输到另⼀⽅2.半双⼯:数据可以错时双向传输,通信双⽅数据可以⽀持两个⽅向传输,但是同⼀时间只能由⼀⽅传输到另外⼀⽅。
3.全双⼯:数据可以同时双向传输,通信双⽅数据可以同时进⾏双向传输,对于其中⼀个设备来说,设备需要⽀持发送数据时可以进⾏数据接收。
串⾏通信的通讯⽅式:l 同步通信:带时钟同步信号的传输,如SPI、IIC、USART(同步)l 异步通信:不带时钟同步信号的传输,如UART、USART(异步)常见数据传输协议:(三) UART和USARTUART:通⽤异步收发器USART:通⽤同步/异步收发器,其可选使⽤异步⽅式,那将和UART⽆区别,如果是同步,则需要多⼀根时钟线(USART_CK)(四) STM32的USART注意:l 通常USART1接⼝的通信速率较快,其它USART接⼝较慢。
如STM32F103C8T6的USART1接⼝通信速率是4.5Mbps,其它USART接⼝的通信速率是2.25Mbps。
stm32多任务多数据串口接收及处理方法STM32多任务多数据串口接收及处理方法通常涉及到使用中断服务程序(ISR)或轮询方法来接收串口数据,并在多个任务之间分配和同步处理这些数据。
以下是一个基本的步骤和策略,用于实现这一功能:1. 初始化串口:首先,你需要初始化串口以进行通信。
这包括设置波特率、数据位、停止位、奇偶校验等。
2. 配置中断:STM32的串口通常具有一个接收中断。
你可以配置这个中断,以便每当一个新的字节被接收时,它就会触发一个中断。
3. 中断服务程序(ISR):在中断服务程序中,你可以读取接收缓冲区中的数据,并将其放入一个全局变量或数据结构中,以便其他任务或函数可以访问它。
4. 多任务处理:你可以使用一个任务或一组任务来处理这些串口数据。
这可能涉及到解析数据、执行某些操作或将数据发送到其他设备。
5. 数据同步:在多任务环境中,你需要确保数据的同步。
这意味着,当一个任务正在处理数据时,其他任务不能同时访问或修改这些数据。
这通常通过使用互斥锁、条件变量或其他同步机制来实现。
6. 轮询:除了使用中断,你还可以使用轮询方法来检查串口是否有数据可供读取。
这种方法可能在某些应用中更简单,但可能不如中断方法效率高。
7. 错误处理:不要忘记在代码中包含错误处理逻辑。
这可能包括检查读取的数据是否完整、是否有任何传输错误等。
8. 优化:对于高性能应用,你可能还需要考虑其他优化策略,如非阻塞读取、缓冲区管理、流量控制等。
以上只是一个基本的框架,具体的实现细节将取决于你的具体需求和STM32的具体型号。
建议查阅STM32的参考手册和相关文档以获取更详细的信息和示例代码。
STM32的串⼝通信UARTTTL常⽤的串⼝pinSTM32的串⼝是基础通信⽅式, 每个型号都带多组串⼝, ⼀般都使⽤默认的组, 可以参考芯⽚的datasheet, 去看pinout and pin definitions, 对于stm32f103c8t6, 这是48pin的芯⽚, 提供3组串⼝, 如果使⽤3组, 各组串⼝的pin脚为USART2 - A2, A3PA0: USART2_CTSPA1: USART2_RTSPA2: USART2_TXPA3: USART2_RXPA4: USART2_CKUSART1 - A9, A10PA8: USART1_CKPA9: USART1_TXPA10: USART1_RXPA11: USART1_CTSPA12: USART1_RTSUSART3 - B10, B11PB10: USART3_TXPB11: USART3_RXPB12: USART3_CKPB13: USART1_CTSPB14: USART1_RTS串⼝通信编程⼀般通过以下的步骤实现串⼝通信1. 申请内存作为buffer, 声明标记位和buffer指针简单的例⼦u8 usart_buf[100] = {0};u16 index1 = 0, flag1 = 0;复杂的例⼦#define TTL_BufferLength ((uint16_t)0x0040)#define TTL_WriteOk ((uint16_t)0x0000)#define TTL_BufferOverrun ((uint16_t)0x0001) // full flag#define TTL_BufferUnderrun ((uint16_t)0x0002) // empty flag/* Private types -------------------------------------------------------------*/typedef struct{uint16_t size; /* The size of the buffer */uint16_t start; /* The index of the next character to send */uint16_t end; /* The index at which to write the next character */char* elems; /* The location in memory of the buffer */} TTL_BufferTypeDef;/* Private variables ----------------------------------------------------------*/TTL_BufferTypeDef cb;/* Private Methods -----------------------------------------------------------*/void TTL_Buffer_Init(){cb.size = TTL_BufferLength;cb.start = 0;cb.end = 0;cb.elems = calloc(cb.size, sizeof(char));}void TTL_Buffer_Free(){free(cb.elems);}uint16_t TTL_Buffer_IsFull(){return (cb.end + 1) % cb.size == cb.start;}uint16_t TTL_Buffer_IsEmpty(){return cb.end == cb.start;}uint16_t TTL_Buffer_Write(char c){// check for a buffer overrunif (TTL_Buffer_IsFull()) {return TTL_BufferOverrun;} else {cb.elems[cb.end] = c;cb.end = (cb.end + 1) % cb.size;}return TTL_WriteOk;}uint16_t TTL_Buffer_Read(char* c){// check for a buffer underrunif (TTL_Buffer_IsEmpty()) {return TTL_BufferUnderrun;} else {*c = cb.elems[cb.start];cb.start = (cb.start + 1) % cb.size;}}2. 初始化UART端⼝: 使能GPIO, UART, NVIC /* Public Methods -----------------------------------------------------------*/void TTL_Init(){// Structures to hold the initialisation dataGPIO_InitTypeDef GPIO_InitStruct;USART_InitTypeDef USART_InitStruct;NVIC_InitTypeDef NVIC_InitStruct;// enable the peripherals we're going to useRCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);// Usart1 Tx is on GPIOB pin 6 as an alternative functionGPIO_InitStruct.GPIO_Pin = GPIO_Pin_6;GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF;GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_UP;GPIO_Init(GPIOB, &GPIO_InitStruct);// Connect pin 6 to the USARTGPIO_PinAFConfig(GPIOB, GPIO_PinSource6, GPIO_AF_USART1);// fill in the interrupt configurationNVIC_InitStruct.NVIC_IRQChannel = USART1_IRQn;NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 0;NVIC_InitStruct.NVIC_IRQChannelSubPriority = 0;NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;NVIC_Init(&NVIC_InitStruct);// init the USART to 8:N:1 at 9600 baud as specified in the// TTL data sheetUSART_ART_BaudRate = 9600;USART_ART_WordLength = USART_WordLength_8b;USART_ART_StopBits = USART_StopBits_1;USART_ART_Parity = USART_Parity_No;USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_ART_Mode = USART_Mode_Tx;USART_Init(USART1, &USART_InitStruct);// Enable USART1 peripheralUSART_Cmd(USART1, ENABLE);// ensure USART1 interrupts are off until we have dataUSART_ITConfig(USART1, USART_IT_TXE, DISABLE);// prepare the bufferTTL_Buffer_Init();}3. 实现中断处理⽅法读消息/* Public Methods -----------------------------------------------------------*//** Handles all interrupts for USART1.*/void USART1_IRQHandler(void){// is this interrupt telling us that we can send a new character?if (USART_GetITStatus(USART1, USART_IT_TXE) != RESET) {// is there something for us to read?if (TTL_Buffer_IsEmpty()) {// no, disable the interruptUSART_ITConfig(USART1, USART_IT_TXE, DISABLE);} else {// yes, get the next character from the bufferchar c = 0x00;TTL_Buffer_Read(&c);// send it to the deviceUSART_SendData(USART1, c);}}}4. ⼯具⽅法: 写消息, 反初始化(⾮必须)注意在每次调⽤USART_SendData这个⽅法之后, 都需要阻塞判断 USART_FLAG_TC 是否为SET才能继续往下执⾏. ...USART_SendData(USART1, *str++);while( USART_GetFlagStatus(USART1, USART_FLAG_TC) != SET);...例如/* Public Methods -----------------------------------------------------------*/void TTL_DeInit(){// disable the interruptsUSART_ITConfig(USART1, USART_IT_TXE, DISABLE);// free the bufferTTL_Buffer_Free();}uint16_t TTL_IsBufferFull(){return TTL_Buffer_IsFull();}uint16_t TTL_WriteMessage(char* text, uint16_t length){// index into the character arrayuint16_t i = 0;// return valueuint16_t rv = TTL_WriteOk;while(length--) {USART_SendData(USART1, *text++);// USART_SendData(USART1,(uint16_t) *text++);// Loop until the end of transmissionwhile(USART_GetFlagStatus(USART1, USART_FLAG_TC) != SET);}// enable the interrupt to send the messageUSART_ITConfig(USART1, USART_IT_TXE, ENABLE);return rv;}代码例⼦这是⼀个完整的代码例⼦, 适⽤于STM32F103#include "sys.h"#include "usart.h"#include "delay.h"u8 usart1_buf[100] = {0}, usart2_buf[100] = {0}, usart3_buf[100] = {0};u16 index1 = 0, index2 = 0, index3 = 0, flag1 = 0, flag2 = 0, flag3 = 0;void uart_init(u32 bound){GPIO_InitTypeDef GPIO_InitStructure;USART_InitTypeDef USART_InitStructure;NVIC_InitTypeDef NVIC_InitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2 | RCC_APB1Periph_USART3, ENABLE);//使能USART1,GPIOA时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB, ENABLE);/*************UART1********************/GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复⽤推挽输出GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化GPIOA.9//USART1_RX GPIOA.10初始化GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //PA10GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输⼊GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化GPIOA.10NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=2 ;//抢占优先级3NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //⼦优先级3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器USART_ART_BaudRate = bound;//串⼝波特率USART_ART_WordLength = USART_WordLength_8b; //字长为8位数据格式USART_ART_StopBits = USART_StopBits_1; //⼀个停⽌位USART_ART_Parity = USART_Parity_No; //⽆奇偶校验位USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None; //⽆硬件数据流控制 USART_ART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式USART_Init(USART1, &USART_InitStructure); //初始化串⼝1USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启串⼝接受中断USART_Cmd(USART1, ENABLE); //使能串⼝1/***************UART2******************/GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复⽤推挽输出GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化GPIOA.2GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输⼊GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化GPIOA.3NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=2 ;//抢占优先级3NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //⼦优先级3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器USART_ART_BaudRate = bound;//串⼝波特率USART_ART_WordLength = USART_WordLength_8b; //字长为8位数据格式USART_ART_StopBits = USART_StopBits_1; //⼀个停⽌位USART_ART_Parity = USART_Parity_No; //⽆奇偶校验位USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None; //⽆硬件数据流控制 USART_ART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式USART_Init(USART2, &USART_InitStructure); //初始化串⼝2USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);//开启串⼝接受中断USART_Cmd(USART2, ENABLE); //使能串⼝2/****************UART3***********************///USART3_TX GPIOB.10GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //PB.10GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复⽤推挽输出GPIO_Init(GPIOB, &GPIO_InitStructure); //初始化GPIOB.10//USART3_RX GPIOB.11GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11; //PB11GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输⼊GPIO_Init(GPIOB, &GPIO_InitStructure); //初始化GPIOB.11//Usart3 NVIC 配置NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=1; //抢占优先级4NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //⼦优先级3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器USART_ART_BaudRate = 115200; //串⼝波特率USART_ART_WordLength = USART_WordLength_8b; //字长为8位数据格式USART_ART_StopBits = USART_StopBits_1; //⼀个停⽌位USART_ART_Parity = USART_Parity_No; //⽆奇偶校验位USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None; //⽆硬件数据流控制 USART_ART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式USART_Init(USART3, &USART_InitStructure); //初始化串⼝3USART_ITConfig(USART3, USART_IT_RXNE, ENABLE); //开启串⼝接受中断USART_Cmd(USART3, ENABLE);}/**每个字节⼀个中断, 这⾥⽤0x0a作为⼀条消息读取结束*/void USART1_IRQHandler(void){u16 code;if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) {USART_ClearITPendingBit(USART1, USART_IT_RXNE);//Removal of receiving interrupt flagcode = USART_ReceiveData(USART1);usart1_buf[index1] = code;index1++;if(code == 0x0a) {index1 = 0;flag1 = 1;}}}void USART2_IRQHandler(void){u16 code;if(USART_GetITStatus(USART2, USART_IT_RXNE) != RESET) {USART_ClearITPendingBit(USART2, USART_IT_RXNE);code=USART_ReceiveData(USART2);usart2_buf[index2] = code;index2++;if(code == 0x0a) {index2 = 0;flag2 = 1;}}}void USART3_IRQHandler(void){u16 code;if(USART_GetITStatus(USART3, USART_IT_RXNE) != RESET) {USART_ClearITPendingBit(USART3, USART_IT_RXNE);code = USART_ReceiveData(USART3);usart3_buf[index3] = code;index3++;if(code == 0x0a) {index3 = 0;flag3 = 1;}}}void USART1_Send(u8 *str){while(*str != 0x0a) {USART_GetFlagStatus(USART1, USART_FLAG_TC);USART_SendData(USART1, *str++);while( USART_GetFlagStatus(USART1,USART_FLAG_TC) != SET);}USART_SendData(USART1, 0x0a);}void USART2_Send(u8 *str){while(*str != 0x0a) {USART_GetFlagStatus(USART2, USART_FLAG_TC);USART_SendData(USART2, *str++);while( USART_GetFlagStatus(USART2,USART_FLAG_TC) != SET);}USART_SendData(USART2, 0x0a);}void USART3_Send(u8 *str){while(*str != 0x0a) {USART_GetFlagStatus(USART3, USART_FLAG_TC);USART_SendData(USART3, *str++);while( USART_GetFlagStatus(USART3,USART_FLAG_TC) != SET); }USART_SendData(USART3, 0x0a);}/*******************main***********************/#include "led.h"#include "delay.h"#include "key.h"#include "sys.h"#include "usart.h"#include "buzzer.h"#include "string.h"int main(void){u8 Zigb_Head[]="ZigB:";u8 buf[100];delay_init();NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);uart_init(115200);Buzzer_Init();LED_Init();while(1) {if(flag2 == 1) {LED0=0;flag2=0;USART3_Send(usart2_buf);memset(usart2_buf,0,sizeof(usart2_buf));} else if(flag3==1) {LED1=0;flag3=0;memcpy(buf,Zigb_Head,sizeof(Zigb_Head));strcat(buf,usart3_buf);USART2_Send(buf);memset(buf,0,sizeof(buf));}delay_ms(500);LED1=1;LED0=1;delay_ms(500);}}参考。
标题:基于STM32F103C8T6的串口通信课程设计一、概述在现代电子信息技术领域,嵌入式系统的应用越来越广泛。
而串口通信作为嵌入式系统中常用的通信方式,对于学习嵌入式系统的同学来说是一个非常重要的知识点。
本篇文章将通过STM32F103C8T6作为开发板,具体介绍基于该开发板的串口通信课程设计。
二、STM32F103C8T6开发板简介1. STM32F103C8T6是意法半导体公司推出的一款低功耗、高性能的32位MCU微控制器,采用ARM Cortex-M3内核。
2. 该开发板具有丰富的外设,包括多个通用定时器、串行外设接口、通用同步/异步接收器发射器等,非常适合用于串口通信的课程设计。
三、串口通信基础知识1. 串口通信是一种通过串行传输方式进行数据交换的通信方式,其中包括UART、SPI、I2C等不同的协议。
2. UART是一种通用的异步收发器,适用于点对点通信,其中包括一个发送引脚和一个接收引脚。
3. 在串口通信中,波特率是一个非常重要的参数,用来表示每秒钟传输的位数,常用的波特率包括9600、xxx等。
四、基于STM32F103C8T6的串口通信课程设计1. 课程设计目标:通过本课程设计,学生将掌握STM32F103C8T6开发板的串口通信原理、基本应用和实际开发能力。
2. 课程设计内容:本课程设计将包括串口通信基础知识学习、STM32F103C8T6开发环境搭建、串口通信程序设计等内容。
3. 课程设计步骤:3.1. 串口通信基础知识学习:讲解串口通信的基本原理、工作方式、数据格式等知识点。
3.2. STM32F103C8T6开发环境搭建:介绍如何搭建开发环境,包括Keil、ST-Link驱动的安装与配置。
3.3. 串口通信程序设计:通过实例演示,学生将学习如何在STM32F103C8T6上实现基本的串口通信功能。
3.4. 实际应用案例:引导学生通过实际项目案例,将串口通信运用到具体的应用中,如LED灯控制、温湿度传感器数据的采集等。
stm32串⼝实验:stm32通过usart1进⾏串⼝收发,PA9(TX)和PA10(RX)这是stm32开发中⽐较简单的实验,原理是通过串⼝助⼿发送信息,stm32接收到信息以后在串⼝助⼿中打印相同的内容。
这⾥直接分享keil5⼯程代码,是在⼯程模板的基础上移植和修改了正点原⼦的串⼝代码(如果失效的话可以在下⽅评论留下邮箱,我看到会给你发⼀份)顺便把usart.c和usart.h还有mian.c中的代码复制到下⾯,⼩伙伴可以直接移植到⾃⼰的⼯程中实现的效果也在下⾯放上串⼝助⼿中显⽰的图⽚usart.c1 #include "sys.h"2 #include "usart.h"345//STM32F103核⼼板例程6//库函数版本例程7/********** 出品 ********/8910//////////////////////////////////////////////////////////////////////////////////11//如果使⽤ucos,则包括下⾯的头⽂件即可.12#if SYSTEM_SUPPORT_UCOS13 #include "includes.h"//ucos 使⽤14#endif15//////////////////////////////////////////////////////////////////////////////////16//STM32开发板17//串⼝1初始化1819//////////////////////////////////////////////////////////////////////////////////202122//////////////////////////////////////////////////////////////////23//加⼊以下代码,⽀持printf函数,⽽不需要选择use MicroLIB24#if 125#pragma import(__use_no_semihosting)26//标准库需要的⽀持函数27struct __FILE28 {29int handle;3031 };3233 FILE __stdout;34//定义_sys_exit()以避免使⽤半主机模式35void _sys_exit(int x)36 {37 x = x;38 }39//重定义fputc函数40int fputc(int ch, FILE *f)41 {42while((USART1->SR&0X40)==0);//循环发送,直到发送完毕43 USART1->DR = (u8) ch;44return ch;45 }46#endif4748/*使⽤microLib的⽅法*/49/*50int fputc(int ch, FILE *f)51{52 USART_SendData(USART1, (uint8_t) ch);5354 while (USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET) {}5556 return ch;57}58int GetKey (void) {5960 while (!(USART1->SR & USART_FLAG_RXNE));6162 return ((int)(USART1->DR & 0x1FF));63}64*/6566#if EN_USART1_RX //如果使能了接收67//串⼝1中断服务程序68//注意,读取USARTx->SR能避免莫名其妙的错误69 u8 USART_RX_BUF[USART_REC_LEN]; //接收缓冲,最⼤USART_REC_LEN个字节.70//接收状态71//bit15,接收完成标志72//bit14,接收到0x0d73//bit13~0,接收到的有效字节数⽬74 u16 USART_RX_STA=0; //接收状态标记7576void uart_init(u32 bound){77//GPIO端⼝设置78 GPIO_InitTypeDef GPIO_InitStructure;79 USART_InitTypeDef USART_InitStructure;80 NVIC_InitTypeDef NVIC_InitStructure;8182 RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE); //使能USART1,GPIOA时钟 83//USART1_TX PA.984 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.985 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;86 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复⽤推挽输出87 GPIO_Init(GPIOA, &GPIO_InitStructure);8889//USART1_RX PA.1090 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;91 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输⼊92 GPIO_Init(GPIOA, &GPIO_InitStructure);9394//Usart1 NVIC 配置9596 NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;97 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ;//抢占优先级398 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //⼦优先级399 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能100 NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器101102//USART 初始化设置103104 USART_ART_BaudRate = bound;//⼀般设置为9600;105 USART_ART_WordLength = USART_WordLength_8b;//字长为8位数据格式106 USART_ART_StopBits = USART_StopBits_1;//⼀个停⽌位107 USART_ART_Parity = USART_Parity_No;//⽆奇偶校验位108 USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None;//⽆硬件数据流控制109 USART_ART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式110111 USART_Init(USART1, &USART_InitStructure); //初始化串⼝112 USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启中断113 USART_Cmd(USART1, ENABLE); //使能串⼝114115 }116117118119void USART1_IRQHandler(void) //串⼝1中断服务程序120 {121 u8 Res;122 #ifdef OS_TICKS_PER_SEC //如果时钟节拍数定义了,说明要使⽤ucosII了.123 OSIntEnter();124#endif125if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //接收中断(接收到的数据必须是0x0d 0x0a结尾)126 {127 Res =USART_ReceiveData(USART1);//(USART1->DR); //读取接收到的数据128129if((USART_RX_STA&0x8000)==0)//接收未完成130 {131if(USART_RX_STA&0x4000)//接收到了0x0d132 {133if(Res!=0x0a)USART_RX_STA=0;//接收错误,重新开始134else USART_RX_STA|=0x8000; //接收完成了135 }136else//还没收到0X0D137 {138if(Res==0x0d)USART_RX_STA|=0x4000;139else140 {141 USART_RX_BUF[USART_RX_STA&0X3FFF]=Res ;142 USART_RX_STA++;143if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//接收数据错误,重新开始接收144 }145 }146 }147 }148 #ifdef OS_TICKS_PER_SEC //如果时钟节拍数定义了,说明要使⽤ucosII了.149 OSIntExit();150#endif151 }152#endifusart.h1 #ifndef __USART_H2#define __USART_H3 #include "stdio.h"4 #include "sys.h"56//STM32F103核⼼板例程7//库函数版本例程8/********** 出品 ********/910//////////////////////////////////////////////////////////////////////////////////11//STM32开发板12//串⼝1初始化1314#define USART_REC_LEN 200 //定义最⼤接收字节数 20015#define EN_USART1_RX 1 //使能(1)/禁⽌(0)串⼝1接收1617extern u8 USART_RX_BUF[USART_REC_LEN]; //接收缓冲,最⼤USART_REC_LEN个字节.末字节为换⾏符18extern u16 USART_RX_STA; //接收状态标记19//如果想串⼝中断接收,请不要注释以下宏定义20void uart_init(u32 bound);21#endifmain.c1 #include "sys.h"2 #include "delay.h"3 #include "usart.h"45 uint8_t t;6 uint8_t len;7 uint16_t times=0;89int main(void)10 {11 delay_init(); //延时函数初始化12 uart_init(115200); //串⼝初始化为1152001314while(1)15 {16if(USART_RX_STA&0x8000) //USART_RX_STA第⼗六位为1则括号内为1,表⽰接收完数据17 {18 len=USART_RX_STA&0x3fff;//得到此次接收到的数据长度19 printf("\r\n您发送的消息为:\r\n\r\n");20for(t=0;t<len;t++)21 {22 USART_SendData(USART1, USART_RX_BUF[t]);//向串⼝1发送数据23while(USART_GetFlagStatus(USART1,USART_FLAG_TC)!=SET);//等待发送结束24 }25 printf("\r\n\r\n");//插⼊换⾏26 USART_RX_STA=0;27 }else28 {29 times++;30if(times%500==0)printf("请输⼊数据,以回车键结束\n");31 delay_ms(10);32 }33 }34 }串⼝实验效果图:未发送时发送数据时:祝⼩伙伴们2020加油!。
标题:深入探究STM32F051C8T6的串口函数使用方法近年来,嵌入式系统在各个领域中得到了广泛应用,而STM32F051C8T6作为一款强大的嵌入式微控制器,其串口功能更是应用广泛。
在本文中,我将深入探究STM32F051C8T6的串口函数使用方法,从简到繁、由浅入深地为大家详细介绍。
1. STM32F051C8T6的串口功能简介我们需要了解STM32F051C8T6的串口功能。
串口通信被广泛应用于各种嵌入式系统中,用于实现设备之间的数据传输。
而在STM32F051C8T6中,它支持多种串口通信方式,包括USART、UART等。
这些串口通信方式拥有不同的特点和应用场景,我们需要根据具体的需求选择合适的串口通信方式。
2. STM32F051C8T6的串口函数基本用法在使用STM32F051C8T6的串口功能时,我们需要熟悉其相应的串口函数。
其中,包括初始化串口、发送数据、接收数据等基本操作。
在实际应用中,我们可以通过调用相应的串口函数,轻松实现串口通信的功能,从而实现设备之间的数据传输。
3. STM32F051C8T6的串口函数高级应用除了基本的串口功能外,STM32F051C8T6还支持一些高级的串口功能。
DMA传输、中断处理等。
通过合理地利用这些高级功能,我们可以提高串口通信的效率和稳定性,从而更好地满足实际应用的需求。
4. 我对STM32F051C8T6的串口函数的个人观点和理解在我看来,STM32F051C8T6的串口功能非常强大,可以满足不同场景下的串口通信需求。
通过对串口函数的深入了解和灵活运用,我们可以更好地实现设备之间的数据传输,从而提升整个嵌入式系统的性能和稳定性。
在总结本文内容时,我们可以看到STM32F051C8T6的串口功能在嵌入式系统中具有重要的地位,其丰富的功能和灵活的使用方式,为我们实现设备之间的数据传输提供了便利。
通过本文的介绍,相信大家对于STM32F051C8T6的串口函数使用方法有了更深入的了解。