重庆市2017-2018学年高二下学期期中数学试卷(文科)Word版含解析
- 格式:doc
- 大小:532.00 KB
- 文档页数:21
重庆市2017-2018学年高二下学期期末考试数学(理)试卷一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=R,集合R={0,1,2},B={x|>0,x∈R},则A∩∁U B=()A. {0} B. {0,1} C. {1,2} D. {0,1,2}2.已知命题p:∀x∈R,2x2+1>0,则¬p是()A.∀x∈R,2x2+1≤0 B.∃x0∈R,2x02+1>0C.∃x0∈R,2x02+1<0 D.∃x0∈R,2x02+1≤03.函数y=的定义域是()A.(1,2) B.(2,+∞) C.(1,+∞) D. [2,+∞)4.设a=logπ3,b=20.3,c=log2,则a,b,c的大小关系为()A. a>b>c B. c>a>b C. b>a>c D. a>c>b5.下列函数中,在区间(0,+∞)上为增函数的是()A. y=ln(x+1) B. y=﹣ C. y=()x D. y=x+6.已知x、y的取值如下表从所得的散点图分析,y与x线性相关,且=0.95x+a,则a=()x 0 1 3 4y 2.2 4.3 4.8 6.7A. 2.1 B. 2.2 C. 2.4 D. 2.67.已知a为实数,则|a|≥1是关于x的不等式|x﹣3|+|x﹣4|≤a有解的(() A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.若函数f(x)=log a()有最小值1,则a等于()A. B. C. 2 D. 49.函数f(x)=x2﹣bx+a的图象如图所示,则函数g(x)=lnx+f′(x)的零点所在的区间是()A.(,) B.(,1) C.(1,2) D.(2,3)10.定义在R上函数f(x)满足:f(x)=f(﹣x),f(2+x)=f(2﹣x),若曲线y=f(x)在x=1处的切线方程为x+y﹣3=0,则y=f(x)在x=2015的切线方程为()A. x+y﹣3=0 B. x﹣y﹣2013=0 C. x﹣y﹣2015=0 D. x﹣y+2017=011.点P(x0,y0)是曲线C:x=e﹣|x|(x≠0)上的一个动点,曲线C在点P处的切线与x轴、y轴分别交于A,B两点,点O是坐标原点,则△AOB面积的最大值为()A. B. C. D. 212.已知偶函数f(x):Z Z,且f(x)满足:f(1)=1,f(2015)≠1,对任意整数a,b都有f(a+b)≤max{f(a),f(b)},其中max(x,y)=,则f(2016)的值为() A. 0 B. 1 C. 2015 D. 2016二.填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡相对应位置上.13.设随机变量ξ服从正态分布N(3,σ2),若P(ξ<2a﹣3)=P(ξ>a+3),则实数a的值为.14.若函数f(x)=x3﹣a的图象不经过第二象限,则实数a的取值范围是.15.已知函数f(x)=|1﹣x2|,在[0,1]上任取一数a,在[1,2]上任取一数b,则满足f(a)≤f(b)的概率为.16.己知函数f(x)=,若关于x的方程f(f(x))=0有且只有一个实数解,则实数a的取值范围为.三.解答题:本大题共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)已知命题p:()<9,q:|2a﹣1|<4,若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.18.(12分)某校小卖部根据以往某种商品的销售记录,绘制了如下的日销售量频率分布直方图.若以日销售量的频率为概率,假设每天的销售量是相互独立的.结合直方图相关数据,以此来估计未来连续3天日销售量.(Ⅰ)求在未来3天里,恰好只有连续2天的日销售量都高于100个的概率;(Ⅱ)用X表示在未来3天里日销售量高于100个的天数,求随机变量X的分布列和数学期望.19.(12分)已知函数f(x)=2lnx﹣x2﹣ax+3,其中a∈R.(Ⅰ)设曲线f(x)在点(1,f(1))处的切线与直线2x﹣y+1=0平行,求a的值;(Ⅱ)若函数f(x)在[,e]上单调递减,求a的取值范围.20.(12分)已知函数f(x)=kx+log2(4x+1)(k∈R)是偶函数.(Ⅰ)求k的值;(Ⅱ)设函数g(x)=log2(a•2x﹣4a),其中a>0.若函数f(x)与g(x)的图象有且只有一个交点,求a的取值范围.21.(12分)已知函数f(x)=e x,g(x)=ax+b,其中a,b∈R.(Ⅰ)若a=﹣1,函数y=在(0,+∞)上有意义,求b的取值范围;(Ⅱ)若0≤2a≤b≤1,求证:当x≥0时,+≥1.四、请考生在第22、23题中任选一题作答,如果多做,同按所做的第一题计分,作答时请写清题号.选修4-4:坐标系与参数方程22.在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,己知曲线C1的方程为ρ=2cos θ+2sinθ,直线C2的参数方程为(t为参数)(Ⅰ)将C1的方程化为直角坐标方程;(Ⅱ)P为C1上一动点,求P到直线C2的距离的最大值和最小值.选修4-5:不等式选讲23.设函数f(x)=|x+2|﹣|x﹣3|﹣a(Ⅰ)当a=1时,求函数f(x)的最大值;(Ⅱ)若f(x)≤对任意x∈R恒成立,求实数a的取值范围.重庆市2017-2018学年高二下学期期末考试数学(理)试卷参考答案与试题解析一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=R,集合R={0,1,2},B={x|>0,x∈R},则A∩∁U B=()A. {0} B. {0,1} C. {1,2} D. {0,1,2}考点:交、并、补集的混合运算.专题:集合.分析:求出集合B中的不等式的解集,确定出集合B,根据全集U=R,找出集合B的补集,然后找出集合B 补集与集合A的公共元素,即可求出所求的集合解答:解:由集合B中的不等式>0,解得:x>1∴B=(1,+∞),又全集U=R,∴C U B=(﹣∞,1],又A={0,1,2},∴A∩C U B={0,1}.故选:B.点评:此题考查了交、并、补集的混合运算,是一道基本题型,求集合补集时注意全集的范围.2.已知命题p:∀x∈R,2x2+1>0,则¬p是()A.∀x∈R,2x2+1≤0 B.∃x0∈R,2x02+1>0C.∃x0∈R,2x02+1<0 D.∃x0∈R,2x02+1≤0考点:命题的否定.专题:简易逻辑.分析:利用全称命题的否定是特称命题,写出结果即可.解答:解:因为全称命题的否定是特称命题,所以命题p:∀x∈R,2x2+1>0,则¬p是:∃x0∈R,2x02+1≤0.故选:D.点评:本题考查命题的否定,全称命题与特称命题的否定关系.3.函数y=的定义域是()A.(1,2) B.(2,+∞) C.(1,+∞) D. [2,+∞)考点:对数函数的定义域.专题:计算题.分析:无理式被开方数大于等于0,对数的真数大于0,解答即可.解答:解:要使原函数有意义,则lg(x﹣1)≥0,即x﹣1≥1,解得:x≥2.所以函数y=的定义域是[2,+∞).故选D.点评:本题考查对数函数的定义域,考查学生发现问题解决问题的能力,是基础题.4.设a=logπ3,b=20.3,c=log2,则a,b,c的大小关系为()A. a>b>c B. c>a>b C. b>a>c D. a>c>b考点:对数值大小的比较.专题:函数的性质及应用.分析:利用指数函数与对数函数的单调性即可得到.解答:解:∵0<a=logπ3<1,b=20.3>1,c=log2<0,∴c<a<b.故选:C.点评:本题考查了指数函数与对数函数的单调性,属于基础题.5.下列函数中,在区间(0,+∞)上为增函数的是()A. y=ln(x+1) B. y=﹣ C. y=()x D. y=x+考点:函数单调性的性质.专题:函数的性质及应用.分析:根据指数函数,对数函数,幂函数,一次函数,对勾函数和复合函数单调性,逐一分析四个答案中函数的单调性,可得答案.解答:解:A中,函数y=ln(x+1)在区间(0,+∞)上为增函数,B中,y=﹣在区间(0,+∞)上为减函数,C中,y=()x在区间(0,+∞)上为减函数,D中,y=x+在区间(0,1)上为减函数,在(1,+∞)为增函数,故选:A点评:本题考查的知识点是函数单调性的性质,熟练掌握指数函数,对数函数,幂函数,一次函数,对勾函数和复合函数单调性,是解答的关键.6.已知x、y的取值如下表从所得的散点图分析,y与x线性相关,且=0.95x+a,则a=()x 0 1 3 4y 2.2 4.3 4.8 6.7A. 2.1 B. 2.2 C. 2.4 D. 2.6考点:线性回归方程.专题:计算题.分析:本题考查的知识点是线性回归直线的性质,由线性回归直线方程中系数的求法,我们可知在回归直线上,满足回归直线的方程,我们根据已知表中数据计算出,再将点的坐标代入回归直线方程,即可求出对应的a值.解答:解:点在回归直线上,计算得;代入得a=2.6;故选D.点评:统计也是高考新增的考点,回归直线方程的求法,又是统计中的一个重要知识点,其系数公式及性质要求大家要熟练掌握并应用.7.已知a为实数,则|a|≥1是关于x的不等式|x﹣3|+|x﹣4|≤a有解的(() A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:由已知中的不等式|x﹣3|+|x﹣4|≤a,我们可以构造绝对值函数,根据绝对值的几何意义,我们易求出对应函数y=|x﹣3|+|x﹣4|的值域,进而得到实数a的取值范围,再根据充分条件和必要条件去判断即可.解答:解:令y=|x﹣3|+|x﹣4|,则函数y=|x﹣3|+|x﹣4|的值域为[1,+∞)若不等式|x﹣3|+|x﹣4|≤a有解集则a≥1,∴|a|≥1是关于x的不等式|x﹣3|+|x﹣4|≤a有解必要不充分条件.故选:B.点评:本题考查了绝对值的几何意义以及必要不充分条件的判断,属于中档题.8.若函数f(x)=log a()有最小值1,则a等于()A. B. C. 2 D. 4考点:基本不等式在最值问题中的应用.专题:函数的性质及应用.分析:运用基本不等式可得=x+≥2,当且仅当x=取得最小值.再由对数函数的单调性可得log a2=1,解方程可得a=4.解答:解:由于x>0,a>0,则=x+≥2,当且仅当x=取得最小值.由题意结合对数函数的单调性可得a>1,由最小值为1,可得log a2=1,即为a=2,解得a=4.故选:D.点评:本题考查对数函数的单调性的运用,同时考查基本不等式的运用,属于中档题.9.函数f(x)=x2﹣bx+a的图象如图所示,则函数g(x)=lnx+f′(x)的零点所在的区间是()A.(,) B.(,1) C.(1,2) D.(2,3)考点:函数零点的判定定理.专题:计算题;作图题;压轴题;数形结合.分析:由二次函数图象的对称轴确定b的范围,据g(x)的表达式计算g()和g(1)的值的符号,从而确定零点所在的区间.解答:解:∵二次函数f(x)图象的对称轴 x=∈(,1),∴1<b<2,g(x)=lnx+2x﹣b在定义域内单调递增,g()=ln +1﹣b<0,g(1)=ln1+2﹣b=2﹣b>0,∴函数g(x)=lnx+f′(x)的零点所在的区间是(,1);故选B.点评:此题是个中档题.题考查导数的运算、函数零点的判断以及识图能力,体现了数形结合的思想,考查了学生应用知识分析解决问题的能力.10.定义在R上函数f(x)满足:f(x)=f(﹣x),f(2+x)=f(2﹣x),若曲线y=f(x)在x=1处的切线方程为x+y﹣3=0,则y=f(x)在x=2015的切线方程为()A. x+y﹣3=0 B. x﹣y﹣2013=0 C. x﹣y﹣2015=0 D. x﹣y+2017=0考点:利用导数研究曲线上某点切线方程.专题:函数的性质及应用;导数的概念及应用;直线与圆.分析:由f(﹣x)=f(x),f(x+2)=f(2﹣x),可令x为x+2,可得f(x)为周期为4的函数,再由x=1处的切线方程为x+y﹣3=0,可得f(1),f(2015),再通过求导,可得导函数为奇函数且为周期函数,即可求得f′(2015),由点斜式方程,即可得到所求切线方程.解答:解:由f(﹣x)=f(x),f(x+2)=f(2﹣x),即有f(x+4)=f(2﹣(x+2))=f(﹣x)=f(x),则f(x)为周期为4的函数,若曲线y=f(x)在x=1处的切线方程为x+y﹣3=0,则f(1)=2,f′(1)=﹣1,即有f(2015)=f(503×4+3)=f(3)=f(1)=2,对f(﹣x)=f(x),两边求导,可得﹣f′(﹣x)=f′(x),由f(x+4)=f(x),可得f′(x+4)=f′(x),即有f′(2015)=f′(3)=f′(﹣1)=1,则该曲线在x=2015处的切线方程为y﹣2=x﹣2015,即为x﹣y﹣2013=0.故选:B.点评:本题考查导数的运用:求切线方程,主要考查导数的几何意义,同时考查函数的奇偶性和周期性的运用,属于中档题.11.点P(x0,y0)是曲线C:x=e﹣|x|(x≠0)上的一个动点,曲线C在点P处的切线与x轴、y轴分别交于A,B两点,点O是坐标原点,则△AOB面积的最大值为()A. B. C. D. 2考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用;导数的综合应用.分析:由函数为偶函数,可设y=e﹣x(x>0),求出导数,求得切线的斜率和切点,由点斜式方程可得切线方程,令x=0,y=0可得y.x轴的截距,再由三角形的面积公式,再求导数,求得单调区间,可得x0=1处取得极大值,也为最大值,可得结论.解答:解:可设y=e﹣x(x>0),y′=﹣e﹣x,曲线C在点P处的切线斜率为k=﹣,即有曲线C在点P处的切线方程为y﹣=﹣(x﹣x0),可令y=0,则x=x0+1,令x=0,可得y=(x0+1),即有△AOB面积S==(x0+1)2,S′=[2(x0+1)﹣(x0+1)2]=(1+x0)(1﹣x0),当0<x0<1时,S′>0,当x0>1时,S′<0,即有x0=1处取得极大值,也为最大值.则△AOB面积的最大值为.故选:A.点评:本题考查导数的运用:求切线的方程和单调区间、极值和最值,同时考查三角形的面积的最值,考查运算能力,属于中档题.12.已知偶函数f(x):Z Z,且f(x)满足:f(1)=1,f(2015)≠1,对任意整数a,b都有f(a+b)≤max{f(a),f(b)},其中max(x,y)=,则f(2016)的值为() A. 0 B. 1 C. 2015 D. 2016考点:进行简单的演绎推理;函数奇偶性的性质.专题:推理和证明.分析:先根据已知条件求出f(2),f(3),f(4)…找到其规律即可得到答案.解答:证明:∵f(1)=1,f(a+b)≤max{f(a),f(b)}f(2)=f(1+1)≤max{f(1),f(1)}=1,即f(2)≤1,f(3)=f(1+2)≤max{f(1),f(2)}=1,即f(3)≤1,f(4)=f(1+3)≤max{f(1),f(3)}=1,即f(4)≤1,…,f(2015)≤max{f(1),f(2014)}=1,即f(2015)≤1.因为 f(2015)≠1,所以f(2015)<1,从而 f(2016)≤max{f(1),f(2015)}=1,即f(2016)≤1.假设 f(2016)<1,因为 f(x)为偶函数,所以f(﹣2015)=f(2015).于是 f(1)=f(2016﹣2015)≤max{f(2016,f(﹣2015)}=max{f(2016),f(2015)}<1,即 f(1)<1.这与f(1)=1矛盾.所以f(2016)<1不成立,从而只有f(2016)=1.故选:B点评:本题主要考查函数的值.解决本题的关键利用合情推理进行一步步向前推,找到其最基本的地方即可.二.填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡相对应位置上.13.设随机变量ξ服从正态分布N(3,σ2),若P(ξ<2a﹣3)=P(ξ>a+3),则实数a的值为 2 .考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:根据随机变量符合正态分布,又知正态曲线关于x=3对称,得到两个概率相等的区间关于x=3对称,得到关于a的方程,解方程即可.解答:解:∵随机变量ξ服从正态分布N(3,σ2),∵P(ξ<2a﹣3)=P(ξ>a+3),∴2a﹣3与a+3关于x=3对称,∴2a﹣3+a+3=6,∴3a=6,∴a=2,故答案为:2.点评:本题考查正态分布曲线的特点及曲线所表示的意义,本题主要考查曲线关于x=3对称,考查关于直线对称的点的特点,本题是一个基础题.14.若函数f(x)=x3﹣a的图象不经过第二象限,则实数a的取值范围是[0,+∞).考点:函数的图象与图象变化.专题:函数的性质及应用.分析:根据幂函数的图象和性质即可得到结论解答:解:∵函数f(x)单调递增,∴要使f(x)=f(x)=x3﹣a的图象不经过第二象限,则f(0)≤0,即可,即f(0)=﹣a≤0,解得a≥0,故a的取值范围为[0,+∞)故答案为:[0,+∞).点评:本题主要考查幂数函数的图象和性质,比较基础.15.已知函数f(x)=|1﹣x2|,在[0,1]上任取一数a,在[1,2]上任取一数b,则满足f(a)≤f(b)的概率为.考点:几何概型.专题:概率与统计.分析:由题意化简f(a)≤f(b)可得,或,而a∈[0,1],b∈[1,2],作出图形由几何概型可得.解答:解:由题意可得f(a)≤f(b)即|1﹣a2|≤|1﹣b2|,平方化简可得(a2﹣b2)(a2+b2﹣2)≤0即,或,对应的区域如图阴影部分而a∈[0,1],b∈[1,2],图形AEB的面积s=﹣×1×1=,正方形ABCD的面积为1×1=1,故可得所求概率为P=1﹣=;故答案为:.点评:本题考查几何概型,得出f(a)≤f(b)的区域是解决问题的关键,属中档题.16.己知函数f(x)=,若关于x的方程f(f(x))=0有且只有一个实数解,则实数a的取值范围为(﹣∞,﹣1)∪(﹣1,+∞).考点:分段函数的应用;函数的零点与方程根的关系.专题:数形结合;函数的性质及应用.分析:根据题意,分析可得如果f(f(x))=0有且只有一个实数解,则f(x)=1和f(x)=lna(a>0)中只能有1个方程有解,且只有1解,即函数f(x)的图象与y=1或y=lna(a>0)的图象有且只能有一个交点,进而作出函数g(x)=的图象,分析其图象与函数f(x)的图象的位置关系,即可得答案.解答:解:根据题意,假设f(t)=0,则当t≤0时,有e t﹣a=0,则t=lna,(a>0)当t>0时,有t﹣=1,解可得t=1,如果f(f(x))=0有且只有一个实数解,则f(x)=1和f(x)=lna(a>0)中只能有1个方程有解,且只有1解,即函数f(x)的图象与y=1或y=lna(a>0)的图象有且只能有一个交点,作出函数g(x)=的图象,将其图象x≤0的部分向上或向下平移|a|个单位可得函数f(x)的图象,分析可得,函数f(x)的图象只可能与y=1有且只有一个交点,且a的取值范围是(﹣∞,﹣1)∪(﹣1,+∞);故答案为:(﹣∞,﹣1)∪(﹣1,+∞).点评:本题考查分段函数的运用,主要考查函数的零点和方程的根的关系,运用分类讨论的思想和函数的值域是解题的关键.三.解答题:本大题共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)(2015春•重庆校级期末)已知命题p:()<9,q:|2a﹣1|<4,若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.考点:命题的真假判断与应用.专题:函数的性质及应用;不等式的解法及应用;推理和证明.分析:先根据指数函数的单调性、绝对值不等式的解的情况,求出命题p,q下的a的取值范围,再根据p ∨q为真,p∧q为假,得到p真q假和p假q真两种情况,求出每种情况下的a的取值范围并求并集即可.解答:解:若命题p:()<9=()﹣2为真命题,则a﹣a2>﹣2,解得:a∈(﹣1,2),若命题q:|2a﹣1|<4为真命题,则﹣4<|2a﹣1|<4,解得a∈(﹣,),∵命题“p∨q”为真命题,命题“p∧q”为假命题,则p,q一真一假;当p真q假时,a∈(﹣1,2),且a∉(﹣,),不存在满足条件的a值;当p假q真时,a∉(﹣1,2),且a∈(﹣,),则a∈(﹣,﹣1]∪[2,).点评:考查指数函数的单调性,绝对值不等式解的情况和判别式△的关系,以及p∨q,p∧q的真假和p,q真假的关系.18.(12分)(2015春•重庆校级期末)某校小卖部根据以往某种商品的销售记录,绘制了如下的日销售量频率分布直方图.若以日销售量的频率为概率,假设每天的销售量是相互独立的.结合直方图相关数据,以此来估计未来连续3天日销售量.(Ⅰ)求在未来3天里,恰好只有连续2天的日销售量都高于100个的概率;(Ⅱ)用X表示在未来3天里日销售量高于100个的天数,求随机变量X的分布列和数学期望.考点:离散型随机变量的期望与方差;二项分布与n次独立重复试验的模型.专题:概率与统计.分析:根据二项分布与独立重复实验的定义即可.解答:解:(1)用A表示事件“日销售量高于100个”,用B表示事件“在未来3天里恰有连续2天日销售量高于100个”,则:P(A)=0.3+0.2+0.1=0.6,∴P(B)=0.6×0.6×0.4×2=0.288.(2)依题意:X的可能取值为0,1,2,3且X~B(3,0.6),P(X=0)=×(1﹣0.6)3=0.064,P(X=1)=×0.6×(1﹣0.6)2=0.288,P(X=2)=×0.62×0.4=0.432,P(X=3)=×0.63=0.216.∴X的分布列为:X 0 1 2 3P 0.064 0.288 0.432 0.216∴E(X)=3×0.6=1.8.点评:本题主要考查的是二项分布的分布列及均值.19.(12分)(2015春•重庆校级期末)已知函数f(x)=2lnx﹣x2﹣ax+3,其中a∈R.(Ⅰ)设曲线f(x)在点(1,f(1))处的切线与直线2x﹣y+1=0平行,求a的值;(Ⅱ)若函数f(x)在[,e]上单调递减,求a的取值范围.考点:利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(Ⅰ)先求出函数的导数,根据切线的斜率是2,求出a的值即可;(Ⅱ)问题转化为a≥2lnx+2﹣2x,先求出函数g(x)的单调区间,从而求出函数的最大值,进而求出a 的范围.解答:解:f′(x)=2lnx+2﹣2x﹣a(x>0),(Ⅰ)由f′(1)=﹣a=2,解得:a=﹣2,;(Ⅱ)由题意得:f′(x)≤0在x∈[,e]恒成立,即:a≥2lnx+2﹣2x,令g(x)=2lnx+2﹣2x,则:g′(x)=,令g′(x)>0,解得:x<1,令g′(x)<0,解得:x>1,∴g(x)在[,1)递增,在(1,e]递减,∴g(x)max=g(1)=0,∴a≥0.点评:本题考查了函数的单调性、最值问题,考查导数的应用,考查函数恒成立问题,是一道中档题.20.(12分)(2015春•重庆校级期末)已知函数f(x)=kx+log2(4x+1)(k∈R)是偶函数.(Ⅰ)求k的值;(Ⅱ)设函数g(x)=log2(a•2x﹣4a),其中a>0.若函数f(x)与g(x)的图象有且只有一个交点,求a的取值范围.考点:对数函数图象与性质的综合应用.专题:分类讨论;转化思想;函数的性质及应用.分析:(Ⅰ)根据函数f(x)是R上的偶函数,利用f(﹣1)=f(1),求出k的值;(Ⅱ)a>0时,函数g(x)的定义域是(2,+∞),转化为方程f(x)=g(x)在(2,+∞)上有且只有一解,构造函数,讨论a的取值,求出满足条件a的取值范围即可.解答:解:(Ⅰ)∵函数f(x)=kx+log2(4x+1)是R上的偶函数,∴f(﹣1)=f(1),即﹣k+log2(4﹣1+1)=k+log2(4+1),∴﹣2k=log25﹣log2=2,解得k=﹣1;(Ⅱ)当a>0时,函数g(x)=log2(a•2x﹣4a)的定义域是(2,+∞),由题意知,﹣x+log2(4x+1)=log2(a•2x﹣4a)在(2,+∞)上有且只有一解,即方程=a•2x﹣4a在(2,+∞)内只有一解;令2x=t,则t>4,因而等价于关于t的方程(a﹣1)t2﹣4at﹣1=0在(4,+∞)上只有一解;设h(t)=(a﹣1)t2﹣4at﹣1,当a=1时,解得t=﹣∉(4,+∞),不合题意;当0<a<1时,h(t)的对称轴t=<0,故h(t)在(0,+∞)上单调递减,而h(0)=﹣1,∴方程(a﹣1)t2﹣4at﹣1=0在(4,+∞)上无解;当a>1时,h(t)的对称轴t=>0,故只需h(4)<0,即16(a﹣1)﹣16a﹣1<0,此不等式恒成立;综上,a的取值范围是(1,+∞).点评:本题考查了函数的性质与应用问题,也考查了分类讨论思想以及转化思想的应用问题,是综合性题目.21.(12分)(2015春•重庆校级期末)已知函数f(x)=e x,g(x)=ax+b,其中a,b∈R.(Ⅰ)若a=﹣1,函数y=在(0,+∞)上有意义,求b的取值范围;(Ⅱ)若0≤2a≤b≤1,求证:当x≥0时,+≥1.考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:(Ⅰ)若a=﹣1,函数y=在(0,+∞)上有意义,等价为f(x)+g(x)≠0在(0,+∞)上恒成立,构造函数求出函数的导数,即可求b的取值范围;(Ⅱ)将不等式进行转化,构造函数,求函数的导数,利用导数研究函数的单调性进行证明即可.解答:解:(Ⅰ)若a=﹣1,g(x)=﹣x+b,令h(x)=f(x)+g(x)=e x﹣x+b,若函数y=在(0,+∞)上有意义,则等价为h(x)=e x﹣x+b≠0在(0,+∞)上恒成立,函数的导数h′(x)=e x﹣1,当x>0是,h′(x)>0,即h(x)为增函数,则只需要h(0)=1+b≥0即可,即b≥﹣1,即b的取值范围[﹣1,+∞);(Ⅱ)当0≤2a≤b≤1,x≥0,ax+b>0,则不等式,+≥1等价为e﹣x﹣1+0,(e﹣x﹣1)(ax+b)+x≥0,即故只需要证明:(e﹣x﹣1)(ax+b)+x≥0,令φ(x)=(e﹣x﹣1)(ax+b)+x,则函数的导数φ′(x)=e﹣x(a﹣b﹣ax)+1﹣a,由(Ⅰ)知e x≥x+1,从而﹣x≥1﹣e x,∴φ′(x)=e﹣x(a﹣b﹣ax)+1﹣a≥e﹣x[a﹣b+a(1﹣e x)]+1﹣a=e﹣x(2a﹣b)+1﹣2a,∵0≤2a≤b≤1,∴φ′(x)≥e﹣x(2a﹣1)+1﹣2a=(1﹣2a)(1﹣e﹣x)≥0,∴φ(x)在[0,+∞)上为增函数,∵φ(0)=0,∴φ(x)≥0,即原不等式成立.点评:本题主要考查函数单调性的判断以及函数与不等式的综合应用,构造函数,求函数的导数,利用导数研究函数的单调性是解决本题的关键.综合性较强,难度较大.四、请考生在第22、23题中任选一题作答,如果多做,同按所做的第一题计分,作答时请写清题号.选修4-4:坐标系与参数方程22.(2015春•重庆校级期末)在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,己知曲线C1的方程为ρ=2cosθ+2sinθ,直线C2的参数方程为(t为参数)(Ⅰ)将C1的方程化为直角坐标方程;(Ⅱ)P为C1上一动点,求P到直线C2的距离的最大值和最小值.考点:直线的参数方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(Ⅰ)由ρ=x2+y2、ρcosθ=x、ρsinθ=y,将曲线C1的方程:ρ=2cosθ+2sinθ化为直角坐标方程;(Ⅱ)将直线C2的参数方程消去t化为直角坐标方程,利用点到直线的距离求出圆心C1(1,1)到直线C2的距离d,判断出直线与圆的位置关系,即可求出答案.解答:解:(Ⅰ)因为曲线C1的方程为ρ=2cosθ+2sinθ,则ρ2=2ρcosθ+2ρsinθ,所以C1的直角坐标方程是x2+y2=2x+2y,即(x﹣1)2+(y﹣1)2=2;(Ⅱ)因为直线C2的参数方程为(t为参数)所以直线C2的直角坐标方程为x+y+2=0,因为圆心C1(1,1)到直线C2的距离d==2,则直线与圆相离,所以求P到直线C2的距离的最大值是3,最小值.点评:本题考查极坐标方程及参数方程化为直角坐标方程,点到直线的距离公式,以及直线与圆的位置关系,属于中档题.选修4-5:不等式选讲23.(2015春•重庆校级期末)设函数f(x)=|x+2|﹣|x﹣3|﹣a(Ⅰ)当a=1时,求函数f(x)的最大值;(Ⅱ)若f(x)≤对任意x∈R恒成立,求实数a的取值范围.考点:函数恒成立问题.专题:函数的性质及应用;不等式的解法及应用.分析:(Ⅰ)运用绝对值不等式的性质,可得|x+2|﹣|x﹣3|≤|(x+2)﹣(x﹣3)|=5,即可得到f(x)的最大值;(Ⅱ)f(x)≤对任意x∈R恒成立,即为f(x)max=5﹣a≤,解不等式可得a的范围.解答:解:(Ⅰ)当a=1时,f(x)=|x+2|﹣|x﹣3|﹣1,由|x+2|﹣|x﹣3|≤|(x+2)﹣(x﹣3)|=5,故f(x)≤4,所以,当x≥3时,f(x)取得最大值,且为4;(Ⅱ)f(x)≤对任意x∈R恒成立,即为f(x)max=5﹣a≤,即为即有,即为a≥4或0<a≤1.即有a的取值范围是(0,1]∪[4,+∞).点评:本题考查绝对值不等式的性质和不等式恒成立问题的解法,同时考查运算能力,属于中档题.。
2017-2018学年高二下学期期中试卷(文科数学)一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个选项符合题意.)1.若命题“p 或q”为真,“非p”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假2.已知命题p :存在x 0>0,使2<1,则¬p 是( ) A .对任意x >0,都有2x ≥1B .对任意x ≤0,都有2x <1C .存在x 0>0,使2≥1D .存在x 0≤0,使2<13.如果函数y=f (x )的图象如图,那么导函数y=f′(x )的图象可能是( )A .B .C .D .4.设f (x )=x a ﹣ax (0<a <1),则f (x )在[0,+∞)内的极大值点x 0等于( )A .0B .aC .1D .1﹣a5.函数f (x )=x 2﹣2lnx 的单调减区间是( )A .(0,1]B .[1,+∞)C .(﹣∞,﹣1]及(0,1]D .[﹣1,0)及(0,1]6.已知函数f (x )=x 2+2xf′(1),则f (﹣1)与f (1)的大小关系是( )A .f (﹣1)=f (1)B .f (﹣1)>f (1)C .f (﹣1)<f (1)D .不能确定7.已知椭圆+=1(m >0 )的左焦点为F 1(﹣4,0),则m=( ) A .2 B .3 C .4 D .98.抛物线y=x2的准线方程是()A.y=﹣1 B.y=﹣2 C.x=﹣1 D.x=﹣29.若m是2和8的等比中项,则圆锥曲线x2+的离心率为()A.B.C.或D.或10.已知△ABC的顶点B,C在椭圆+=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.10 B.20 C.8 D.1611.已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=112.设f(x)=x3+bx2+cx+d,又k是一个常数,已知当k<0或k>4时,f(x)﹣k=0只有一个实根;当0<k<4时,f(x)﹣k=0有三个相异实根,现给出下列命题:①f(x)﹣4=0和f′(x)=0有一个相同的实根②f(x)=0和f′(x)=0有一个相同的实根③f(x)+3=0的任一实根大于f(x)﹣1=0的任一实根④f(x)+5=0的任一实根小于f(x)﹣2=0的任一实根.其中错误的命题的个数是()A.4 B.3 C.2 D.1二、填空题(本大题共4个小题,每小题5分,共20分)13.命题:“若a>0,则a2>0”的否命题是.14.若曲线+=1表示双曲线,则k的取值范围是.15.在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.16.已知条件p:x2﹣3x﹣4≤0;条件q:x2﹣6x+9﹣m2≤0,若¬q是¬p的充分不必要条件,则实数m的取值范围是.三、解答题(本大题共6小题,满分70分,解答应写出必要的文字说明、证明过程或演算步骤.)17.命题p:关于x的不等式 x2+2ax+4>0对∀x∈R恒成立;命题q:函数f(x)=﹣(5﹣2a)x是减函数,若p∨q为真,p∧q为假,求实数a的取值范围.18.求函数f(x)=x3﹣x2﹣8x+1(﹣6≤x≤6)的单调区间、极值.19.抛物线的顶点在原点,以x轴为对称轴,经过焦点且倾斜角为135°的直线被抛物线所截得的弦长为8,试求抛物线方程.20.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,求实数m的取值范围.21.已知椭圆M:,其短轴的一个端点到右焦点的距离为2,且点A(,1)在椭圆M上.直线l的斜率为,且与椭圆M交于B、C两点.(Ⅰ)求椭圆M的方程;(Ⅱ)求△ABC面积的最大值.22.已知函数f(x)=x﹣alnx,g(x)=﹣,(a∈R)(1)若a=1,求函数f(x)的极值;(2)设函数h(x)=f(x)﹣g(x),求函数h(x)的单调区间.2017-2018学年高二下学期期中数学试卷(文科)参考答案与试题解析一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个选项符合题意.)1.若命题“p 或q”为真,“非p”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假【考点】复合命题的真假.【分析】根据“非p”为真,得到p 假,根据命题“p 或q”为真,则p 真或q 真,从而得到答案.【解答】解:若命题“p 或q”为真,则p 真或q 真,若“非p”为真,则p 为假,∴p 假q 真,故选:B .2.已知命题p :存在x 0>0,使2<1,则¬p 是( ) A .对任意x >0,都有2x ≥1B .对任意x ≤0,都有2x <1C .存在x 0>0,使2≥1D .存在x 0≤0,使2<1【考点】必要条件、充分条件与充要条件的判断.【分析】由全称命题和特称命题的关系和否定规律可得.【解答】解:∵命题p :存在x 0>0,使2<1为特称命题,∴¬p 为全称命题,即对任意x >0,都有2x ≥1.故选:A3.如果函数y=f (x )的图象如图,那么导函数y=f′(x )的图象可能是( )A.B.C.D.【考点】函数的单调性与导数的关系.【分析】由y=f(x)的图象得函数的单调性,从而得导函数的正负.【解答】解:由原函数的单调性可以得到导函数的正负情况依次是正→负→正→负,故选A.等于()4.设f(x)=x a﹣ax(0<a<1),则f(x)在[0,+∞)内的极大值点xA.0 B.a C.1 D.1﹣a【考点】利用导数研究函数的极值.【分析】求出函数的导数,推出极值点即可.【解答】解:令f′(x)=ax a﹣1﹣a=0(0<a<1),得x a﹣1=1,所以x=1.=1是函数f(x)在[0,+∞)内的极大值点.经验证,x故选:C.5.函数f(x)=x2﹣2lnx的单调减区间是()A.(0,1] B.[1,+∞)C.(﹣∞,﹣1]及(0,1] D.[﹣1,0)及(0,1]【考点】利用导数研究函数的单调性.【分析】函数的单调减区间就是函数的导数小于零的区间,可以先算出函数f(x)=x2﹣2lnx的导数,再解不等式f′=(x)<0,可得出函数的单调减区间.【解答】解:求出函数f(x)=x2﹣2lnx的导数:而函数的单调减区间就是函数的导数小于零的区间由f′(x)<0,得(﹣1,1)因为函数的定义域为(0,+∞)所以函数的单调减区间为(0,1]故选A6.已知函数f(x)=x2+2xf′(1),则f(﹣1)与f(1)的大小关系是()A.f(﹣1)=f(1)B.f(﹣1)>f(1) C.f(﹣1)<f(1) D.不能确定【考点】导数的运算.【分析】由f(x)的解析式,利用求导法则求出f(x)的导函数,把x=1代入导函数中求出f′(1)的值,从而确定出f(x)的解析式,然后分别把x等于1和﹣1代入即可求出f(1)和f(﹣1)的值,即可比较出大小.【解答】解:由f(x)=x2+2xf′(1),求导得f′(x)=2x+2f′(1),把x=1代入得:f′(1)=2+2f′(1),解得:f′(1)=﹣2,∴f(x)=x2﹣4x,∴f(﹣1)=(﹣1)2﹣4×(﹣1)=5,f(1)=12﹣4×1=﹣3,则f(﹣1)>f(1).故选B(﹣4,0),则m=()7.已知椭圆+=1(m>0 )的左焦点为F1A.2 B.3 C.4 D.9【考点】椭圆的简单性质.(﹣4,0),可得25﹣m2=16,即可求出m.【分析】利用椭圆+=1(m>0 )的左焦点为F1(﹣4,0),【解答】解:∵椭圆+=1(m>0 )的左焦点为F1∴25﹣m2=16,∵m>0,∴m=3,故选:B.8.抛物线y=x2的准线方程是()A.y=﹣1 B.y=﹣2 C.x=﹣1 D.x=﹣2【考点】抛物线的简单性质.【分析】先化为抛物线的标准方程得到焦点在y轴上以及2p=4,再直接代入即可求出其准线方程.【解答】解:抛物线y=x2的标准方程为x2=4y,焦点在y轴上,2p=4,∴=1,∴准线方程 y=﹣=﹣1.故选:A.9.若m是2和8的等比中项,则圆锥曲线x2+的离心率为()A.B.C.或D.或【考点】圆锥曲线的共同特征;等比数列的性质.【分析】先根据等比中项的性质求得m的值,分别看当m大于0时,曲线为椭圆,进而根据标准方程求得a 和b,则c可求得,继而求得离心率.当m<0,曲线为双曲线,求得a,b和c,则离心率可得.最后综合答案即可.【解答】解:依题意可知m=±=±4当m=4时,曲线为椭圆,a=2,b=1,则c=,e==当m=﹣4时,曲线为双曲线,a=1,b=2,c=则,e=故选D10.已知△ABC的顶点B,C在椭圆+=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.10 B.20 C.8 D.16【考点】椭圆的简单性质.【分析】由椭圆的定义椭圆上一点到两焦点的距离之和等于长轴长2a,可得△ABC的周长【解答】解:由椭圆+=1,可知焦点在x轴,a=5,b=4,c=3,由椭圆的定义椭圆上一点到两焦点的距离之和等于长轴长2a,可得△ABC的周长为4a=20,故选:B.11.已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【考点】双曲线的标准方程.【分析】先求出焦点坐标,利用双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,可得=2,结合c2=a2+b2,求出a,b,即可求出双曲线的方程.【解答】解:∵双曲线的一个焦点在直线l上,令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴=2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为﹣=1.故选:A.12.设f(x)=x3+bx2+cx+d,又k是一个常数,已知当k<0或k>4时,f(x)﹣k=0只有一个实根;当0<k<4时,f(x)﹣k=0有三个相异实根,现给出下列命题:①f(x)﹣4=0和f′(x)=0有一个相同的实根②f(x)=0和f′(x)=0有一个相同的实根③f(x)+3=0的任一实根大于f(x)﹣1=0的任一实根④f(x)+5=0的任一实根小于f(x)﹣2=0的任一实根.其中错误的命题的个数是()A.4 B.3 C.2 D.1【考点】利用导数研究函数的单调性.【分析】由已知中f(x)=x3+bx2+cx+d,当k<0或k>4时,f(x)﹣k=0只有一个实根;当0<k<4时,f(x)﹣k=0有三个相异实根,故函数即为极大值,又有极小值,且极大值为4,极小值为0,分析出函数简单的图象和性质后,逐一分析四个结论的正误,即可得到答案.【解答】解:∵f(x)=x3+bx2+cx+d,当k<0或k>4时,f(x)﹣k=0只有一个实根;当0<k<4时,f(x)﹣k=0有三个相异实根,故函数即为极大值,又有极小值,且极大值为4,极小值为0故f(x)﹣4=0与f'(x)=0有一个相同的实根,即极大值点,故(1)正确;f(x)=0与f'(x)=0有一个相同的实根,即极小值点,故(2)正确;f(x)+3=0有一实根小于函数最小的零点,f(x)﹣1=0有三个实根均大于函数最小的零点,故(3)错误;f(x)+3=0有一实根小于函数最小的零点,f(x)﹣2=0有三个实根均大于函数最小的零点,故(4)错误;故选:D.二、填空题(本大题共4个小题,每小题5分,共20分)13.命题:“若a>0,则a2>0”的否命题是若a≤0,则a2≤0 .【考点】四种命题.【分析】写出命题的条件与结论,再根据否命题的定义求解.【解答】解:命题的条件是:a>0,结论是:a2>0.∴否命题是:若a≤0,则a2≤0.故答案是若a≤0,则a2≤0.14.若曲线+=1表示双曲线,则k的取值范围是(﹣∞,﹣4)∪(1,+∞).【考点】双曲线的定义.【分析】根据双曲线的性质知,(4+k)(1﹣k)<0,进而求得k的范围.【解答】解:要使方程为双曲线方程需(4+k)(1﹣k)<0,即(k﹣1)(k+4)>0,解得k>1或k<﹣4故答案为(﹣∞,﹣4)∪(1,+∞)15.在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3 .【考点】利用导数研究曲线上某点切线方程.【分析】由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.【解答】解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣316.已知条件p:x2﹣3x﹣4≤0;条件q:x2﹣6x+9﹣m2≤0,若¬q是¬p的充分不必要条件,则实数m的取值范围是m≥4或m≤﹣4 .【考点】必要条件、充分条件与充要条件的判断.【分析】分别解关于p,q的不等式,求出¬q,¬p的关于x的取值范围,从而求出m的范围.【解答】解:∵条件p:x2﹣3x﹣4≤0;∴p:﹣1≤x≤4,∴¬p:x>4或x<﹣1,∵条件q:x2﹣6x+9﹣m2≤0,∴q:3﹣|m|≤x≤3+|m|,∴¬q:x>3+|m|或x<3﹣|m|,若¬q是¬p的充分不必要条件,由m=0,显然不成立.则,解得:m≥4或m≤﹣4,故答案为:m≥4或m≤﹣4.三、解答题(本大题共6小题,满分70分,解答应写出必要的文字说明、证明过程或演算步骤.)17.命题p:关于x的不等式 x2+2ax+4>0对∀x∈R恒成立;命题q:函数f(x)=﹣(5﹣2a)x是减函数,若p∨q为真,p∧q为假,求实数a的取值范围.【考点】复合命题的真假.【分析】命题p:关于x的不等式 x2+2ax+4>0对∀x∈R恒成立,可得△=4a2﹣4×4<0,﹣2<a<2.由命题q:函数f(x)=﹣(5﹣2a)x是减函数,且a≠2,可得5﹣2a>1,a<2.由p∨q为真,p∧q为假,可得命题p与q必然一真一假.解出即可.【解答】解:命题p:关于x的不等式 x2+2ax+4>0对∀x∈R恒成立,∴△=4a2﹣4×4<0,解得﹣2<a<2.命题q:函数f(x)=﹣(5﹣2a)x是减函数,∴5﹣2a>1,解得a<2.∵p∨q为真,p∧q为假,∴命题p与q必然一真一假.当p真q假时,,且a≠2,此时a∈∅.当q真p假时,,且a≠2,解得a≤﹣2.综上可得实数a的取值范围是(﹣∞,﹣2].18.求函数f(x)=x3﹣x2﹣8x+1(﹣6≤x≤6)的单调区间、极值.【考点】利用导数研究函数的单调性.【分析】先求出函数的导数,得到函数的单调区间,从而求出函数的极值.【解答】解:∵f(x)=x3﹣x2﹣8x+1,∴f′(x)=x2﹣2x﹣8,令f′(x)=0,得x=﹣2或x=4.当x∈(﹣6,﹣2)时,f′(x)>0;当x∈(﹣2,4)时,f′(x)<0;当x∈(4,6)时,f′(x)>0.∴f(x)的递增区间为[﹣6,﹣2),(4,6],递减区间为[﹣2,4].当x=﹣2时,f(x)取得极大值f(﹣2)=;当x=4时,f(x)取得极小值f(4)=﹣.19.抛物线的顶点在原点,以x轴为对称轴,经过焦点且倾斜角为135°的直线被抛物线所截得的弦长为8,试求抛物线方程.【考点】抛物线的标准方程.【分析】依题意,设抛物线方程为y2=2px,可求得过焦点且倾斜角为135°的直线方程为y=﹣x+p,利用抛物线的定义结合题意可求得p,从而可求得抛物线方程;同理可求抛物线方程为y2=﹣2px时的结果.【解答】解:如图所示,依题意,设抛物线方程为y2=2px,则直线方程为y=﹣x+p.设直线交抛物线于A(x1,y1)、B(x2,y2)两点,过A、B分别作准线的垂线,垂足分别为C、D.则由抛物线定义得|AB|=|AF|+|FB|=|AC|+|BD|=x1++x2+,即x1++x2+=8.①又A(x1,y1)、B(x2,y2)是抛物线和直线的交点,由消去y,得x2﹣3px+=0,∵△=9p2﹣4×=8p2>0.∴x1+x2=3p.将其代入①得p=2,∴所求抛物线方程为y2=4x.当抛物线方程设为y2=﹣2px(p>0)时,同理可求得抛物线方程为y2=﹣4x.故所求抛物线方程为y2=4x或y2=﹣4x.20.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,求实数m的取值范围.【考点】必要条件;绝对值不等式的解法.【分析】先求出命题p,q的等价条件,利用¬p是¬q的必要不充分条件转化为q是p的必要不充分条件,建立条件关系即可求出m的取值范围.【解答】解:由||=,得|x﹣4|≤6,即﹣6≤x﹣4≤6,∴﹣2≤x≤10,即p:﹣2≤x≤10,由x2+2x+1﹣m2≤0得[x+(1﹣m)][x+(1+m)]≤0,即1﹣m≤x≤1+m,(m>0),∴q:1﹣m≤x≤1+m,(m>0),∵¬p是¬q的必要不充分条件,∴q是p的必要不充分条件.即,且等号不能同时取,∴,解得m≥9.21.已知椭圆M:,其短轴的一个端点到右焦点的距离为2,且点A(,1)在椭圆M上.直线l的斜率为,且与椭圆M交于B、C两点.(Ⅰ)求椭圆M的方程;(Ⅱ)求△ABC面积的最大值.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)把点A代入椭圆方程,结合a=2解出b,则椭圆的标准方程可求;(Ⅱ)写出直线的点斜式方程,和椭圆方程联立后化为关于x的一元二次方程,由判别式大于0解出m的范围,求出相应的两个根,由点到直线的距离公式求出A到BC边的距离,写出面积后利用基本不等式求面积的最大值,验证得到的m值符合判别式大于0.【解答】解:(Ⅰ)由题意知,解得.故所求椭圆方程为;(Ⅱ)设直线l的方程为,则m≠0.设B(x1,y1),C(x2,y2),代入椭圆方程并化简得,由△=2m2﹣4(m2﹣2)=2(4﹣m2)>0,可得0<m2<4①.由①,得,故.又点A到BC的距离为,故=,当且仅当m2=4﹣m2,即m=时取等号,满足①式.所以△ABC面积的最大值为.22.已知函数f(x)=x﹣alnx,g(x)=﹣,(a∈R)(1)若a=1,求函数f(x)的极值;(2)设函数h(x)=f(x)﹣g(x),求函数h(x)的单调区间.【考点】利用导数研究函数的极值.【分析】(Ⅰ)先求出函数f(x)的导数,得到函数的单调区间,从而求出函数的极小值;(Ⅱ)先求出函数h(x)的导数,通过讨论a的范围,从而得到函数的单调性.【解答】解:(Ⅰ)函数f(x)的定义域是(0,+∞),当a=1时,f(x)=x﹣lnx,f′(x)=1﹣=,x (0,1) 1 (1,+∞)f′(x)﹣0 +f(x)极小∴f(x)在x=1处取得极小值1;(Ⅱ)h(x)=x+﹣alnx,h′(x)=1﹣﹣=,①当a+1>0时,即a>﹣1时,在(0,1+a)上,h′(x)<0,在(1+a,+∞)上,h′(x)>0,∴h(x)在(0,1+a)递减,在(1+a,+∞)递增;②当1+a≤0,即a≤﹣1时,在(0,+∞)上h′(x)>0,∴h(x)在(0,+∞)上递增.。
重庆市石柱子中学2017-2018学年下学期期中考试高二数学(文)试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(本大题共12小题,每题5分,共60分)1.已知全集{}U=2,3,4,5,6,7,集合{}A=4,5,7, {}B=4,6,则 A (∁U B )=( ) A. {}5 B. {}2 C. {}2,5 D. {}5,72.已知i 为虚数单位,则13ii+=-( ) A. 25i - B. 25i + C. 125i - D. 125i+3.命题“N n ∀∈, ()N f n ∉且()f n n ≤”的否定形式是( )A. N n ∀∈, ()N f n ∈且()f n n >B. 0N n ∃∈, ()0N f n ∈且()00f n n >C. N n ∀∈, ()N f n ∈或()f n n >D. 0N n ∃∈, ()0N f n ∈或()00f n n > 4.下列各组函数中,表示同一函数的是( )A.22lg ,lg y x y x ==B.()()()01,1f x x g x =-=C.()()21,11x f x g x x x -==+- D.()()f x g t t == 5. 已知集合,,则集合中元素的个数为( )A. 2B. 3C. 4D. 56.设某中学的高中女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据),(i i y x (n i ,,3,2,1⋅⋅⋅=),用最小二乘法近似得到回归直线方程为71.8585.0ˆ-=x y,则下列结论中不正确的是( )A. y 与x 具有正线性相关关系B. 回归直线过样本的中心点),(y xC. 若该中学某高中女生身高增加1cm ,则其体重约增加0.85kgD. 若该中学某高中女生身高为160cm ,则可断定其体重必为50.29kg .7.用三段论推理:“任何实数的平方大于0,因为a 是实数,所以20a >”,你认为这个推理 ( ) A .大前提错误 B .小前提错误 C. 推理形式错误 D .是正确的 8.若实数,x y 满足11ln0x y--=,则y 关于x 的函数图象的大致形状是( )A. B. C. D.9. 已知在曲线()21ax f x x =+在点()()1,1f 处切线的斜率为1,则实数a 的值为( )A .34-B .43 C. 32 D .32- 10.“一支医疗救援队里的医生和护士,包括我在内,总共是13名.下面讲到的人员情况,无论是否把我计算在内,都不会有任何变化.在这些医务人员中:①护士不少于医生;②男医生多于女护士;③女护士多于男护士;④至少有一位女医生.”由此推测这位说话人的性别和职务是( ) A. 男护士 B. 女护士 C. 男医生 D. 女医生 11.已知函数⎩⎨⎧≤≤--≤-=73,1|5|1),2(log )(x x x x x f a (0>a 且1≠a )的图象上关于直线1=x 对称的点有且仅有一对,则实数a 的取值范围是( )A.}3{]51,71[ B.}71{]5,3[ C.}5{]31,71[ D.}51{]7,3[12.设函数()(21)xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A. 3[,1)2e -B. 33[,)24e - C. 33[,)24e D. 3[,1)2e 第II 卷(非选择题)二、填空题(本大题共4小题,每题5分,共20分)13.已知复数12z ai =+, 22z i =-(其中0a >, i 为虚数单位).若12z z =,则a 的值为__________.14.若x x f 131211)(++++= ,计算得当1=n 时23)2(=f ,当2≥n 时有2)4(>f ,25)8(>f ,3)16(>f , ,27)32(>f ,因此猜测当2≥n 时,一般有不等式________________15.已知y x ,取值如下表:画散点图分析可知:y 与x 线性相关,且求得回归方程为1ˆ+=x y,则m 的值为___________.16. .已知函数在上单调递减,且方程有两个不相等的实数根,则实数的取值范围是__________.三、解答题17.(本小题共12分)已知命题0208:2≤--x x p ,命题)0(012:22>≥-+-a a x x q ,若p ⌝是q 的充分不必要条件,求a 的取值范围.18.(本小题共12分)求证:(1)222a b c ab ac bc ++≥++; (2) 6+7>5。
2017-2018学年重庆八中高二(下)段考数学试卷(文科)(八)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i是虚数单位,则(2+i)(3+i)=()A.5﹣5i B.7﹣5i C.5+5i D.7+5i2.集合M={x∈N|x(x+2)≤0}的子集个数为()A.1 B.2 C.3 D.43.已知p,q,那么“p∧q为真”是“p∨q为真”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知函数f(x)=﹣log2x,在下列区间中,包含f(x)零点的区间是()A.(0,1)B.(1,2)C.(2,4)D.(4,+∞)5.图1是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到14次的考试成绩依次记为A1,A2,…,A14.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是()A.7 B.8 C.9 D.106.已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)7.已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b﹣1)(b﹣a)>08.相距1400m的A、B两个哨所,听到炮弹爆炸的时间相差3s,已知声速340m/s,则炮弹爆炸点所在曲线的离心率为()A.B.C.D.19.一个多面体的三视图如图所示,则这个多面体的面数及这些面中直角三角形的个数分别为()A.5和2 B.5和3 C.5和4 D.4和310.若f(x)是奇函数,且x0是y=f(x)+e x的一个零点,则﹣x0一定是下列哪个函数的零点()A.y=f(﹣x)e x﹣1 B.y=f(﹣x)e﹣x+1 C.y=e x f(x)﹣1 D.y=e x f(x)+111.假设你家订了一份牛奶,送奶工人在早上6:00﹣7:00之间把牛奶送到你家,你离开家去上学的时间在早上6:30﹣7:30之间,则你在离开家前能收到牛奶的概率是()A.B.C.D.12.已知关于x的不等式2x2﹣2mx+m<0的解集为A,其中m>0,若集合A中恰好有两个整数,则实数m的取值范围是()A.(,)B.(,]C.(,)D.(,]二、填空题:本大题共4小题,每小题5分,共60分,将答案填在答题纸上13.2log510+log50.25=.14.已知a=2,b=3,c=25,则a,b,c按从小到大的顺序排列为.15.已知函数f(x)的定义域为R,当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣),则f(6)=.16.f(x)=2sinπx﹣x+1的零点个数为.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=ax3+x2(a∈R)在x=﹣处取得极值.(1)确定a的值;(2)讨论函数g(x)=f(x)•e x的单调性.18.某学校高三年级800名学生在一次百米测试中,成绩全部介于13秒与18秒之间.抽取其中50个样本,将测试结果按如下方式分成五组:第一组[13,14);第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(Ⅰ)若成绩小于14秒被认为优秀,求该样本在这次百米测试中优秀的人数;(Ⅱ)请估计本年级这800人中第三组的人数;(Ⅲ)若样本第一组只有一名女生,第五组只有一名男生,现从第一、第五组中各抽取一名学生组成一个实验组,求在被抽出的2名学生中恰好为一名男生和一名女生的概率.19.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面PAB;(Ⅱ)求四面体N﹣BCM的体积.20.已知椭圆C: +=1过点A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.21.已知函数f(x)=e x﹣alnx.(1)讨论f(x)的导函数f'(x)的零点的个数;(2)证明:当a>0时,f(x)≥a(2﹣lna).请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,F为BA延长线上一点,且满足BD•BE=BA•BF.求证:(1)EF⊥FB;(2)∠DFB+∠DBC=90°.[选修4-4:坐标系与参数方程]23.已知曲线C的极坐标方程为ρ=2cosθ﹣4sinθ.以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程为(t为参数).(Ⅰ)判断直线l与曲线C的位置关系,并说明理由;(Ⅱ)若直线l和曲线C相交于A,B两点,且|AB|=3,求直线l的斜率.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|,g(x)=m|x|﹣2,(m∈R).(1)解关于x的不等式f(x)>3;(2若不等式f(x)≥g(x)对任意x∈R恒成立,求m的取值范围.2015-2016学年重庆八中高二(下)段考数学试卷(文科)(八)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i是虚数单位,则(2+i)(3+i)=()A.5﹣5i B.7﹣5i C.5+5i D.7+5i【考点】复数代数形式的乘除运算.【分析】直接利用多项式的乘法展开,求出复数的最简形式.【解答】解:复数(2+i)(3+i)=6+5i+i2=5+5i.故选C.2.集合M={x∈N|x(x+2)≤0}的子集个数为()A.1 B.2 C.3 D.4【考点】子集与真子集.【分析】根据题意,用列举法表示集合A,可得集合A中元素的个数,进而由集合的元素数目与子集数目的关系,计算可得答案.【解答】解:M={x∈N|x(x+2)≤0}=M={x∈N|﹣2≤x≤0}={0},则集合M={x∈N|x(x+2)≤0}的子集为{0}或∅,故选:B.3.已知p,q,那么“p∧q为真”是“p∨q为真”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】复合的真假.【分析】根据p∧q,p∨q的真假和p,q真假的关系便可判断由“p∧q为真”能得到“p∨q为真”,而“p∨q为真”得不到“p∧q为真”,从而得出正确选项为A.【解答】解:若p∧q为真,则p,q都为真,∴p∨q为真;若p∨q为真,则p,q中至少有一个为真,而如果p,q中只有一个为真,则得不到p∧q为真;∴“p∧q为真”是“p∨q为真”的充分不必要条件.故选:A.4.已知函数f(x)=﹣log2x,在下列区间中,包含f(x)零点的区间是()A.(0,1)B.(1,2)C.(2,4)D.(4,+∞)【考点】函数零点的判定定理.【分析】可得f(2)=2>0,f(4)=﹣<0,由零点的判定定理可得.【解答】解:∵f(x)=﹣log2x,∴f(2)=2>0,f(4)=﹣<0,满足f(2)f(4)<0,∴f(x)在区间(2,4)内必有零点,故选:C5.图1是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到14次的考试成绩依次记为A1,A2,…,A14.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是()A.7 B.8 C.9 D.10【考点】茎叶图;循环结构.【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加14次考试成绩超过90分的人数;根据茎叶图的含义可得超过90分的人数为10个故选D6.已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【考点】函数单调性的性质.【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.7.已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b﹣1)(b﹣a)>0【考点】不等关系与不等式.【分析】根据对数的运算性质,结合a>1或0<a<1进行判断即可.【解答】解:若a>1,则由log a b>1得log a b>log a a,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,若0<a<1,则由log a b>1得log a b>log a a,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,综上(b﹣1)(b﹣a)>0,故选:D.8.相距1400m的A、B两个哨所,听到炮弹爆炸的时间相差3s,已知声速340m/s,则炮弹爆炸点所在曲线的离心率为()A.B.C.D.1【考点】双曲线的应用.【分析】设A(﹣700,0)、B、M(x,y)为曲线上任一点,根据|MA|﹣|MB|为常数,推断M点轨迹为双曲线,根据题意可知a和c的值,可得炮弹爆炸点所在曲线的离心率.【解答】解:设A(﹣700,0)、B、M(x,y)为曲线上任一点,则||MA|﹣|MB||=340×3=1020<1400.∴M点轨迹为双曲线,且a=510,c=700.∴e==.故选:B.9.一个多面体的三视图如图所示,则这个多面体的面数及这些面中直角三角形的个数分别为()A.5和2 B.5和3 C.5和4 D.4和3【考点】由三视图求面积、体积.【分析】观察多面体的三视图,确定出多面体的面数与这些面中直角三角形个数即可.【解答】解:根据多面体的三视图可得几何体O﹣ABCD,如图所示,则这个多面体的面数5,分别为面OAD,面OAB,面OBC,面OCD,面ABCD;这些面中直角三角形的个数3,根据三视图得:Rt△OAD,边长分别为2,4,2;Rt△OAB,边长分别为2,2,2;Rt△OBC,边长分别为2,2,2.故选:B.10.若 f (x )是奇函数,且x 0是y=f (x )+e x 的一个零点,则﹣x 0一定是下列哪个函数的零点( )A .y=f (﹣x )e x ﹣1B .y=f (﹣x )e ﹣x +1C .y=e x f (x )﹣1D .y=e x f (x )+1 【考点】函数的零点.【分析】根据f (x )是奇函数可得f (﹣x )=﹣f (x ),因为x 0是y=f (x )+e x 的一个零点,代入得到一个等式,利用这个等式对A 、B 、C 、D 四个选项进行一一判断; 【解答】解:f (x )是奇函数,∴f (﹣x )=﹣f (x )且x 0是y=f (x )+e x 的一个零点,∴f (x 0)+=0,∴f (x 0)=﹣,把﹣x 0分别代入下面四个选项,A 、y=f (x 0)﹣1=﹣﹣1=﹣1﹣1=﹣2,故A 错误;B 、y=f (x 0)+1=﹣()2+1≠0,故B 错误;C 、y=e ﹣x0f (﹣x 0)﹣1=﹣e ﹣x0f (x 0)﹣1=e ﹣x0﹣1=1﹣1=0,故C 正确;D 、y=f (﹣x 0)+1=1+1=2,故D 错误;故选C ;11.假设你家订了一份牛奶,送奶工人在早上6:00﹣7:00之间把牛奶送到你家,你离开家去上学的时间在早上6:30﹣7:30之间,则你在离开家前能收到牛奶的概率是( )A .B .C .D .【考点】几何概型.【分析】设送报人到达的时间为x ,此人离家的时间为y ,以横坐标表示报纸送到时间,以纵坐标表示此人离家时间,建立平面直角坐标系,作图求面积之比即可 【解答】解:设送奶人到达的时间为x ,此人离家的时间为y , 以横坐标表示奶送到时间,以纵坐标表示此人离家时间, 建立平面直角坐标系(如图)则此人离开家前能收到牛奶的事件构成区域如图示∴所求概率P=1﹣=;故选:D .12.已知关于x的不等式2x2﹣2mx+m<0的解集为A,其中m>0,若集合A中恰好有两个整数,则实数m的取值范围是()A.(,)B.(,]C.(,)D.(,]【考点】一元二次不等式的解法.【分析】由判别式大于0求得m>2,再由A中恰有两个整数,得≤3,得到对称轴的范围,结合二次函数的性质得出关于m的不等式,求出m的取值范围即可.【解答】解:由题意可得,判别式△=4m2﹣8m>0,解得m<0(舍),或m>2.设A=(a,b),由于集合A中恰有两个整数则有|b﹣a|≤3,即||=≤3,即m2﹣2m≤9,解得2<m≤1+.故有对称轴1<≤,令f(x)=2x2﹣2mx+m,而f(4)=32﹣7m>0,f(0)=m>0,f(1)=2﹣m<0,故A中的两个整数为1和2,∴f(2)<0,f(3)≥0.即,解得.∴实数m的取值范围是(,].故选:D.二、填空题:本大题共4小题,每小题5分,共60分,将答案填在答题纸上13.2log510+log50.25=2.【考点】对数的运算性质.【分析】根据对数运算法则nlog a b=log a b n和log a M+log a N=log a(MN)进行求解可直接得到答案.【解答】解:∵2log510+log50.25=log5100+log50.25=log525=2故答案为:2.14.已知a=2,b=3,c=25,则a ,b ,c 按从小到大的顺序排列为 b <a <c .【考点】根式与分数指数幂的互化及其化简运算.【分析】直接由分数指数幂化为根式进行比较大小即可.【解答】解:∵a=2=,b=3=,c=25=,∴b <a <c .故答案为:b <a <c .15.已知函数f (x )的定义域为R ,当x <0时,f (x )=x 3﹣1;当﹣1≤x ≤1时,f (﹣x )=﹣f (x );当x >时,f (x +)=f (x ﹣),则f (6)= 2 .【考点】函数的值.【分析】求得函数的周期为1,再利用当﹣1≤x ≤1时,f (﹣x )=﹣f (x ),得到f (1)=﹣f (﹣1),当x <0时,f (x )=x 3﹣1,得到f (﹣1)=﹣2,即可得出结论.【解答】解:∵当x >时,f (x +)=f (x ﹣),∴当x >时,f (x +1)=f (x ),即周期为1. ∴f (6)=f (1),∵当﹣1≤x ≤1时,f (﹣x )=﹣f (x ), ∴f (1)=﹣f (﹣1), ∵当x <0时,f (x )=x 3﹣1, ∴f (﹣1)=﹣2,∴f (1)=﹣f (﹣1)=2, ∴f (6)=2; 故答案为:216.f (x )=2sin πx ﹣x +1的零点个数为 5 . 【考点】函数零点的判定定理.【分析】f (x )=2sin πx ﹣x +1的零点个数可化为函数y=2sin πx 与y=x ﹣1的图象的交点的个数,作函数y=2sin πx 与y=x ﹣1的图象求解.【解答】解:f (x )=2sin πx ﹣x +1的零点个数可化为 函数y=2sin πx 与y=x ﹣1的图象的交点的个数; 作函数y=2sin πx 与y=x ﹣1的图象如下,结合图象可得,f(x)=2sinπx﹣x+1的零点个数为5;故答案为:5.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=ax3+x2(a∈R)在x=﹣处取得极值.(1)确定a的值;(2)讨论函数g(x)=f(x)•e x的单调性.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求导数,利用f(x)=ax3+x2(a∈R)在x=﹣处取得极值,可得f′(﹣)=0,即可确定a的值;(2)由(1)得g(x)=(x3+x2)e x,利用导数的正负可得g(x)的单调性.【解答】解:(1)对f(x)求导得f′(x)=3ax2+2x.∵f(x)=ax3+x2(a∈R)在x=﹣处取得极值,∴f′(﹣)=0,∴3a•+2•(﹣)=0,∴a=;(2)由(1)得g(x)=(x3+x2)e x,∴g′(x)=(x2+2x)e x+(x3+x2)e x=x(x+1)(x+4)e x,令g′(x)=0,解得x=0,x=﹣1或x=﹣4,当x<﹣4时,g′(x)<0,故g(x)为减函数;当﹣4<x<﹣1时,g′(x)>0,故g(x)为增函数;当﹣1<x<0时,g′(x)<0,故g(x)为减函数;当x>0时,g′(x)>0,故g(x)为增函数;综上知g(x)在(﹣∞,﹣4)和(﹣1,0)内为减函数,在(﹣4,﹣1)和(0,+∞)为增函数.18.某学校高三年级800名学生在一次百米测试中,成绩全部介于13秒与18秒之间.抽取其中50个样本,将测试结果按如下方式分成五组:第一组[13,14);第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(Ⅰ)若成绩小于14秒被认为优秀,求该样本在这次百米测试中优秀的人数;(Ⅱ)请估计本年级这800人中第三组的人数;(Ⅲ)若样本第一组只有一名女生,第五组只有一名男生,现从第一、第五组中各抽取一名学生组成一个实验组,求在被抽出的2名学生中恰好为一名男生和一名女生的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)由频率分布直方图先求出成绩小于14秒的频率,由此能求出该样本在这次百米测试中成绩优秀的人数.(2)先求出样本成绩属于第三组的频率,由此能求出本年级800名学生中成绩属于第三组的人数.(3)由题可知第一组中有一女二男,第五组一男三女,利用列举法能求出在被抽出的2名学生中恰好为一名男生和一名女生的概率.【解答】(本题满分12分)解:(1)由频率分布直方图可知成绩小于14秒的频率为0.06所以该样本在这次百米测试中成绩优秀的人数为50×0.06=3(人).…(2)样本成绩属于第三组的频率为0.38,故本年级800名学生中成绩属于第三组的人数为800×0.38=304(人).…(3)由题可知第一组中有一女二男,第五组一男三女,设第一组学生为x,1,2,第五组学生为a,b,c,3,(用字母表示女生,用数字表示男生),则所有的抽取结果为:xa,xb,xc,x3,1a,1b,1c,13,2a,2b,2c,23共12种,其中仅有x3,1a,1b,1c,2a,2b,2c表示一男一女共7种.所以所求事件的概率为.…19.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面PAB;(Ⅱ)求四面体N﹣BCM的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(Ⅰ)取BC中点E,连结EN,EM,得NE是△PBC的中位线,推导出四边形ABEM 是平行四边形,由此能证明MN∥平面PAB.(Ⅱ)取AC中点F,连结NF,NF是△PAC的中位线,推导出NF⊥面ABCD,延长BC 至G,使得CG=AM,连结GM,则四边形AGCM是平行四边形,由此能求出四面体N﹣BCM的体积.【解答】证明:(Ⅰ)取BC中点E,连结EN,EM,∵N为PC的中点,∴NE是△PBC的中位线,∴NE∥PB,又∵AD∥BC,∴BE∥AD,∵AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,∴BE=BC=AM=2,∴四边形ABEM是平行四边形,∴EM∥AB,∴平面NEM∥平面PAB,∵MN⊂平面NEM,∴MN∥平面PAB.解:(Ⅱ)取AC中点F,连结NF,∵NF是△PAC的中位线,∴NF∥PA,NF==2,又∵PA⊥面ABCD,∴NF⊥面ABCD,如图,延长BC至G,使得CG=AM,连结GM,∵AM CG,∴四边形AGCM是平行四边形,∴AC=MG=3,又∵ME=3,EC=CG=2,∴△MEG的高h=,===2,∴S△BCM===.∴四面体N﹣BCM的体积V N﹣BCM20.已知椭圆C: +=1过点A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.【考点】椭圆的标准方程;直线与椭圆的位置关系.【分析】(1)由题意可得a=2,b=1,则,则椭圆C的方程可求,离心率为e=;(2)设P(x0,y0),求出PA、PB所在直线方程,得到M,N的坐标,求得|AN|,|BM|.由,结合P在椭圆上求得四边形ABNM的面积为定值2.【解答】(1)解:∵椭圆C: +=1过点A(2,0),B(0,1)两点,∴a=2,b=1,则,∴椭圆C的方程为,离心率为e=;(2)证明:如图,设P(x0,y0),则,PA所在直线方程为y=,取x=0,得;,PB所在直线方程为,取y=0,得.∴|AN|=,|BM|=1﹣.∴==﹣===.∴四边形ABNM的面积为定值2.21.已知函数f(x)=e x﹣alnx.(1)讨论f(x)的导函数f'(x)的零点的个数;(2)证明:当a>0时,f(x)≥a(2﹣lna).【考点】导数的运算;根的存在性及根的个数判断.【分析】(1)求出f(x)的定义域,以及f(x)的导函数,导函数零点的个数即为两函数交点个数,分类讨论a的范围确定出零点个数即可;(2)由a>0时,导函数有零点,存在唯一x0使f′(x0)=0,分类讨论x的范围确定出导函数的增减性,求出f(x)最小值,即可得证.【解答】解:(1)由f(x)=e x﹣alnx,得到x>0,∴f(x)定义域为(0,+∞),∴f′(x)=e x﹣的零点个数⇔y=e x与y=的交点个数,①a=0时,显然无;②a>0时,有1个;③a<0时,无零点;(2)由(1)a>0时,存在唯一x0使f′(x0)=0,即e=,且x∈(0,x0)时,f′(x0)<0,f(x)单调递减,x∈(x0,+∞)时,f′(x0)>0,f(x)单调递增,∴f(x)min=f(x0)=e﹣alnx0=﹣aln=+ax0﹣alna≥2a﹣alna=a(2﹣lna),得证.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,F为BA延长线上一点,且满足BD•BE=BA•BF.求证:(1)EF⊥FB;(2)∠DFB+∠DBC=90°.【考点】综合法与分析法(选修).【分析】(1)利用BD•BE=BA•BF,可得,从而可知△ADB∽△EFB,可得∠EFB=∠ADB,利用AB是⊙O的直径,即可得到结论;(2)先证明E、F、A、D四点共圆,从而可得∠DFB=∠AEB,利用AB是⊙O的直径,可证结论成立.【解答】(1)证明:连接AD,则∵AB是⊙O的直径,∴∠ADB=90°在△ADB和△EFB中,∵BD•BE=BA•BF,∴…..又∠DBA=∠EBF,∴△ADB∽△EFB…..则∠EFB=∠ADB=90°,∴EF⊥FB…..(2)在△ADB中,∠ADB=∠ADE=90°又∠EFB=90°∴E、F、A、D四点共圆;…∴∠DFB=∠AEB…..又AB是⊙O的直径,则∠ACB=90°,∴∠DFB+∠DBC=∠AEB+∠DBC=90°…[选修4-4:坐标系与参数方程]23.已知曲线C的极坐标方程为ρ=2cosθ﹣4sinθ.以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程为(t为参数).(Ⅰ)判断直线l与曲线C的位置关系,并说明理由;(Ⅱ)若直线l和曲线C相交于A,B两点,且|AB|=3,求直线l的斜率.【考点】简单曲线的极坐标方程;直线与圆的位置关系;参数方程化成普通方程.【分析】(I)利用可把曲线C的极坐标方程化为直角坐标方程,可得圆心、半径,由于直线l过点(1,﹣1),求出该点到圆心的距离,与半径半径即可判断出位置关系;(II)利用点到直线的距离公式与弦长公式即可得出.【解答】解:(Ⅰ)∵曲线C的极坐标方程为ρ=2cosθ﹣4sinθ,∴ρ2=2ρcosθ﹣4ρsinθ,∴曲线C的直角坐标方程为x2+y2=2x﹣4y,即(x﹣1)2+(y+2)2=5,∵直线l过点(1,﹣1),且该点到圆心的距离为,∴直线l与曲线C相交.(Ⅱ)当直线l的斜率不存在时,直线l过圆心,|AB|=2≠3,因此直线l必有斜率,设其方程为y+1=k(x﹣1),即kx﹣y﹣k﹣1=0,圆心到直线l的距离=,解得k=±1,∴直线l的斜率为±1.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|,g(x)=m|x|﹣2,(m∈R).(1)解关于x的不等式f(x)>3;(2若不等式f(x)≥g(x)对任意x∈R恒成立,求m的取值范围.【考点】绝对值不等式的解法;函数恒成立问题.【分析】(1)由f(x)>3,得|x﹣2|>3,由此求得x的范围.(2)由题意可得|x﹣2|≥m|x|﹣2 恒成立.当x=0时,不等式显然成立;当x≠0时,问题等价于m≤对任意非零实数恒成立,再利用绝对值三角不等式求得m的范围.【解答】解:(1)由f(x)>3,得|x﹣2|>3,可得x﹣2>3,或x﹣2<﹣3.求得x<﹣1,或x>5,故原不等式的解集为{x|x<﹣1,或x>5}.(2)由f(x)≥g(x),得|x﹣2|≥m|x|﹣2 恒成立.当x=0时,不等式|x﹣2|≥m|x|﹣2 恒成立;当x≠0时,问题等价于m≤对任意非零实数恒成立.∵≥=1,∴m≤1,即m的取值范围是(﹣∞,1].2016年10月23日。
2017-2018学年重庆市部分区县高二(下)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)若i为虚数单位,则=()A.i B.﹣i C.1D.﹣12.(5分)函数f(x)=的定义域为()A.(﹣1,+∞)B.(﹣1,0)C.(0,+∞)D.(﹣1,0)∪(0,+∞)3.(5分)用三段论推理:“任何实数的平方大于0,因为a是实数,所以a2>0”,你认为这个推理()A.大前提错误B.小前提错误C.推理形式错误D.是正确的4.(5分)设x∈R,则“x>1”是“x2>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.46.(5分)按如图的程序框图运行后,输出的S应为()A.26B.35C.40D.577.(5分)设f(x)=e x+x﹣4,则函数f(x)的零点位于区间()A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)8.(5分)函数y=2﹣|x|的大致图象是()A.B.C.D.9.(5分)若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx﹣2在x=1处有极值,则ab的最大值()A.2B.3C.6D.910.(5分)已知m∈N,函数f(x)=x3m﹣7关于y轴对称且在(0,+∞)上单调递减,则m =()A.0B.1C.2D.311.(5分)方程x3﹣6x2+9x﹣10=0的实根个数是()A.3B.2C.1D.012.(5分)已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f′(x )<,则f(x )<+的解集为()A.{x|﹣1<x<1}B.{x|x<﹣1}C.{x|x<﹣1或x>1}D.{x|x>1}二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡的相应位置上. 13.(5分)计算:log29•log38=.14.(5分)已知函数f(x )=,则f[f ()]=.15.(5分)已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=4x,则f (﹣)=.16.(5分)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下:甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”,经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是.三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤17.(12分)已知集合M={x∈R|x﹣a≤0},N={x|x2+x﹣6≤0}.(Ⅰ)若a=1,求M∩N;(Ⅱ)若N⊆M,求实数a的取值范围.18.(12分)已知函数f(x)=x3+bx2在点(1,f(1))处的切线方程为3x+y﹣1=0.(Ⅰ)求b的值;(Ⅱ)求函数f(x)的单调减区间.19.(12分)2018年4月2日,比亚迪e5正式上市,预售价格14﹣16万元.该车以三元锂电池组为动力,搭载一台最大功率160千瓦、峰值扭矩310牛米的电动机,综合工况续航里程400公里.作为中国电动车领域的领跑者和全球充电电池产业的领先者,比亚迪从未停止过进取的脚步,为了研制效能更高的电池组,研发团队开展了四次电池组重量x (百千克)与续航里程y(百公里)的试验,得到数据如下:若电池组重量(百千克)与续航里程(百公里)成线性关系(Ⅰ)请求出y关于x的线性回归方程y=bx+a;(Ⅱ)根据(I)的结果预测,如果你是研发团队的一名设计师,想设计出续航里程达到595公里的汽车,电池组重量最少会达到多少千克?(参考公式:=,=)20.(12分)今年“五一”假期,记者通过随机询问某景区55名游客对景区的服务是否满意,得到如下的列联表:(1)从这25名女游客中按对景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,问样本中对景区的服务满意与不满意的女游客各有多少名?(Ⅱ)根据以上列联表,问有多大把握认为“游客性别与对景区的服务满意”有关.(参考公式:,其中n=a+b+c+d)临界值表:21.(12分)已知f(x)=xlnx,g(x)=﹣x2+ax﹣3.(1)求函数f(x)的最小值;(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.[选修4-4:坐标系与参数方程选讲]22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以直角坐标系的原点为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(θ﹣)=.(1)求曲线C在直角坐标系中的普通方程和直线l的倾斜角;(2)设点P(0,1),若直线l与曲线C相交于不同的两点A,B,求|P A|+|PB|的值.[选修4-5:不等式选讲]23.已知f(x)=|x﹣1|+|x+2|.(Ⅰ)解不等式f(x)≥5;(Ⅱ)若关于x的不等式f(x)>a2﹣2a对任意的x∈R恒成立,求a的取值范围.2017-2018学年重庆市部分区县高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.【考点】A5:复数的运算.【解答】解:=.故选:B.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.2.【考点】33:函数的定义域及其求法.【解答】解:要使函数有意义,则,即,即x>﹣1且x≠0,即函数的定义域为(﹣1,0)∪(0,+∞),故选:D.【点评】本题主要考查函数定义域的求解,根据函数成立的条件进行转化是解决本题的关键.3.【考点】F5:演绎推理.【解答】解:∵任何实数的平方大于0,因为a是实数,所以a2>0,大前提:任何实数的平方大于0是不正确的,0的平方就不大于0.故选:A.【点评】本题是一个简单的演绎推理,这种问题不用进行运算,只要根据所学的知识点,判断这种说法是否正确,是一个基础题.4.【考点】29:充分条件、必要条件、充要条件.【解答】解:因为“x>1”,则“x2>1”;但是“x2>1”不一定有“x>1”,所以“x>1”,是“x2>1”成立的充分不必要条件.故选:A.【点评】本题考查充要条件的判定方法的应用,考查计算能力.5.【考点】BK:线性回归方程.【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.6.【考点】E7:循环结构.【解答】解:第一次循环:T=3i﹣1=2,S=S+T=2,i=i+1=2,不满足条件,再次循环;第二次循环:T=3i﹣1=5,S=S+T=7,i=i+1=3,不满足条件,再次循环;第三次循环:T=3i﹣1=8,S=S+T=15,i=i+1=4,不满足条件,再次循环;第四次循环:T=3i﹣1=11,S=S+T=26,i=i+1=5,不满足条件,再次循环;第五次循环:T=3i﹣1=14,S=S+T=40,i=i+1=6,满足条件,输出S的值为40.故选:C.【点评】本题主要考查了循环结构,利用模拟循环的执行过程是解答此类问题常用的办法,属于基础题.7.【考点】53:函数的零点与方程根的关系.【解答】解:∵f(x)=e x+x﹣4,∴f(1)<0,f(2)>0,故函数f(x)的零点位于区间(1,2)内,故选:C.【点评】本题主要考查函数的零点的定义,判断函数的零点所在的区间的方法,属于基础题.8.【考点】49:指数函数的图象与性质.【解答】解:函数y=2﹣|x=∵2>1,且图象关于y轴对称∴函数图象在y轴右侧为减函数,y≤1左侧为增函数,y≤1故选:C.【点评】本题主要考查由指数函数进行的绝对值变换,一般地,通过去绝对值转化为分段函数,每段用基本函数研究,对称区间上的图象,则由奇偶性或对称性研究.9.【考点】6D:利用导数研究函数的极值.【解答】解:函数f(x)=4x3﹣ax2﹣2bx﹣2的导数f′(x)=12x2﹣2ax﹣2b,由于函数f(x)=4x3﹣ax2﹣2bx﹣2在x=1处有极值,则有f′(1)=0,即有a+b=6,(a,b>0),由于a+b≥2,即有ab≤()2=9,当且仅当a=b=3取最大值9.故选:D.【点评】本题考查导数的运用:求极值,考查基本不等式的运用,考查运算能力,属于中档题.10.【考点】4V:幂函数的图象;4X:幂函数的性质.【解答】解:∵函数f(x)=x3m﹣7关于y轴对称且在(0,+∞)上单调递减,∴3m﹣7<0且为偶数,∴m<,又m∈N,∴m=0,1或2,又3m﹣7为偶数,∴m=1.故选:B.【点评】本题考查幂函数的性质,突出考查函数的奇偶性与单调性,属于中档题.11.【考点】53:函数的零点与方程根的关系.【解答】解:令f(x)=x3﹣6x2+9x﹣10,则f'(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),∵f(1)=﹣6,f(3)=﹣10,则f(x)=x3﹣6x2+9x﹣10的简图如下:故选:C.【点评】本题考查了方程的根与函数的零点之间的关系,属于基础题.12.【考点】6B:利用导数研究函数的单调性.【解答】解:,则,∴φ(x)在R上是减函数.,∴的解集为{x|x>1}.故选:D.【点评】此题考查了导数的运算,函数单调性的应用,以及利用导数研究函数的增减性.二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡的相应位置上. 13.【考点】4H:对数的运算性质.【解答】解:log29•log38=.故答案为6.【点评】本题考查了对数的换底公式,考查了对数的运算性质,是基础题.14.【考点】3T:函数的值.【解答】解:∵函数f(x)=,∴f()=ln=﹣1,∴f[f()]=f(﹣1)=e﹣1=.故答案为:.【点评】本题考查分段函数的函数值的求法,是基础题.解题时要认真审题,仔细解答.15.【考点】3P:抽象函数及其应用.【解答】解:根据题意,函数f(x)是周期为2的周期函数,则f(﹣)=f(﹣),又由函数f(x)为奇函数,则f(﹣)=﹣f(),又由当0<x<1时,f(x)=4x,则f()==2,则有f(﹣)=f(﹣)=﹣f()=﹣2,故答案为:﹣2.【点评】本题考查函数的奇偶性与周期性的综合应用,属于基础题.16.【考点】F4:进行简单的合情推理.【解答】解:在甲、乙、丙、丁四人的供词不达意中,可以看出乙、丁两人的观点是一致的,因此乙、丁两人的供词应该是同真或同假(即都是真话或者都是假话,不会出现一真一假的情况);假设乙、丁两人说的是真话,那么甲、丙两人说的是假话,由乙说真话推出丙是罪犯的结论;由甲说假话,推出乙、丙、丁三人不是罪犯的结论;显然这两个结论是相互矛盾的;所以乙、丁两人说的是假话,而甲、丙两人说的是真话;由甲、丙的供述内容可以断定乙是罪犯,乙、丙、丁中有一人是罪犯,由丁说假说,丙说真话,推出乙是罪犯.故答案为乙.【点评】此题解答时应结合题意,进行分析,进而找出解决本题的突破口,然后进行推理,得出结论.三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤17.【考点】1C:集合关系中的参数取值问题;1E:交集及其运算.【解答】(Ⅰ)M={x∈R|x≤1},N={x|﹣3≤x≤2},M∩N═{x|﹣3≤x≤1},(Ⅱ)M={x∈R|x≤a},N={x|﹣3≤x≤2},若N⊆M则a≥2【点评】此题考查了交集及其运算和子集的定义,熟练掌握交集子集的定义是解本题的关键.18.【考点】6H:利用导数研究曲线上某点切线方程.【解答】解:(Ⅰ)函数f(x)=x3+bx2的导数为f′(x)=3x2+2bx,可得切线的斜率为3+2b,且f(1)=1+b,由切线方程3x+y﹣1=0,可得1+b=﹣2,3+2b=﹣3,解得b=﹣3;(Ⅱ)函数f(x)=x3﹣3x2的导数为f′(x)=3x2﹣6x,由3x2﹣6x<0,解得0<x<2,可得f(x)的减区间为(0,2).【点评】本题考查导数的运用:求切线的斜率和单调区间,考查方程思想和运算能力,属于基础题.19.【考点】BK:线性回归方程.【解答】解:(Ⅰ)由题意知,=×(2+3+4+5)=3.5,=×(2.5+3+4+4.5)=3.5,===0.7,==3.5﹣0.7×3.5=1.05,∴线性回归方程是y=0.7x+1.05,(Ⅱ)根据线性回归方程,令y=5.95,得0.7x+1.05=5.95,解得x=7,即想设计出续航里程达到595公里的汽车,电池组重量最少会达到7千克.【点评】本题考查了线性回归方程的求法与应用问题,是基础题.20.【考点】B3:分层抽样方法;BL:独立性检验.【解答】解:(1)由题意知,样本中满意的女游客为×5=1(名),不满意的女游客为×5=4(名).(2)根据题目中列联表得:k2=≈11.978.由P(k2≥10.828)=0.001可知:有99.9%的把握认为:该景区游客性别与对景区的服务满意有关【点评】本题考查了分层抽样,及独立性检验,考查计算能力,属于中档题21.【考点】3R:函数恒成立问题;6E:利用导数研究函数的最值.【解答】解:(1)∵f(x)=xlnx,∴x>0,f′(x)=lnx+1,由f′(x)>0,得x>,∴f(x)在(,+∞)上单调递增,由f′(x)<0,得0<x<,∴f(x)在(0,)上单调递减,∴f(x)在x=处取最小值,∴f(x)min=f()=ln=﹣.(2)2xlnx≥﹣x2+ax﹣3恒成立,等价于a≤x+2lnx+恒成立,记h(x)=x+2lnx+,则h′(x)==,当x∈(0,1)时,h′(x)<0,当x∈(1,+∞)时,h′(x)>0,∴h(x)在(0,1)内单调递减,在(1,+∞)内单调递增,∴h(x)min=h(1)=4,∴实数a的取值范围是(﹣∞,4].【点评】本题考查函数值的最小值的求法,考查实数的取值范围的求法,考查导数的应用,考查推理论证能力、运算求解能力,考查转化化归思想、分类讨论思想,是中档题.[选修4-4:坐标系与参数方程选讲]22.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【解答】解:(1)曲线C的参数方程为(α为参数),利用平方关系可得曲线C的普通方程为.由直线l的极坐标方程为ρsin(θ﹣)=,展开化为:ρ(sinθ﹣cosθ)=,可得:直线l的普通方程为x﹣y+1=0,斜率k=1,∴直线l的倾斜角为.(2)显然点P(0,1)在直线l:x﹣y+1=0上.在平面直角坐标系xOy中,直线l的参数方程是(t为参数).将直线l的参数方程代入曲线C的普通方程,得.此方程的两根为直线l与曲线C的交点A,B对应的参数t A,t B,∴t A+t B=.∴|P A|+|PB|=|t A|+|t B|=|t A+t B|=.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、直线参数方程的应用、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]23.【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【解答】解:(Ⅰ)当x<﹣2时,f(x)=﹣(x﹣1)﹣(x+2)=﹣2x﹣1,由f(x)≥5解得x≤﹣3;当﹣2≤x<1时,f(x)=﹣(x﹣1)+(x+2)=3≥5不成立;当x≥1时,f(x)=(x﹣1)+x+2=2x+1≥5解得x≥2,综上有f(x)≥5的解集是(﹣∞,﹣3]∪[2,+∞);(2)因为|x﹣1|+|x+2|≥|(x﹣1)﹣(x+2)|=3,所以f(x)的最小值为3,要使得关于x的不等式f(x)>a2﹣2a对任意的x∈R恒成立,只需a2﹣2a<3解得﹣1<a<3,故a的取值范围是(﹣1,3).【点评】本题考查不等式的解法,考查恒成立问题,考查分类讨论的数学思想,属于中档题.。
2017-2018学年重庆八中高二(下)期中数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=(a﹣1)+i,若z是纯虚数,则实数a等于()A.2 B.﹣1 C.0 D.12.已知条件p:x2>4;条件q:x≤2,¬p是q的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.即不充分又不必要条件3.设f(x)=,则f()是()A.f(x)B.﹣f(x)C.D.4.已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)5.在极坐标系中,点(2,)到圆ρ=2cosθ的圆心的距离为()A.2 B.C.D.6.如图给出的是计算的值的一个程序框图,则图中执行框内①处和判断框中的②处应填的语句是()A.n=n+2,i=15 B.n=n+2,i>15 C.n=n+1,i=15 D.n=n+1,i>157.某几何体的三视图如图所示,其中俯视图是半圆,则该几何体的表面积为()A.B.C.D.8.圆内接三角形ABC角平分线CE延长后交外接圆于F,若FB=2,EF=1,则CE=()A.3 B.2 C.4 D.19.函数在区间(m,m+1)上单调递减,则实数m的取值范围是()A.[3,5]B.[2,4]C.[1,2]D.[1,4]10.设a,b,c∈R+,且a+b+c=1,若M=()()(),则必有()A.B.≤M<1 C.1≤M<8 D.M≥811.已知定义在R上的函数f(x)满足f(2)=1,且f(x)的导函数f′(x)>x﹣1,则不等式f(x)<x2﹣x+1的解集为()A.{x|﹣2<x<2} B.{x|x>2} C.{x|x<2} D.{x|x<﹣2或x>2}12.设函数f(x)=,则满足f(f(a))=2f(a)的a的取值范围是()A.[,1]B.[0,1]C.[,+∞)D.[1,+∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.函数f(x)=ln(x﹣x2)的定义域为.14.若抛物线y2=2px(p>0)的准线经过双曲线x2﹣y2=1的一个焦点,则p=.15.若函数f(x)=(a>0且a≠1)的值域是[4,+∞),则实数a的取值范围是.16.已知正数a,b,对任意a>b且a,b∈(0,1)不等式ax2﹣ax﹣a2>bx2﹣bx﹣b2恒成立,则实数x的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合A={x|x2﹣2x﹣3≥0},B={x|m﹣2≤x≤m+2,m∈R}.(1)求Z∩∁R A;(2)若B⊆A,求实数m的取值范围.18.某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a,b),(a,),(a,b),(,b),(,),(a,b),(a,b),(a,),(,b),(a,),(,),(a,b),(a,),(,b)(a,b)其中a,分别表示甲组研发成功和失败,b,分别表示乙组研发成功和失败.(Ⅰ)若某组成功研发一种新产品,则给该组记1分,否则记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(Ⅱ)若该企业安排甲、乙两组各自研发一样的产品,试估计恰有一组研发成功的概率.19.如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,A1B1⊥BC,BC=1,AA1=AC=2,E、F分别为A1C1、BC的中点.(Ⅰ)求证:C1F∥平面EAB;(Ⅱ)求三棱锥A﹣BCE的体积.20.如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.21.设函数f(x)=lnx+,m∈R(1)当m=e(e为自然对数的底数)时,求f(x)的最小值;(2)讨论函数g(x)=f′(x)﹣零点的个数;(3)(理科)若对任意b>a>0,<1恒成立,求m的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边的中点,连接OD交圆O于点M.(1)求证:O、B、D、E四点共圆;(2)求证:2DE2=DM•AC+DM•AB.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.已知圆C的极坐标方程为ρ2﹣4.(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点P(x,y)在圆C上,求x+y的最大值和最小值.[选修4-5:不等式选讲]24.已知函数f(x)=|2x+1|﹣|x|﹣2.(1)解不等式f(x)≥0;(2)若∃x∈R,使得f(x)≤|x|+a,求实数a的取值范围.2017-2018学年重庆八中高二(下)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=(a﹣1)+i,若z是纯虚数,则实数a等于()A.2 B.﹣1 C.0 D.1【考点】复数的基本概念.【分析】利用纯虚数的定义即可得出.【解答】解:∵复数z=(a﹣1)+i是纯虚数,∴a﹣1=0,解得a=1.故选:D.2.已知条件p:x2>4;条件q:x≤2,¬p是q的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.即不充分又不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】条件p:x2>4,解得x>2,或x<﹣2,可得¬p:﹣2≤x≤2,即可判断出结论.【解答】解:条件p:x2>4,解得x>2,或x<﹣2,∴¬p:﹣2≤x≤2;条件q:x≤2,¬p是q的充分不必要条件.故选:A.3.设f(x)=,则f()是()A.f(x)B.﹣f(x)C.D.【考点】函数的值.【分析】利用函数的性质求解.【解答】解:∵f(x)=,∴f()===f(x).故选:A.4.已知函数f(x)=,则下列结论正确的是()A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[﹣1,+∞) 【考点】函数单调性的判断与证明.【分析】由函数在y 轴左侧是余弦函数,右侧是二次函数的部分可知函数不具有周期性和单调性,函数不是偶函数,然后求解其值域得答案. 【解答】解:由解析式可知,当x ≤0时,f (x )=cosx ,为周期函数, 当x >0时,f (x )=x 2,是二次函数的一部分,∴函数不是偶函数,不具有周期性,不是单调函数, 对于D ,当x ≤0时,值域为[﹣1,1], 当x >0时,值域为(1,+∞), ∴函数的值域为[﹣1,+∞). 故选:D .5.在极坐标系中,点(2,)到圆ρ=2cos θ的圆心的距离为( )A .2B .C .D .【考点】圆的参数方程.【分析】在直角坐标系中,求出点 的坐标和圆的方程及圆心坐标,利用两点间的距离公式求出所求的距离.【解答】解:在直角坐标系中,点即(1,),圆即 x 2+y 2=2x ,即 (x ﹣1)2+y 2=1,故圆心为(1,0),故点(2,)到圆ρ=2cos θ的圆心的距离为=,故选 D .6.如图给出的是计算的值的一个程序框图,则图中执行框内①处和判断框中的②处应填的语句是( )A.n=n+2,i=15 B.n=n+2,i>15 C.n=n+1,i=15 D.n=n+1,i>15【考点】程序框图.【分析】首先分析,要计算需要用到直到型循环结构,按照程序执行运算.【解答】解:①的意图为表示各项的分母,而分母来看相差2∴n=n+2②的意图是为直到型循环结构构造满足跳出循环的条件而分母从1到29共15项∴i>15故选B.7.某几何体的三视图如图所示,其中俯视图是半圆,则该几何体的表面积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】三视图复原可知几何体是圆锥的一半,根据三视图数据,求出几何体的表面积.【解答】解:由题目所给三视图可得,该几何体为圆锥的一半,那么该几何体的表面积为该圆锥表面积的一半与轴截面面积的和.又该半圆锥的侧面展开图为扇形,所以侧面积为×π×1×2=π,底面积为π,观察三视图可知,轴截面为边长为2的正三角形,所以轴截面面积为×2×2×=,则该几何体的表面积为π+.故选:A8.圆内接三角形ABC角平分线CE延长后交外接圆于F,若FB=2,EF=1,则CE=()A.3 B.2 C.4 D.1【考点】与圆有关的比例线段.【分析】由已知中圆内接三角形ABC角平分线CE延长后交外接圆于F,则A、F、B、C四点共圆,由圆周角定理结合已知条件,易得△FCB∽△FBE,进而根据三角形相似的性质得到FE:FB=FB:FC,最后由FB=2,EF=1,求出FC的值,进而得到CE的长.【解答】解:由题意得:A、F、B、C四点共园,根据圆周定理可得∠ABF=∠ACF.又∵CE是角平分线,所以∠ACF=∠BCF.∴△FCB∽△FBE,∴FE:FB=FB:FC,∵FB=2,EF=1,∴FC=4,∴CE=CF﹣FE=3.故选A9.函数在区间(m,m+1)上单调递减,则实数m的取值范围是()A.[3,5]B.[2,4]C.[1,2]D.[1,4]【考点】复合函数的单调性.【分析】令t=﹣x2+6x﹣5>0,求得函数的定义域为(1,5),且y=log0.5t.利用二次函数的性质求得函数t=﹣(x﹣3)2+4 在定义域上的增区间为(1,3),可得函数y的减区间为(1,3).根据函数y在区间(m,m+1)上单调递减,故有,由此解得m的范围.【解答】解:令t=﹣x2+6x﹣5>0,求得1<x<5,故函数的定义域为(1,5),且y=log0.5t.利用二次函数的性质求得函数t=﹣x2+6x﹣5=﹣(x﹣3)2+4 在定义域(1,5)上的增区间为(1,3),故函数在区间(1,3)上单调递减.根据函数在区间(m,m+1)上单调递减,故有,解得1≤m≤2,故选:C.10.设a,b,c∈R+,且a+b+c=1,若M=()()(),则必有()A.B.≤M<1 C.1≤M<8 D.M≥8【考点】基本不等式在最值问题中的应用.【分析】将M中的分子用a+b+c表示;通分,利用基本不等式求出M的范围.【解答】解:M=()()()=≥.故选D11.已知定义在R上的函数f(x)满足f(2)=1,且f(x)的导函数f′(x)>x﹣1,则不等式f(x)<x2﹣x+1的解集为()A.{x|﹣2<x<2} B.{x|x>2} C.{x|x<2} D.{x|x<﹣2或x>2}【考点】利用导数研究函数的单调性.【分析】通过对题目的分析,可构造函数g(x)=f(x)﹣,利用函数g(x)的单调性即可解出.【解答】解:令g(x)=f(x)﹣,对g(x)求导,得g′(x)=f′(x)﹣x+1,∵f′(x)>x﹣1,∴g′(x)>0,即g(x)在R上为增函数.不等式可化为f(x)﹣<1,即g(x)<g(2),由g(x)单调递增得x<2,所以不等式的解集为{x|x<2}.故选C.12.设函数f(x)=,则满足f(f(a))=2f(a)的a的取值范围是()A.[,1]B.[0,1]C.[,+∞)D.[1,+∞)【考点】分段函数的应用.【分析】令f(a)=t,则f(t)=2t,讨论t<1,运用导数判断单调性,进而得到方程无解,讨论t≥1时,以及a<1,a≥1,由分段函数的解析式,解不等式即可得到所求范围.【解答】解:令f(a)=t,则f(t)=2t,当t<1时,3t﹣1=2t,由g(t)=3t﹣1﹣2t的导数为g′(t)=3﹣2t ln2,在t<1时,g′(t)>0,g(t)在(﹣∞,1)递增,即有g(t)<g(1)=0,则方程3t﹣1=2t无解;当t≥1时,2t=2t成立,由f(a)≥1,即3a﹣1≥1,解得a≥,且a<1;或a≥1,2a≥1解得a≥0,即为a≥1.综上可得a的范围是a≥.故选C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.函数f(x)=ln(x﹣x2)的定义域为(0,1).【考点】对数函数的定义域.【分析】直接由对数式的真数大于0求解一元二次不等式即可得到答案.【解答】解:由x﹣x2>0,得x(x﹣1)<0,即0<x<1.∴函数f(x)=ln(x﹣x2)的定义域为(0,1).故答案为(0,1).14.若抛物线y2=2px(p>0)的准线经过双曲线x2﹣y2=1的一个焦点,则p=2.【考点】抛物线的简单性质.【分析】先求出x2﹣y2=1的左焦点,得到抛物线y2=2px的准线,依据p的意义求出它的值.【解答】解:双曲线x2﹣y2=1的左焦点为(﹣,0),故抛物线y2=2px的准线为x=﹣,∴=,∴p=2,故答案为:2.15.若函数f(x)=(a>0且a≠1)的值域是[4,+∞),则实数a的取值范围是(1,2].【考点】对数函数的单调性与特殊点.【分析】当x≤2时,满足f(x)≥4.当x>2时,由f(x)=3+log a x≥4,即log a x≥1,故有log a2≥1,由此求得a的范围,综合可得结论.【解答】解:由于函数f(x)=(a>0且a≠1)的值域是[4,+∞),故当x≤2时,满足f(x)=6﹣x≥4.当x>2时,由f(x)=3+log a x≥4,∴log a x≥1,∴log a2≥1,∴1<a<2.综上可得,1<a<2,故答案为:(1,2].16.已知正数a,b,对任意a>b且a,b∈(0,1)不等式ax2﹣ax﹣a2>bx2﹣bx﹣b2恒成立,则实数x的取值范围是x≤﹣1或x≥2.【考点】函数恒成立问题.【分析】法一:通过因式分解,原不等式可化简为x2﹣x﹣(a+b)>0,问题可化为x2﹣x>(a+b)ma x;法二:构造函数h(t)=﹣t2+(x2﹣x)t,由题意可知h(t)=﹣t2+(x2﹣x)t在(0,1)单调递增,借助二次函数的性质可得关于x的不等式.【解答】解法一:化简ax2﹣ax﹣a2>bx2﹣bx﹣b2,得(a﹣b)x2﹣(a﹣b)x﹣(a2﹣b2)>0,∵a>b,∴x2﹣x﹣(a+b)>0,又a,b∈(0,1),∴x2﹣x≥2,解得x≤﹣1或x≥2.故答案为:x≤﹣1或x≥2.法二:ax2﹣ax﹣a2>bx2﹣bx﹣b2可化为a(x2﹣x)﹣a2>b(x2﹣x)﹣b2,令h(t)=﹣t2+(x2﹣x)t,∵对任意a>b且a,b∈(0,1)不等式ax2﹣ax﹣a2>bx2﹣bx﹣b2恒成立,∴h(t)=﹣t2+(x2﹣x)t在(0,1)单调递增,∴对称轴t=,解得x≤﹣1或x≥2,故答案为:x≤﹣1或x≥2.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合A={x|x2﹣2x﹣3≥0},B={x|m﹣2≤x≤m+2,m∈R}.(1)求Z∩∁R A;(2)若B⊆A,求实数m的取值范围.【考点】集合的包含关系判断及应用.【分析】(1)利用一元二次不等式的解法、集合的运算性质即可得出.(2)根据集合之间的关系即可得出.【解答】解:(1)由x2﹣2x﹣3≥0,解得x≥3或x≤﹣1.∴∁R A=(﹣1,3),∴Z∩∁R A={0,1,2}.(2)∵B⊆A,∴m+2≤﹣1或3≤m﹣2,解得m≤﹣3或m≥5.∴实数m的取值范围是(﹣∞,﹣3]∪[5,+∞).18.某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a,b),(a,),(a,b),(,b),(,),(a,b),(a,b),(a,),(,b),(a,),(,),(a,b),(a,),(,b)(a,b)其中a,分别表示甲组研发成功和失败,b,分别表示乙组研发成功和失败.(Ⅰ)若某组成功研发一种新产品,则给该组记1分,否则记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(Ⅱ)若该企业安排甲、乙两组各自研发一样的产品,试估计恰有一组研发成功的概率.【考点】模拟方法估计概率;极差、方差与标准差.【分析】(Ⅰ)分别求出甲乙的研发成绩,再根据平均数和方差公式计算平均数,方差,最后比较即可.(Ⅱ)找15个结果中,找到恰有一组研发成功的结果是7个,求出频率,将频率视为概率,问题得以解决.【解答】解:(Ⅰ)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,则=,==乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1则=,==.因为所以甲的研发水平高于乙的研发水平.(Ⅱ)记E={恰有一组研发成功},在所抽到的15个结果中,恰有一组研发成功的结果是(a,),(,b),(a,),(,b),(a,),(a,),(,b)共7个,故事件E发生的频率为,将频率视为概率,即恰有一组研发成功的概率为P(E)=.19.如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,A1B1⊥BC,BC=1,AA1=AC=2,E、F分别为A1C1、BC的中点.(Ⅰ)求证:C1F∥平面EAB;(Ⅱ)求三棱锥A﹣BCE的体积.【考点】直线与平面平行的判定;棱柱、棱锥、棱台的体积.【分析】(Ⅰ)法一:取AB的中点G,连接EG,证明C1F平行于平面ABE 内的直线EG即可;法二:取AC中点H,证明平面C1HF∥平面ABE,即可证明C1F∥平面ABE;(Ⅱ)利用等积法,三棱锥A﹣BCE的体积V A﹣B C E =V E﹣AB C,求出即可.【解答】解:(Ⅰ)法一:取AB中点G,连结EG,FG,…∵E,F分别是A1C1,BC的中点,∴FG∥AC,且FG=AC;又∵AC∥A1C1,且AC=A1C1,∴FG∥EC1,且FG=EC1,∴四边形FGEC1为平行四边形,…∴C1F∥EG;又∵EG⊂平面ABE,C1F⊄平面ABE,∴C1F∥平面ABE;…法二:取AC中点H,连结C1H,FH,…则C1E∥AH,且C1E=AH,∴四边形C1EAH为平行四边形,∴C1H∥EA;又∵EA⊂平面ABE,C1H⊄平面ABE,∴C1H∥平面ABE,…∵H、F分别为AC、BC的中点,∴HF∥AB;又∵AB⊂平面ABE,FH⊄平面ABE,∴FH∥平面ABE;…又∵C1H∩FH=H,C1H⊂平面C1HF,FH⊂平面C1HF,∴平面C1HF∥平面ABE;…又∵C1F⊂平面C1HF,∴C1F∥平面ABE;…(Ⅱ)∵AA1=AC=2,BC=1,AB⊥BC,∴AB==;…∴三棱锥A﹣BCE的体积为V A﹣B C E =V E﹣AB C…=S△AB C•AA1=×××1×2=.…20.如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.【考点】椭圆的简单性质;椭圆的标准方程.【分析】(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.【解答】解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,),且A,C关于x轴对称,∴C(,﹣),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.21.设函数f(x)=lnx+,m∈R(1)当m=e(e为自然对数的底数)时,求f(x)的最小值;(2)讨论函数g(x)=f′(x)﹣零点的个数;(3)(理科)若对任意b>a>0,<1恒成立,求m的取值范围.【考点】导数在最大值、最小值问题中的应用;根的存在性及根的个数判断;利用导数研究函数的极值.【分析】(1)当m=e时,,x>0,由此利用导数性质能求出f(x)的极小值.(2)由g(x)===0,得m=,令h(x)=x﹣,x>0,m∈R,则h(1)=,h′(x)=1﹣x2=(1+x)(1﹣x),由此利用导数性质能求出函数g(x)=f′(x)﹣零点的个数.(3)(理)当b>a>0时,f′(x)<1在(0,+∞)上恒成立,由此能求出m 的取值范围.【解答】解:(1)当m=e时,,x>0,解f′(x)>0,得x>e,∴f(x)单调递增;同理,当0<x<e时,f′(x)<0,f(x)单调递减,∴f(x)只有极小值f(e),且f(e)=lne+=2,∴f(x)的极小值为2.(2)∵g(x)===0,∴m=,令h(x)=x﹣,x>0,m∈R,则h(1)=,h′(x)=1﹣x2=(1+x)(1﹣x),令h′(x)>0,解得0<x<1,∴h(x)在区间(0,1)上单调递增,值域为(0,);同理,令h′(x)<0,解得x>1,∴g(x)要区是(1,+∞)上单调递减,值域为(﹣∞,).∴当m≤0,或m=时,g(x)只有一个零点;当0<m<时,g(x)有2个零点;当m>时,g(x)没有零点.(3)(理)对任意b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h(x)=f(x)﹣x=lnx+﹣x(x>0),则h(b)<h(a).∴h(x)在(0,+∞)上单调递减;∵h′(x)=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣x2+x=﹣+(x>0),∴m≥;对于m=,h′(x)=0仅在x=时成立;∴m的取值范围是[,+∞).请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的圆O交AC 于点E,点D是BC边的中点,连接OD交圆O于点M.(1)求证:O、B、D、E四点共圆;(2)求证:2DE2=DM•AC+DM•AB.【考点】与圆有关的比例线段.【分析】(1)连接BE、OE,由直径所对的圆周角为直角,得到BE⊥EC,从而得出DE=BD=,由此证出△ODE≌△ODB,得∠OED=∠OBD=90°,利用圆内接四边形形的判定定理得到O、B、D、E四点共圆;(2)延长DO交圆O于点H,由(1)的结论证出DE为圆O的切线,从而得出DE2=DM•DH,再将DH分解为DO+OH,并利用OH=和DO=,化简即可得到等式2DE2=DM•AC+DM•AB成立.【解答】解:(1)连接BE、OE,则∵AB为圆0的直径,∴∠AEB=90°,得BE⊥EC,又∵D是BC的中点,∴ED是Rt△BEC的中线,可得DE=BD.又∵OE=OB,OD=OD,∴△ODE≌△ODB.可得∠OED=∠OBD=90°,因此,O、B、D、E四点共圆;(2)延长DO交圆O于点H,∵DE⊥OE,OE是半径,∴DE为圆O的切线.可得DE2=DM•DH=DM•(DO+OH)=DM•DO+DM•OH.∵OH=,OD为△ABC的中位线,得DO=,∴,化简得2DE2=DM•AC+DM•AB.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.已知圆C的极坐标方程为ρ2﹣4.(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点P(x,y)在圆C上,求x+y的最大值和最小值.【考点】点的极坐标和直角坐标的互化;参数方程化成普通方程.【分析】(1)展开两角差的余弦,整理后代入ρcosθ=x,ρsinθ=y得圆的普通方程,化为标准方程后由三角函数的平方关系化参数方程;(2)把x,y分别代入参数式,利用三角函数化积后借助于三角函数的有界性求最值.【解答】解:(1)由,得,即,ρ2﹣4ρcosθ﹣4ρsinθ+6=0,即x2+y2﹣4x﹣4y+6=0为所求圆的普通方程,整理为圆的标准方程(x﹣2)2+(y﹣2)2=2,令x﹣2=,y﹣2=.得圆的参数方程为(α为参数);(2)由(1)得:x+y=4+=4+2sin(),∴当sin()=1时,x+y的最大值为6,当sin()=﹣1时,x+y的最小值为2.故x+y的最大值和最小值分别是6和2.[选修4-5:不等式选讲]24.已知函数f(x)=|2x+1|﹣|x|﹣2.(1)解不等式f(x)≥0;(2)若∃x∈R,使得f(x)≤|x|+a,求实数a的取值范围.【考点】绝对值不等式的解法.【分析】(1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)由题意可得|2x+1|﹣2|x|≤a+2有解,再利用绝对值三角不等式求得|2x+1|﹣2|x|的最小值,可得m的范围.【解答】解:(1)不等式f(x)≥0,即|2x+1|﹣|x|≥2,故有①,或②,或③.解①求得x≤﹣3,解②求得x∈∅,解③求得x≥1,综上可得,不等式的解集为{x|x≤﹣3或x≥1 }.(2)若∃x∈R,使得f(x)≤|x|+a,即|2x+1|﹣2|x|≤a+2有解.再根据|2x+1|﹣2|x|≥﹣(|2x+1﹣(2x)|=﹣1,∴a+2≥﹣1,∴a≥﹣3.2018年7月4日。
2017—2018学年第二学期八县(市)一中高二文科数学期末考试卷 第 1 页 共 3 页2017—2018学年度第二学期八县(市)一中期中联考 高中二年数学科(文科)试卷完卷时间:120分钟 满 分:150分第Ⅰ卷一、选择题(每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1、若212(1),1z i z i =+=-,则12z z 等于( ) A .1i + B .1i -+ C .1i - D .1i --2、在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有99%以上的把握认为这个结论是成立的,则下列说法中正确的是( ) A. 100个吸烟者中至少有99人患有肺癌 B. 1个人吸烟,那么这人有99%的概率患有肺癌 C. 在100个吸烟者中一定有患肺癌的人D. 在100个吸烟者中可能一个患肺癌的人也没有3、下图是解决数学问题的思维过程的流程图:在此流程图中,①、②两条流程线与“推理与证明” 中的思维方法匹配正确的是( ) A .①—综合法,②—反证法 B .①—分析法,②—反证法 C .①—综合法,②—分析法 D .①—分析法,②—综合法4、用三段论推理命题:“任何实数的平方大于0,因为a 是实数,所以20a >”,你认为这个推理( ) A .大前题错误 B .小前题错误 C .推理形式错误 D .是正确的5、已知变量x 与y 负相关,且由观测数据算得样本平均数2, 1.5x y ==,则由该观测数据算得的线性回归方程可能是( )A .y=3x ﹣4.5B .y=﹣0.4x+3.3C .y=0.6x+1.1D . y=﹣2x+5.5 6、极坐标方程2cos4sin ρθθ=所表示的曲线是( )A .一条直线B .一个圆C .一条抛物线D .一条双曲线7、甲、乙、丙三位同学中只有一人考了满分,当他们被问到谁考了满分,回答如下:甲说:是我考满分;乙说:丙不是满分;丙说:乙说的是真话.事实证明:在这三名同学中,只有一人说的是假话,那么满分的同学是( )A .甲B .乙C .丙D .不确定8、如右图所示,程序框图输出的所有实数对(x ,y )所对应的点都在函数( ) A .y =x +1的图象上 B .y =2x 的图象上 C .y =2x 的图象上 D .y =2x -1的图象上 9、定义运算a bad bc c d=-,若1201812z i i =(i 为虚数单位)且复数z满足方程14z z -=,那么复数z 在复平面内对应的点P 组成的图形为( )A. 以(-1,-2)为圆心,以4为半径的圆B. 以(-1,-2)为圆心,以2为半径的圆C. 以(1,2)为圆心,以4为半径的圆D. 以(1,2)为圆心,以2为半径的圆10、若下列关于x 的方程24430x ax a +-+=,2220x ax a +-=,22(1)0x a x a +-+= (a 为常数)中至少有一个方程有实根,则实数a 的取值范围是( ) A .3(,1)2-- B .3(,0)2- C .3(,][1,)2-∞-⋃-+∞ D .3(,][0,)2-∞-⋃+∞ 11、以下命题正确的个数是( )①在回归直线方程82^+=x y 中,当解释变量x 每增加1个单位时,预报变量^y 平均增加2个单位; ②已知复数21,z z 是复数,若221121z z z z z z ⋅=⋅=,则;③用反证法证明命题:“三角形三个内角至少有一个不大于060”时,应假设“三个内角都大于060”;④在平面直角坐标系中,直线x y l 6:=经过变换⎩⎨⎧==yy x x ''23:ϕ后得到的直线'l 的方程:x y =; A .1B .2C .3D .412、《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术。
重庆市南开2017-2018学年下学期期中考试高二数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 已知集合{}{}211,20A x x B x x x =-≤≤=-≤,则A B ⋂=( )A .[]1,0-B .[]1,2-C .[]0,1D . (][),12,-∞⋃+∞ 2. 若2ab i i=-,其中,a b 都是实数,i 是虚数单位,则a b +=( ) A .2 B .3 C .2 D .13. 命题“2000,(,x R x kx b k b ∃∈=+为常数)”的否定是( )A .2000,(,x R x kx b k b ∀∈≠+为常数)B .2000,(,x R x kx b k b ∃∈<+为常数) C .2000,(,x R x kx b k b ∀∈≥+为常数) D .2000,(,x R x kx b k b ∃∈>+为常数)4. 已知函数()f x x x =,若()09f x =,则0x =( )A .3-B .3C .3-或3D .9 5. 已知()1,23a a b a =+=,向量,a b 的夹角为3π,则b 的值为( ) A .1 B .2 C .3 D .2 6. 已知某几何体的正视图和侧视图如图所示,则该几何体的府视图不可能为( )A .B .C .D . 正(侧)视图 7. 已知11lnln 432x y x y <+++-,若x y λ-<恒成立,则λ的取值范围是( )A .(],10-∞B .(),10-∞C .[)10,+∞D .()10,+∞8. 若正整数N 除以正整数m 后的余数为n ,则记为()mod N n m =,例如()104mod6=,下面程序框图的算法源于我国古代闻名中外的《中国剩余定理》. 执行该程序框图,则输出的n 为( ) A .17 B .16 C .15 D .139. 在()0,π内任取一个α,使得1sin 232πα⎛⎫-> ⎪⎝⎭的概率为( ) A .12 B .33 C .13D .3210. 设曲线C 的参数方程为23cos (13sin x y θθθ=+⎧⎨=-+⎩为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l 为距离为71010的点的个数为( ) A .1 B .2 C .3 D .411. 在直角坐标系xOy 中,抛物线24y x =的焦点为F ,准线为l ,点P 是准线l 上任一点,直线PF 交抛物线于,A B 两点,若4FP FA =,则AOB ∆的面积S =( )A .92B .322C .263D .7312. 已知()f x 是定义在R 上的减函数,而满足()()1'f x x f x +<,其中()'f x 为()f x 的导数,则( ) A .对任意的(),0x R f x ∈< B .对任意的(),0x R f x ∈> C .当且仅当()(),1,0x f x ∈-∞< D .当且仅当()()1,0x f x ∈+∞>第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 如图所示,过O 外一点P 作一条直线与O 交于,A B 两点,已知2PA =,点P 到O 的切线长4PT =,则弦AB 的长为 .14. ABC ∆的内角A ,B ,C 所对的边分别为,,a b c ,已知3,,36a B A ππ=∠=∠=,则b = .15. 已知函数()(2ln 1f x x x =+,若正实数,a b 满足()()210f a f b +-=,则11a b+的最小值是 .16. 棱长为2的正方体1111ABCD A B C D -的所有顶点均在球O 的球面上,,,E F G 分别为1,,AB AD AA 的中点,则平面EFG 截球O 所得圆的半径为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分12分) 若n A 和n B 分别表示数列{}n a 和{}n b 的前n 项和 ,对任意正整数n ,()221,5n n a n B n n =+=+(1)求数列{}n b 的通项公式; (2)记22n n c A n=-,求{}n c 的前n 项和n S .18. (本小题满分12分)2016年春节期间全国流行在微信群发红包,抢红包,现假设某人将688元发成 手气红包50个,产生的手气红包频数分布表如下: 金额分组 [)1,5[)5,9[)9,13[)13,17 [)17,21 []21,25频数39171182(1)求产生的手气红包的金额不小于9元的频率;(2)估计手气红包的金额平均数(同一组的数据用该组区间的中值点做代表);(3)在这50个红包组成的样本中,随机抽取两名手气红包金额在[)[]1,521,25⋃内的幸运者,设其红包金额分别为,m n ,求16m n ->的频率.19. (本小题满分12分)如图,在直三棱柱111ABC A B C -中,AD ⊥平面1A BC ,其垂足D 落在直线1A B 上.(1)求证:1BC A B ⊥;(2)若P 是线段AC 上一点,3,2AD AB BC ===,三棱锥1A PBC -的体积为33,求AP PC的值.20. (本小题满分12分)已知圆2219:24E x y ⎛⎫+-= ⎪⎝⎭经过椭圆()2222:10x y C a b a b +=>>的左,右焦点为12,F F ,若圆与椭圆在第一象限的交点为A ,且1AF 恰好过圆心E ,直线l 交圆E 于,M N 两点,且()0MN OA λλ=≠.(1)求椭圆C 的方程;(2)当MEN ∆面积最大时,求,直线l 的方程.21. (本小题满分12分)已知函数()ln xf x xe a x =-,曲线()y f x =在点()()1,1f 处的切线平行于x 轴.(1)求()f x 的单调区间;(2)证明:当b e ≤时,()()222f x b x x ≥-+恒成立.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分. 22. (本小题满分10分)选修4-4:坐标系与参数方程在坐标系中,曲线C 的极坐标方程为22312sin ρθ=+,点4R π⎛⎫ ⎪⎝⎭.(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求距形PQRS 周长的最小值,及此时P 点的直角坐标.23. (本小题满分10分)选修4-5:不等式选讲 已知函数()1f x x =-.(1)解不等式()()248f x f x ++≥; (2)若1,1,0a b a <<≠,求证:()f ab b f a a ⎛⎫> ⎪⎝⎭.重庆市南开2017-2018学年高二下学期期中考试数学(文)试题参考答案一、选择题(每小题5分,共60分)1-5.CAABD 6-10.DCACB 11-12.BB 二、填空题(每小题5分,共20分)13.6 14.6 15.322+ 16.153三、解答题17.解:(1)当1n =时,16,2b n =≥ 时,()()()22515124n b n n n n n =+--+-=+,由于1n =也符合,所以24n b n =+;(2)因为23n A n n =+,则()211211n c n n n n ⎛⎫==- ⎪++⎝⎭,所以11111221 (22311)n n S n n n ⎛⎫=-+-++-= ⎪++⎝⎭ 18. 解:(1)由题得,391915025P +=-=,故产生的金额不小于9元的频率为1925. (2)手气红包的平均数估计值30.0670.18110.34150.22190.16230.0412.44x =⨯+⨯+⨯+⨯+⨯+⨯=.19. 解:(1)证明:AD ⊥平面1,A BC BC ⊂平面1,A BC AD BC ∴⊥,在直三棱柱111ABC A B C -中易知1AA ⊥平面1,ABC AA BC ∴⊥1,AA AB A BC =∴⊥平面11AA B B ,1A B ⊂平面11AA B B ,1BC A B ∴⊥.(2)设PC x =,过点B 作BE AC ⊥于点E . 由(1)知BC ⊥平面11AA B B ,BC AB ∴⊥122,22,2,22PBC AB BC AC BE S BE CP x ∆==∴==∴==. AD ⊥平面1A BC ,其垂足D 落在直线1A B 上,1AD A B ∴⊥,111116,3,2,2333A PBC PBC AA BC AD AB AA V S AA x -∆⊥==∴=∴==.又三棱锥1A PBC -的体积为33,6333x ∴=,解得232,.322AP x AP PC =∴=∴=. 20. 解:(1)如图,圆E 经过椭圆C 的左、右焦点121,,,,F F F E A 三点共线,1F A ∴为圆E 的直径,22212190,2,224AF F F x x c ⎛⎫∴⊥+-=∴=±∴= ⎪⎝⎭22221121981,24AF AF F F a AF =-=-===.222a b c =+,解得2,2a b ==,∴椭圆C 的方程22142x y +=.(2)点A 的坐标)()2,10MN OA λλ=≠,∴2. 故设直线的方程为2x m =+,圆心E 到直线的距离为223m d +=.22229194228MEN d d S d MN d r d ∆+-==-≤=,当且仅当22322m d +==, 此时2624m =-±. 21. 解:(1)由()()'1xa f x x e x =+-,依题意,()'10f =,有2a e =,所以()()2'1x e f x x e x=+-,显然()'f x 在()0,+∞上单调递增,且()'10f =,故当()()0,1,'0x f x ∈<,当()()1,,'0x f x ∈+∞>,所以函数()f x 的递减区间为()0,1,递增区间为()1,+∞.(2)设()()22ln 22x g x xe e x b x x =---+.①当b e =时,()()()2'122xe g x x e e x x =+---,设()()'g x h x =则()()22'22x eh x x e e x=++-. 当(]0,1x ∈时,()2220,20x e e x e x -≥+>,当()1,x ∈+∞时,()22232,0xe x e e e x+>>>,则()()0,,0x h x ∈+∞>,所以()'g x 单增且()'10g =故当()()0,1,'0x g x ∈<,当 ()()1,,'0x g x ∈+∞>,所以()()10g x g ≥=.②b e <时,因为()2222110x x x -+=-+>所以()()222222e x x b x x -+>-+有①知()()()222222f x e x x b x x ≥-+>-+综上所述,当b e ≤时,()()222f x b x x ≥-+恒成立.22. 解:(1)曲线22:13x C y +=,点R 的直角坐标()2,2. (2)设点),sin Pθθ,由题意可得2,2sin PQ RQ θθ==-周长()2282sin 84sin 60PQ RQ θθθ=+=--=-+︒, 当30θ=︒时,周长最小为4,此时点P 的直角坐标为31,22⎛⎫⎪⎝⎭. 23. 解:(1)()()32,31242134,32132,2x x f x f x x x x x x x ⎧⎪--<-⎪⎪++=-++=-+-≤<⎨⎪⎪+≥⎪⎩所以解得()()248f x f x ++≥的解集为1023x x x ⎧⎫≤-≥⎨⎬⎩⎭或.(2)()f ab b f a a ⎛⎫> ⎪⎝⎭等价于()1b f ab a f ab a b a ⎛⎫>⇔->- ⎪⎝⎭,因为1,1a b <<,所以 ()()()()222222221212110ab a b a b ab a ab b a b ---=-+--+=-->,所以1ab a b ->-,故所证不等式成立.。
2017-2018学年重庆市高二下学期期中数学试卷(文科)一、选择题.(本大题共12小题,每小题5分,共60分)A为()1.已知全集U={1,2,3,4,5},集合A={1,2,3},则∁UA.{1,3,4} B.{4,5} C.{0,2,4} D.{0,2,3,4}2.整数是自然数,由于﹣3是整数,所以﹣3是自然数,则有()A.大前提错误B.小前提错误C.推理正确 D.推理形式错误3.“x>3”是“不等式x2﹣2x>0”的()A.充分不必要条件B.充分必要条件C.必要不充分条件D.非充分必要条件4.命题“存在x∈Z使x2+2x+m≤0”的否定是()A.存在x∈Z使x2+2x+m>0 B.不存在x∈Z使x2+2x+m>0C.对任意x∈Z使x2+2x+m≤0 D.对任意x∈Z使x2+2x+m>05.函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极值点()A.1个B.2个C.3个D.4个6.在区间[0,1]上随机取一个数x,使y=3x﹣1的值介于1与2之间的概率为()A.B.C.D.7.执行如图所示的程序框图,如果输入a=2,b=2,那么输出的a值为()16 B.256 C.16 D.4A.log38.函数y=lgx﹣的零点所在的大致区间是()A.(6,7)B.(7,8)C.(8,9)D.(9,10)9.某空间几何体的三视图如图所示,则此几何体的体积为()A .10B .15C .20D .3010.过点P (0,1)与圆(x ﹣1)2+y 2=4相交的所有直线中,被圆截得的弦最长的直线方程是( )A .x+y ﹣1=0B .x ﹣y+1=0C .x=0D .y=111.已知对k ∈R ,直线y ﹣kx ﹣1=0与椭圆+=1恒有公共点,则实数m 的取值范围是( )A .(0,1)B .(0,5)C .[1,5)∪(5,+∞)D .[1,5)12.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=x 2,若对任意的x ∈[t ,t+2],不等式f (x+t )≥2f (x )恒成立,则实数t 的取值范围是( )A .B .[2,+∞)C .(0,2]D .二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题卡相应位置上.)13.小明每天起床后要做如下事情:洗漱5分钟,收拾床褥4分钟,听广播15分钟,吃早饭8分钟.要完成这些事情,小明要花费的最少时间为 .14.复数z=的共轭复数是 .15.已知映射f 1:A→B,其中A=B=R ,对应法则f 1:x→y=x 2﹣2x+2;若对实数k ∈B ,在集合A 中不存在原象,则k的取值范围是 .16.设a >0,f (x )=ax 2+bx+c ,若曲线y=f (x )在点P (x 0,f (x 0))处切线的倾斜角的取值范围为,则P 到曲线y=f (x )的对称轴的距离的取值范围为 .三.解答题:(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数y=ax 3+bx 2,当x=1时,有极大值3.(1)求a ,b 的值;(2)求函数y 的极小值.18.二手车经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万(Ⅰ)试求y关于x的回归直线方程;(参考公式: =, =﹣)(Ⅱ)已知每辆该型号汽车的收购价格为w=0.05x2﹣1.75x+17.2万元,根据(Ⅰ)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润z最大?19.如图,在矩形ABCD中,AB=4,BC=8,E为边AD的中点,分别沿BE,CE将△ABE,△DCE折叠,使平面ABE和平面DCE均与平面BCE垂直.(Ⅰ)证明:AD∥平面BEC;(Ⅱ)求点E到平面ABCD的距离.20.已知函数f(x)=+lnx﹣1(a>0).(1)当a=1时,求函数f(x)的单调区间;(2)求f(x)在x∈[,e]上的最小值.21.椭圆C : +=1(a >b >0)的离心率为,两个焦点分别为F 1(﹣1,0),F 2(1,0).(1)求椭圆C 的方程;(2)过点F 2(1,0)的直线l 交椭圆C 于M ,N 两点,设点N 关于x 轴的对称点为Q (M 、Q 不重合),求证:直线MQ 过x 轴上一个定点.请考生在第(22),(23)题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程选讲]22.已知曲线C 的参数方程为:(θ为参数),直线l 的参数方程为:(t 为参数),点P (2,1),直线l 与曲线C 交于A ,B 两点.(1)写出曲线C 和直线l 在直角坐标系下的标准方程;(2)求|PA|•|PB|的值.[选修4-5:不等式选讲]23.已知函数f (x )=|x+1|+|x ﹣3|.(1)请写出函数f (x )在每段区间上的解析式,并在图上的直角坐标系中作出函数f (x )的图象;(2)若不等式|x+1|+|x ﹣3|≥a+对任意的实数x 恒成立,求实数a 的取值范围.2017-2018学年重庆市高二下学期期中数学试卷(文科)参考答案与试题解析一、选择题.(本大题共12小题,每小题5分,共60分)A为()1.已知全集U={1,2,3,4,5},集合A={1,2,3},则∁UA.{1,3,4} B.{4,5} C.{0,2,4} D.{0,2,3,4}【考点】并集及其运算.【分析】由已知中全集和集合A,结合补集运算的定义,可直接得到答案.【解答】解:∵全集U={1,2,3,4,5},集合A={1,2,3},∴∁A={4,5}U故选:B2.整数是自然数,由于﹣3是整数,所以﹣3是自然数,则有()A.大前提错误B.小前提错误C.推理正确 D.推理形式错误【考点】演绎推理的意义.【分析】本题考查的知识点是演绎推理的基本方法及整数的分类,在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提”错误,也可能是推理形式错误,我们分析的其大前提的形式:“整数是自然数”,不难得到结论.【解答】解:∵大前提的形式:“整数是自然数”错误;故此推理错误原因为:大前提错误,故选:A3.“x>3”是“不等式x2﹣2x>0”的()A.充分不必要条件B.充分必要条件C.必要不充分条件D.非充分必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】结合不等式的解法,利用充分条件和必要条件的定义进行判断.【解答】解:解不等式x2﹣2x>0得x>2或x<0,则x>3⇒x2﹣2x>0,而x2﹣2x>0时,x>3不成立0.故“x>3”是“不等式x2﹣2x>0”的充分不必要条件.故选A.4.命题“存在x∈Z使x2+2x+m≤0”的否定是()A.存在x∈Z使x2+2x+m>0 B.不存在x∈Z使x2+2x+m>0C.对任意x∈Z使x2+2x+m≤0 D.对任意x∈Z使x2+2x+m>0【考点】命题的否定.【分析】根据命题“存在x∈Z使x2+2x+m≤0”是特称命题,其否定命题是全称命题,将“存在”改为“任意的”,“≤“改为“>”可得答案.【解答】解:∵命题“存在x∈Z使x2+2x+m≤0”是特称命题∴否定命题为:对任意x∈Z使x2+2x+m>0故选D.5.函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极值点()A.1个B.2个C.3个D.4个【考点】函数在某点取得极值的条件.【分析】根据当f'(x)>0时函数f(x)单调递增,f'(x)<0时f(x)单调递减,可从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,然后得到答案.【解答】解:从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,根据极值点的定义可知,导函数在某点处值为0,左右两侧异号的点为极值点,由图可知,在(a,b)内只有3个极值点.故答案为 C.6.在区间[0,1]上随机取一个数x,使y=3x﹣1的值介于1与2之间的概率为()A.B.C.D.【考点】几何概型.【分析】本题考查的知识点是几何概型的意义,关键是要找出y=3x﹣1的值介于1与2之间的值对应线段的长度,再将其代入几何概型计算公式进行求解.【解答】解:y=3x﹣1的值介于1与2之间,即1<3x﹣1<2,解得:,y=3x﹣1的值介于1与2之间的对应的x的长度为1﹣.,故y=3x﹣1的值介于1与2之间的概率是.故选C.7.执行如图所示的程序框图,如果输入a=2,b=2,那么输出的a值为()A.log16 B.256 C.16 D.43【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当a=2时,不满足退出循环的条件,执行循环体后,a=4,当a=4时,不满足退出循环的条件,执行循环体后,a=16,当a=16时,不满足退出循环的条件,执行循环体后,a=256,当a=256时,满足退出循环的条件,故输出的a值为256,故选:B8.函数y=lgx﹣的零点所在的大致区间是()A.(6,7)B.(7,8)C.(8,9)D.(9,10)【考点】函数零点的判定定理.【分析】由于函数y=f(x)=lgx﹣在(0,+∞)上是增函数,f(9)<0,f(10)>0,由此得出结论.【解答】解:由于函数y=f(x)=lgx﹣在(0,+∞)上是增函数,f(9)=lg9﹣1<0,f(10)=1﹣=>0,f(9)•f(10)<0,故函数y=lgx﹣的零点所在的大致区间是(9,10),故选D.9.某空间几何体的三视图如图所示,则此几何体的体积为()A.10 B.15 C.20 D.30【考点】由三视图求面积、体积.【分析】由已知中的三视图可得该几何体是一个以俯视图为底面的三棱柱,切去一个同底等高的三棱锥所得的几何体,分别求出棱柱和棱锥的体积,相减可得答案.【解答】解:由已知中的三视图可得该几何体是一个以俯视图为底面的三棱柱,切去一个同底等高的三棱锥所得的几何体,∵底面面积S=×4×3=6,高h=5,故组合体的体积V=Sh﹣Sh=Sh=20,故选:C10.过点P(0,1)与圆(x﹣1)2+y2=4相交的所有直线中,被圆截得的弦最长的直线方程是()A.x+y﹣1=0 B.x﹣y+1=0 C.x=0 D.y=1【考点】直线与圆相交的性质.【分析】最长的弦是直径,根据圆的方程可得圆心坐标,再根据直线过点P(0,1),由截距式求得最长弦所在的直线方程.【解答】解:最长的弦是直径,根据圆的方程(x﹣1)2+y2=4可得圆心坐标为(1,0),再根据直线过点P(0,1),由截距式求得最长弦所在的直线方程为+=1,x+y﹣1=0,故选:A.11.已知对k∈R,直线y﹣kx﹣1=0与椭圆+=1恒有公共点,则实数m的取值范围是()A.(0,1)B.(0,5)C.[1,5)∪(5,+∞)D.[1,5)【考点】椭圆的简单性质;恒过定点的直线.【分析】要使直线y﹣kx﹣1=0恒过点(0,1),需点(0,1)在椭圆上或椭圆内,进而求得m的范围.【解答】解:直线y﹣kx﹣1=0恒过点(0,1),仅当点(0,1)在椭圆上或椭圆内时,此直线才恒与椭圆有公共点,而点(0,1)在y轴上,所以,≤1且m>0,得m≥1,而根据椭圆的方程中有m≠5,故m的范围是[1,5)∪(5,+∞),故本题应选C.12.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是()A.B.[2,+∞)C.(0,2] D.【考点】函数单调性的性质.【分析】2f(x)=f(x),由题意可知f(x)为R上的增函数,故对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立可转化为对任意的x∈[t,t+2]恒成立,此为一次不等式恒成立,解决即可.也可取那个特值排除法.【解答】解:(排除法)当则得,即在时恒成立,而最大值,是当时出现,故的最大值为0,则f(x+t)≥2f(x)恒成立,排除B项,同理再验证t=3时,f(x+t)≥2f(x)恒成立,排除C项,t=﹣1时,f(x+t)≥2f(x)不成立,故排除D项故选A二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题卡相应位置上.)13.小明每天起床后要做如下事情:洗漱5分钟,收拾床褥4分钟,听广播15分钟,吃早饭8分钟.要完成这些事情,小明要花费的最少时间为 .【考点】进行简单的合情推理.【分析】根据统筹安排可得小明在完成洗漱、收拾床褥、吃饭的同时听广播最节省时间,进而得到答案.【解答】解:由题意可知在完成洗漱、收拾床褥、吃饭的同时听广播,故小明花费最少时间为4+5+8=17分钟.故答案为:17分钟.14.复数z=的共轭复数是 .【考点】复数代数形式的乘除运算.【分析】根据复数除法法则,分子分母同乘分母的共轭复数化简成基本形式,再根据共轭复数的定义求出所求即可.【解答】解:z====﹣1+i∴复数z=的共轭复数是﹣1﹣i 故答案为:﹣1﹣i15.已知映射f 1:A→B,其中A=B=R ,对应法则f 1:x→y=x 2﹣2x+2;若对实数k ∈B ,在集合A 中不存在原象,则k的取值范围是 .【考点】映射.【分析】由题意可知,函数y=x 2﹣2x+2(x ∈R )的值域是集合B 的子集,因而所求的范围是该函数的值域在R 中的补集.【解答】解:y=x 2﹣2x+2=(x ﹣1)2≥1,∴该函数的值域C=[1,+∞),又∵对于映射f 1:A→B,其中A=B=R ,对应法则f 1:x→y=x 2﹣2x+2而言,C ⊆R ,∴若对实数k ∈B ,在集合A 中不存在原象,∴k ∈∁R C=(﹣∞,1).故答案为:(﹣∞,1)16.设a >0,f (x )=ax 2+bx+c ,若曲线y=f (x )在点P (x 0,f (x 0))处切线的倾斜角的取值范围为,则P 到曲线y=f (x )的对称轴的距离的取值范围为 .【考点】二次函数的性质;利用导数研究曲线上某点切线方程;直线的倾斜角.【分析】由已知得f (x )开口向上,对称轴x=,再由点P (x 0,f (x 0))处切线的倾斜角的取值范围为[0,],到得切线的斜率的取值范围,所以x 0一定在x=的右侧,得到0≤2ax 0+b ≤1,最后建P 到对称轴距离模型求解.【解答】解:∵a >0,则f (x )开口向上,对称轴x=∵点P (x 0,f (x 0))处切线的倾斜角的取值范围为[0,] ∴切线的斜率的取值范围为[0,1]x 0一定在x=的右侧切线的斜率=f'(x 0)=2ax 0+b∴0≤2ax 0+b ≤1∴P 到对称轴距离=x 0﹣()=∴P 到对称轴距离的取值范围为:[0,]故答案为:[0,]三.解答题:(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数y=ax 3+bx 2,当x=1时,有极大值3.(1)求a ,b 的值;(2)求函数y 的极小值.【考点】利用导数研究函数的极值.【分析】(1)求出y′,由x=1时,函数有极大值3,所以代入y 和y′=0中得到两个关于a 、b 的方程,求出a 、b 即可;(2)令y′=0得到x 的取值利用x 的取值范围讨论导函数的正负决定函数的单调区间,得到函数的极小值即可.【解答】解:(1)y′=3ax 2+2bx ,当x=1时,y′|x=1=3a+2b=0,y|x=1=a+b=3,即(2)y=﹣6x 3+9x 2,y′=﹣18x 2+18x ,令y′=0,得x=0,或x=1当x >1或x <0时,y′<0函数为单调递减;当0<x <1时,y′>0,函数单调递增.∴y 极小值=y|x=0=0.18.二手车经销商小王对其所经营的某一型号二手汽车的使用年数x (0<x ≤10)与销售价格y (单位:万(Ⅰ)试求y 关于x 的回归直线方程;(参考公式: =, =﹣)(Ⅱ)已知每辆该型号汽车的收购价格为w=0.05x 2﹣1.75x+17.2万元,根据(Ⅰ)中所求的回归方程,预测x 为何值时,小王销售一辆该型号汽车所获得的利润z 最大?【考点】线性回归方程.【分析】(Ⅰ)由表中数据计算、,求出、,即可写出回归直线方程;(Ⅱ)写出利润函数z=y﹣w,利用二次函数的图象与性质求出x=3时z取得最大值.【解答】解:(Ⅰ)由表中数据得, =×(2+4+6+8+10)=6,=×(16+13+9.5+7+4.5)=10,由最小二乘法求得==﹣1.45,=10﹣(﹣1.45)×6=18.7,所以y关于x的回归直线方程为y=﹣1.45x+18.7;(Ⅱ)根据题意,利润函数为z=y﹣w=(﹣1.45x+18.7)﹣(0.05x2﹣1.75x+17.2)=﹣0.05x2+0.3x+1.5,所以,当x=﹣=3时,二次函数z取得最大值;即预测x=3时,小王销售一辆该型号汽车所获得的利润z最大.19.如图,在矩形ABCD中,AB=4,BC=8,E为边AD的中点,分别沿BE,CE将△ABE,△DCE折叠,使平面ABE和平面DCE均与平面BCE垂直.(Ⅰ)证明:AD∥平面BEC;(Ⅱ)求点E到平面ABCD的距离.【考点】点、线、面间的距离计算;直线与平面平行的判定.【分析】(Ⅰ)证明四边形AMND为平行四边形,可得AD∥MN,利用线面平行的判定定理证明:AD∥平面BEC;(Ⅱ)利用VE﹣ABC =VA﹣BEC,求点E到平面ABCD的距离.【解答】(Ⅰ)证明:分别取BE,CE中点M,N,连接AM,MN,DN,由已知可得△ABE,△DCE均为腰长为4的等腰直角三角形,所以AM⊥BE,且AM=2.又∵平面ABE⊥平面BCE,且交线为BE,∴AM⊥平面BEC,同理可得:DN⊥平面BEC,且DN=2.∴AM∥DN,且AM=DN,∴四边形AMND为平行四边形.∴AD∥MN,又∵MN⊂平面BEC,AD⊄平面BEC,∴AD∥平面BEC.…(Ⅱ)解:点E到平面ABC的距离,也就是三棱锥E﹣ABC的高h.连接AC ,MC ,在Rt △EMC 中有MC==2,在Rt △AMC 中有AC==4.可得AC 2+AB 2=BC 2,所以△ABC 是直角三角形.由V E ﹣ABC =V A ﹣BEC 得•AB•AC•h=•BE•EC•AM,可知h=.∴点E 到平面ABC 的距离为.…20.已知函数f (x )=+lnx ﹣1(a >0).(1)当a=1时,求函数f (x )的单调区间;(2)求f (x )在x ∈[,e]上的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)通过a=1,求出函数的导数,令导数大于0,小于0,即可求函数f (x )的单调区间;(2)通过,,e ≤a 判断导函数的单调性,然后求f (x )在x ∈[,e]上的最小值.【解答】(本题满分,第(1)问,第(2)问7分)解:(1)…x ∈(0,1)时,f′(x )<0,则f (x )在 (0,1)上单调递减,x ∈[1,+∞)时,f′(x )≥0,则f (x )在[1,+∞)上单调递增;…(2)…①当时,f'(x )≥0,f (x )在单调递增,,…②当时,f (x )在上递减,(a ,e]上单调递增,f (x )min =f (a )=lna ,…③当e ≤a 时,f'(x )≤0,f (x )在单调递减,.…21.椭圆C : +=1(a >b >0)的离心率为,两个焦点分别为F 1(﹣1,0),F 2(1,0).(1)求椭圆C 的方程;(2)过点F 2(1,0)的直线l 交椭圆C 于M ,N 两点,设点N 关于x 轴的对称点为Q (M 、Q 不重合),求证:直线MQ 过x 轴上一个定点.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(1)通过椭圆的离心率与焦距,求出a ,c ,得到b ,即可求出椭圆C 的方程;(2)设M (x 1,y 1),N (x 2,y 2),Q (x 2,﹣y 2),l :y=k (x ﹣1),代入椭圆方程,利用韦达定理,结合MQ的方程为,令y=0,化简求解可得x=2,说明直线MQ 过x 轴上一个定点.【解答】(本题满分,第(1)问,第(2)问9分)解:(1),所以椭圆的方程为;…(2)设M (x 1,y 1),N (x 2,y 2),Q (x 2,﹣y 2),l :y=k (x ﹣1),代入整理得(1+2k 2)x 2﹣4k 2x+2k 2﹣2=0,由韦达定理可得:,,…MQ 的方程为令y=0,得代入,,x===2.得x=2,所以直线过定点(2,0)…请考生在第(22),(23)题中任选一题作答,如果多做,则按所做的第一题记分.[选[选修4-4:坐标系与参数方程选讲]22.已知曲线C 的参数方程为:(θ为参数),直线l 的参数方程为:(t 为参数),点P (2,1),直线l 与曲线C 交于A ,B 两点.(1)写出曲线C 和直线l 在直角坐标系下的标准方程;(2)求|PA|•|PB|的值.【考点】参数方程化成普通方程.【分析】(1)由曲线C 的参数方程为:(θ为参数),利用cos 2θ+sin 2θ=1可得:曲线C 的标准方程.直线l 的参数方程为:(t 为参数),消去参数t 可得:直线l 的标准方程.(2)将直线l 的参数方程化为标准方程:(t 为参数),代入椭圆方程,利用|PA||PB|=|t 1t 2|即可得出.【解答】解:(1)由曲线C 的参数方程为:(θ为参数),利用cos 2θ+sin 2θ=1可得:曲线C 的标准方程为: +y 2=1,直线l 的参数方程为:(t 为参数),消去参数t 可得:直线l 的标准方程为: y ﹣2+=0.(2)将直线l 的参数方程化为标准方程:(t 为参数),代入椭圆方程得:5t 2+8t+16=0,∴|PA||PB|=|t 1t 2|=.[选修4-5:不等式选讲]23.已知函数f (x )=|x+1|+|x ﹣3|.(1)请写出函数f (x )在每段区间上的解析式,并在图上的直角坐标系中作出函数f (x )的图象;(2)若不等式|x+1|+|x ﹣3|≥a+对任意的实数x 恒成立,求实数a 的取值范围.【考点】分段函数的应用.【分析】(1)根据绝对值的应用进行表示即可.(2)根据绝对值的应用求出|x+1|+|x﹣3|的最小值,将不等式进行转化求解即可.【解答】解:(1)f(x)=…函数f(x)的图象如图所示.(2)由(1)知f(x)的最小值是4,所以要使不等式|x+1|+|x﹣3|≥a+恒成立,有4≥a+,…若a<0,则不等式恒成立,若a>0,则不等式等价为a2﹣4a+1≤0,得2﹣≤a≤2+,综上实数a的取值范围是a<0或2﹣≤a≤2+…。
2017-2018学年度第二学期中考试高二数学(文科)试题(答案)一、选择题:(每小题5分,共60分.12、解答:A3、解析:由ρ=2cos ⎝⎛⎭⎪⎫θ+π4得ρ2=2ρcos θ-2ρsin θ,所以x 2+y 2=2x -2y ,所以⎝ ⎛⎭⎪⎫x -222+⎝ ⎛⎭⎪⎫y +222=1,圆心的直角坐标为⎝ ⎛⎭⎪⎫22,-22,极坐标为⎝ ⎛⎭⎪⎫1,7π4.答案:D4、解析:直线l 的普通方程为x +y -1=0,因此点(-3,2)的坐标不适合方程x +y -1=0. 答案:C5、解答:C6、解析:B “至少有一个”的否定为“一个也没有”,故应假设“a ,b 都不能被5整除”7、解答:A 8、【解析】 四面体中以内切球的球心为顶点,四面体的各个面为底面,可把四面体分割成四个高均为R 的三棱锥,从而有13S 1R +13S 2R +13S 3R +13S 4R =V .即(S 1+S 2+S 3+S 4)R =3V .∴R =3VS 1+S 2+S 3+S 4. 【答案】 D9、解析:选C 根据回归方程知y 是关于x 的单调增函数,并且由系数知x 每增加一个单位,y 平均增加8个单位10、解析:易知圆的圆心在原点,半径是r ,则圆心(0,0)到直线的距离为d =|0+0-r |cos 2θ+sin 2θ=r ,恰好等于圆的半径,所以直线和圆相切.答案:B 11、【解析】 由题可知染色规律是:每次染完色后得到的最后一个数恰好是染色个数的平方.故第10次染完后的最后一个数为偶数100,接下来应该染101,103,105,107,109,此时共60个数. 【答案】 D12、解析:因椭圆x 22+y 23=1的参数方程为⎩⎨⎧x =2cos φ,y =3sin φ(φ为参数),故可设动点P 的坐标为(2cos φ,3sin φ),因此S =x +y =2cos φ+3sin φ=5(25cos φ+35sinφ)=5sin(φ+γ),其中tan γ=63,所以S 的取值范围是[-5, 5 ],故选A. 答案:A二、填空题:(本题共4小题,每小题5分,共20分)13 , 14、11.8 15、 3 16、3n 2-3n +113、解答:由()z 1i i +=-得(1)11z 1(1)(1)22i i i i i i i ---===--++-,所以||z =14、解析:由题意知,x =8.2+8.6+10.0+11.3+11.95=10, y =6.2+7.5+8.0+8.5+9.85=8, ∴a ^=8-0.76×10=0.4, ∴当x =15时,y ^=0.76×15+0.4=11.8 (万元).15、解析:因为C 1:(x -3)2+(y -4)2=1,C 2:x 2+y 2=1,所以两圆圆心之间的距离为d =32+42=5.因为A 在曲线C 1上,B 在曲线C 2上,所以|AB |min =5-2=3. 答案:3 16、解析:由于f (2)-f (1)=7-1=6,f (3)-f (2)=19-7=2×6,推测当n ≥2时,有f (n )-f (n -1)=6(n -1),所以f (n )=[f (n )-f (n -1)]+[f (n -1)-f (n -2)]+…+[f (2)-f (1)]+f (1)=6[(n -1)+(n -2)+…+2+1]+1=3n 2-3n +1.又f (1)=1=3×12-3×1+1, 所以f (n )=3n 2-3n +1.答案:3n 2-3n +1三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17、解:解:复数221(2)z m m m i =-+--……2分(I)221020m m m ⎧-=⎨--≠⎩即1m =时,复数z 是纯虚数;……6分(II) 2211101220m m m m m -<<⎧-<⎧⇒⎨⎨-<<--<⎩⎩ 即-1<m<1时,复数z 表示的点位于第三象限。
重庆市2017-2018学年高二下学期期中考试数学试卷(文科)一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出四个选项中,只有一项符合题目要求.1.设i 为虚数单位,则复数的虚部是( )A .1B .iC .﹣1D .﹣i2.若向量=(1,2),=(3,4),则||=( )A .2B .4C .2D .23.设全集U=R ,集合A={x|x ﹣1>0},B={x|﹣x 2+2x≤0},则A∩(C U B}=( )A .{x|0<x≤1}B .{x|1≤x<1}C .{x|1<x <2}D .{x|1<x≤1}4.若0<x <y <1,则( )A .3y <3xB .x 3>y 3C .log 4x <log 4yD .()x <()y5.为了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下则y 对x 的线性回归方程为( )A .y=x ﹣1B .y=x+1C .D .y=1766.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由算得,附表:参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”7.设p、q是简单命题,则“p或q是假命题”是“非p为真命题”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.非充分非必要条件8.执行如图所示的程序框图,若输入n的值为6,则输出s的值为()A.105 B.16 C.15 D.19.如图,在边长为1的正方形中,随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积()A .0.18B .0.16C .0.15D .110.设f (x )=,则f[f ()]=( )A .B .C .﹣D .二.填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡相应横线上.11.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为 .12.函数f (x )=lg (2﹣x )+的定义域是 .13.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:则以上两组数据的方差中较小的一个为s 2= .14.已知=2,=3,=4,…=7…(m ,n 都是正整数,且m ,n 互质),通过推理可推测m 、n 的值,则m ﹣n= .15.若a 是复数z 1=的实部,b 是复数z 2=(1﹣i )3的虚部,则ab 等于 .三、解答题:本大题共6小题,满分75分.解答需写出文字说明、证明过程和演算步骤.16.已知,,其中=(1,0),=(0,1),计算,|+|的值.17.已知复数,试求实数a分别为什么值时,z分别为(Ⅰ)实数;(Ⅱ)虚数;(Ⅲ)纯虚数.18.已知△ABC的三个顶点A(m,n),B(2,1),C(﹣2,3).(Ⅰ)求BC边所在直线方程;=7,求m,n的值.(Ⅱ)BC边上中线AD的方程为2x﹣3y+6=0,且S△ABC19.已知f(x)=log(a>0,a≠1),a(1)求f(x)的定义域;(2)判断f(x)的奇偶性;(3)判断f(x)单调性并用定义证明.20.我区高三期末统一测试中某校的数学成绩分组统计如表:(Ⅰ)求出表中m、n、M、N的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;(Ⅱ)若我区参加本次考试的学生有600人,试估计这次测试中我区成绩在90分以上的人数;(Ⅲ)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分的概率.21.某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第x天(1≤x≤20,x∈N)的销售价格(单位:元)为,第x天的销售量为,已知该商品成本为每件25元.(Ⅰ)写出销售额t关于第x天的函数关系式;(Ⅱ)求该商品第7天的利润;重庆市2017-2018学年高二下学期期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出四个选项中,只有一项符合题目要求.1.设i 为虚数单位,则复数的虚部是( )A .1B .iC .﹣1D .﹣i 【考点】复数代数形式的乘除运算. 【专题】数系的扩充和复数.【分析】直接利用复数代数形式的除法运算化简,则答案可求.【解答】解: =,则复数的虚部为﹣1.故选:C .【点评】本题考查了复数代数形式的除法运算,考查了复数的基本概念,是基础题.2.若向量=(1,2),=(3,4),则||=( )A .2B .4C .2D .2 【考点】向量的模;平面向量的坐标运算. 【专题】平面向量及应用.【分析】利用向量的坐标运算和模的计算公式即可得出.【解答】解:∵ ==(3,4)﹣(﹣1,﹣2)=(4,6),∴||==.故选:A .【点评】本题考查了向量的坐标运算和模的计算公式,属于基础题.3.设全集U=R ,集合A={x|x ﹣1>0},B={x|﹣x 2+2x≤0},则A∩(C U B}=( )A .{x|0<x≤1}B .{x|1≤x<1}C .{x|1<x <2}D .{x|1<x≤1} 【考点】交、并、补集的混合运算.【专题】集合.【分析】求出集合A ,B 的等价条件,利用集合的基本运算进行求解.【解答】解:A={x|x ﹣1>0|}={x|x >1},B={x|﹣x 2+2x≤0}={x|x≥2或x≤0},则C U B={x|0<x <2}, 则A∩(C U B}={x|1<x <2},故选:C【点评】本题主要考查集合的基本运算,比较基础.4.若0<x <y <1,则( )A .3y <3xB .x 3>y 3C .log 4x <log 4yD .()x <()y 【考点】不等关系与不等式. 【专题】不等式的解法及应用.【分析】利用指数函数、对数函数、幂函数的单调性即可判断出.【解答】解:∵0<x <y <1,∴3y >3x ,x 3<y 3,log 4x <log 4y ,.故选:C .【点评】本题考查了指数函数、对数函数、幂函数的单调性、不等式的性质,属于基础题.5.为了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下则y 对x 的线性回归方程为( )A .y=x ﹣1B .y=x+1C .D .y=176 【考点】线性回归方程.【专题】计算题.【分析】求出这组数据的样本中心点,根据样本中心点一定在线性回归直线上,把样本中心点代入四个选项中对应的方程,只有y=88+x 适合,得到结果.【解答】解:∵=176,=176,∴本组数据的样本中心点是(176,176),根据样本中心点一定在线性回归直线上,把样本中心点代入四个选项中对应的方程,只有y=88+x适合,故选C.【点评】本题考查线性回归方程的写法,一般情况下要利用最小二乘法求出线性回归方程,本题是一个选择题目,有它特殊的解法,即把样本中心点代入检验,也不是所有的选择题都能这样做.6.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由算得,附表:参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”【考点】独立性检验的应用.【专题】计算题.【分析】根据条件中所给的观测值,同题目中节选的观测值表进行检验,得到观测值对应的结果,得到结论有99%以上的把握认为“爱好该项运动与性别有关”.【解答】解:由题意知本题所给的观测值,∵7.8>6.635,∴这个结论有0.01=1%的机会说错,即有99%以上的把握认为“爱好该项运动与性别有关”故选A.【点评】本题考查独立性检验的应用,考查对于观测值表的认识,这种题目一般运算量比较大,主要要考查运算能力,本题有所创新,只要我们看出观测值对应的意义就可以,是一个基础题.7.设p、q是简单命题,则“p或q是假命题”是“非p为真命题”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.非充分非必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】规律型.【分析】根据复合命题与简单命题之间真假之间的关系,结合充分条件和必要条件的定义进行判断.【解答】解:根据复合命题真值表,知:pq或为假命题,知命题p和命题q同时都是假命题,非p是真命题.故满足充分性;若非p是真命题.命题p为假命题,若命题q为真命题,则命题p或q是真命题,故不满足必要性.故选:A.【点评】本题考查复合命题的真假判断,解题时要认真审题,仔细求解.8.执行如图所示的程序框图,若输入n的值为6,则输出s的值为()A.105 B.16 C.15 D.1【考点】循环结构.【专题】算法和程序框图.【分析】本循环结构是当型循环结构,它所表示的算式为s=1×3×5×…×(2i﹣1),由此能够求出结果.【解答】解:如图所示的循环结构是当型循环结构,它所表示的算式为s=1×3×5×…×(2i﹣1)∴输入n的值为6时,输出s的值s=1×3×5=15.故选C.【点评】本题考查当型循环结构的性质和应用,是基础题.解题时要认真审题,仔细解答.9.如图,在边长为1的正方形中,随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积()A.0.18 B.0.16 C.0.15 D.1【考点】几何概型.【专题】概率与统计.【分析】根据几何概型的意义,豆子落在阴影部分的概率阴影部分的面积与正方形的面积比等于落在阴影部分的豆子数与所有豆子数的比,由此求出阴影部分的面积.【解答】解:解:正方形的面积S=1,设阴影部分的面积为S,∵随机撒1000粒豆子,有180粒落到阴影部分,∴几何槪型的概率公式进行估计,解得S=0.18;故选A.【点评】本题主要考查几何槪型的概率的计算,利用豆子之间的关系建立比例关系是解决本题的关键,比较基.10.设f(x)=,则f[f()]=()A.B.C.﹣D.【考点】分段函数的解析式求法及其图象的作法;函数的值.【分析】判断自变量的绝对值与1的大小,确定应代入的解析式.先求f(),再求f[f()],由内而外.【解答】解:f()=,,即f[f()]=故选B【点评】本题考查分段函数的求值问题,属基本题.二.填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡相应横线上.11.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为12 .【考点】分层抽样方法.【专题】概率与统计.【分析】根据田径队的男女运动员数目和用分层抽样要抽取的数目,得到每个个体被抽到的概率,利用每个个体被抽到的概率乘以男运动员的数目,得到结果.【解答】解:∵田径队有男运动员48人,女运动员36人,∴这支田径队共有48+36=84人,用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,∴每个个体被抽到的概率是, ∵田径队有男运动员48人,∴男运动员要抽取48×=12人,故答案为:12.【点评】本题考查分层抽样,在抽样过程中每个个体被抽到的概率相等,这是解决这种问题的依据,本题是一个基础题.12.函数f (x )=lg (2﹣x )+的定义域是 [1,2) .【考点】函数的定义域及其求法. 【专题】函数的性质及应用.【分析】根据函数成立的条件,即可求出函数的定义域.【解答】解:函数定义域要满足,即,解得1≤x<2,即函数的定义域为[1,2),故答案为:[1,2)【点评】本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.13.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:则以上两组数据的方差中较小的一个为s 2=.【考点】众数、中位数、平均数;极差、方差与标准差.【专题】图表型.【分析】先读出表格中投中的次数,再根据平均数与方差的计算公式S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n﹣)2]计算即可.【解答】解析:甲班的方差较小,数据的平均值为7,故方差.故填:.【点评】本题考查平均数与方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.已知=2,=3,=4,…=7…(m ,n 都是正整数,且m ,n 互质),通过推理可推测m 、n 的值,则m ﹣n= 41 .【考点】进行简单的合情推理.【专题】推理和证明.【分析】由已知中的式子=2,=3,=4,…分析等式两边式子和数的变化规律,求出m ,n 的值,进而可得答案. 【解答】解:由已知中:=2,=3,=4,…,等式左右两边均为二次根式,左边的被开方数是两项的和,一项为n+1,另一项是分式,分子为n+1,分母为(n+1)2﹣1, 左边的被开方数是分式,分子为n+1,分母为(n+1)2﹣1,故=7中,m=48,n=7,故m ﹣n=41, 故答案为:41【点评】此题重点考查了准确由图抽取信息考查了学生的观察能力,根据已知分析式子两边数的变化规律是解答的关键.15.若a 是复数z 1=的实部,b 是复数z 2=(1﹣i )3的虚部,则ab 等于.【考点】复数代数形式的混合运算. 【专题】数系的扩充和复数.【分析】根据复数代数形式的加减乘除运算法则分别化简z 1、z 2,整理出实部和虚部求出a 、b 的值,即可求出ab .【解答】解:由题意知,z 1====,∴a=,∵z 2=(1﹣i )3=﹣2i (1﹣i )=﹣2﹣2i ,∴b=﹣2,∴ab=,故答案为:.【点评】本题考查复数代数形式的混合运算,掌握运算法则是解题的关键,属于基础题.三、解答题:本大题共6小题,满分75分.解答需写出文字说明、证明过程和演算步骤.16.已知,,其中=(1,0),=(0,1),计算,|+|的值.【考点】平面向量数量积的运算. 【专题】平面向量及应用.【分析】首先将,用坐标表示,然后进行数量积和模的坐标运算.【解答】解:由已知,,其中=(1,0),=(0,1),所以=(1,﹣1),=(4,3),所以=1×4﹣1×3=1;=(5,2),|+|=.【点评】本题考查了平面向量的加减法、数量积的坐标运算;属于基础题.17.已知复数,试求实数a分别为什么值时,z分别为:(Ⅰ)实数;(Ⅱ)虚数;(Ⅲ)纯虚数.【考点】复数的基本概念.【专题】计算题.【分析】(Ⅰ)复数的虚部为0,复数是实数,求出a的值即可;(Ⅱ)复数的虚部不为0,复数是虚数,求出a的值即可;(Ⅲ)复数的实部为0,虚部不为0,复数是纯虚数求解即可.【解答】解:(Ⅰ)当z为实数时,则∴a=﹣1或a=6,且a≠﹣1,∴当a=6时,z为实数.(5分)(Ⅱ)当z为虚数时,则∴a≠﹣1且a≠6,z为虚数.(10分)(Ⅲ)当z为纯虚数时,则∴a=1,z为纯虚数.(14分)【点评】本题考查复数的基本概念,注意复数实部的分母不为0是解题的易错点.18.已知△ABC的三个顶点A(m,n),B(2,1),C(﹣2,3).(Ⅰ)求BC边所在直线方程;=7,求m,n的值.(Ⅱ)BC边上中线AD的方程为2x﹣3y+6=0,且S△ABC【考点】直线的一般式方程;三角形的面积公式.【专题】计算题;直线与圆.【分析】(I)由两点的斜率公式,算出BC的斜率k=﹣,再由直线方程的点斜式列式,化简即得BC边所在直线方程;(II )由两点的距离公式,算出,结合S △ABC =7得到点A 到BC 的距离等于,由此建立关于m 、n 的方程组,解之即可得到m ,n 的值.【解答】解:(Ⅰ)∵B (2,1),C (﹣2,3).∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)可得直线BC 方程为化简,得BC 边所在直线方程为x+2y ﹣4=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)由题意,得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)∴,解之得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)由点到直线的距离公式,得,化简得m+2n=11或m+2n=﹣3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)∴或﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)解得m=3,n=4或m=﹣3,n=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题给出三角形ABC 的顶点BC 的坐标,求直线BC 的方程并在已知面积的情况下求点A 的坐标.着重考查了直线的基本量与基本形式、点到直线的距离公式等知识,属于基础题.19.已知f (x )=log a(a >0,a≠1),(1)求f (x )的定义域; (2)判断f (x )的奇偶性;(3)判断f (x )单调性并用定义证明.【考点】对数函数图象与性质的综合应用. 【专题】函数的性质及应用.【分析】(1)由>0,求得﹣1<x <1,由此求得函数的定义域.(2)由于f (﹣x )=log a =﹣log a=﹣f (x ),可得f (x )为奇函数.(3)设g (x )=,则f (x )=log a f (x ),先由函数的单调性的定义证明g (x )在x ∈(﹣1,1)为递增函数,再根据复合函数的单调性规律求得f (x )的单调性.【解答】解:(1)∵>0,∴﹣1<x <1,故定义域为(﹣1,1).…(3分)(2)∵f (﹣x )=log a=log a ()﹣1=﹣log a=﹣f (x ),∴f (x )为奇函数.…(6分)(3)设g (x )=,则f (x )=log a f (x ),取﹣1<x 1<x 2<1,则g (x 1)﹣g (x 2)=﹣=<0 ∴g (x )在x ∈(﹣1,1)为递增函数,…(8分)∴a >1时,f (x )为递增函数,0<a <1时,f (x )为递减函数…(10分)【点评】本题主要考查对数函数的图象、性质的应用,函数的奇偶性、单调性的判断和证明,属于中档题.20.我区高三期末统一测试中某校的数学成绩分组统计如表:分组 频数 频率 (0,30]30.03 (30,60] 3 0.03 (60,90] 37 0.37 (90,120] m n (120,150] 15 0.15 合计MN(Ⅰ)求出表中m 、n 、M 、N 的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;(Ⅱ)若我区参加本次考试的学生有600人,试估计这次测试中我区成绩在90分以上的人数;(Ⅲ)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分的概率.【考点】频率分布直方图;频率分布表.【专题】计算题;概率与统计.【分析】(I)根据频率公式,结合表中第一组数据的频率算出总数M.再用减法可得第五组的频数m,由此可算出第五组的频率n的值,而N是各组的频率之和,显然为1.(II)90分以上的人有两组,分别是第五、六两组,算出它们的频率之和为0.57,由此不难估算出这次测试中我区成绩在90分以上的人数.(III)根据题意,列出从不超过60分的6人中,任意抽取2人的结果有15种,而分数不超过30分的结果有3种,再结合等可能事件的概率公式,可得要求的概率.【解答】解:(I)由频率分布表,得总数,…(1分)所以m=100﹣(3+3+37+15)=42,…(2分)得第四组的频率,N=0.03+0.03+0.37+0.42+0.15=1.…(3分)所求的频率分布直方图如右图所示…(5分)(Ⅱ)由题意,90分以上的人分别在第五组和第六组,它们的频率之和为0.42+0.15=0.57,∴全区90分以上学生估计为0.57×600=342人.…(7分)(III)设考试成绩在(0,30]内的3人分别为A、B、C;考试成绩在(30,60]内的3人分别为a、b、c,从不超过60分的6人中,任意抽取2人的结果有:(A,B),(A,C),(A,a),(A,b),(A,c),(B,C),(B,a),(B,b),(B,c),(C,a),(C,b),(C,c),(a,b),(a,c),(b,c)共有15个.…(10分)设抽取的2人的分数均不大于30分的事件为事件D.则事件D含有3个结果:(A,B),(A,C),(B,C)…(11分)∴被选中2人分数不超过30分的概率为.…(13分)【点评】本题给出频率分布表,要我们计算其中的频率和频数,并算出被选中2人分数不超过30分的概率.着重考查了频率分布直方图的认识和等可能性事件的概率等知识,属于基础题.21.某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第x天(1≤x≤20,x∈N)的销售价格(单位:元)为,第x天的销售量为,已知该商品成本为每件25元.(Ⅰ)写出销售额t关于第x天的函数关系式;(Ⅱ)求该商品第7天的利润;(Ⅲ)该商品第几天的利润最大?并求出最大利润.【考点】分段函数的解析式求法及其图象的作法;函数最值的应用.【专题】函数的性质及应用.【分析】(Ⅰ)根据题意写出销售额t关于第x天的函数关系式;(Ⅱ)根据分段函数,求该商品第7天的利润;(Ⅲ)利用函数的性质,求出函数的最大值.【解答】解:(Ⅰ)由题意知﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)当x=7时,t=(56﹣7)×(48﹣7)﹣25×(48﹣7)=984元﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ)设该商品的利润为H(x),则﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)(x)=H(6)=1050当1≤x≤6时,Hmax(x)=H(7)=984当6<x≤8时,Hmax当8<x≤20时,H(x)=H(9)=902max∴第6天利润最大,最大利润为1050元.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)【点评】本题主要考查函数的应用,根据题意列出分段函数,然后利用分段函数研究函数的性质.。