回归线性的分析
- 格式:doc
- 大小:380.50 KB
- 文档页数:11
线性回归分析线性回归是一种用来建立和预测变量间线性关系的统计分析方法。
它可以帮助我们了解变量之间的相互影响和趋势,并将这些关系用一条直线来表示。
线性回归分析常被应用于经济学、社会科学、自然科学和工程等领域。
一、概述线性回归分析是一个广泛使用的统计工具,用于建立变量间的线性关系模型。
该模型假设自变量(独立变量)与因变量(依赖变量)之间存在线性关系,并通过最小化观测值与模型预测值之间的误差来确定模型的参数。
二、基本原理线性回归分析基于最小二乘法,通过最小化观测值与模型预测值之间的残差平方和来确定模型的参数。
具体来说,线性回归模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε,其中Y是因变量,X1到Xn是自变量,β0到βn是回归系数,ε是误差项。
回归系数表示自变量对因变量的影响程度。
三、应用步骤进行线性回归分析时,通常需要以下几个步骤:1. 收集数据:获取自变量和因变量的样本数据。
2. 建立模型:根据数据建立线性回归模型。
3. 评估模型的准确性:通过计算残差、决定系数等指标来评估模型的准确性。
4. 进行预测和推断:利用模型对未知数据进行预测和推断。
四、模型评价指标在线性回归分析中,有几个常用的指标用于评价模型的准确性:1. R平方值:R平方值表示因变量的变异性能够被模型解释的比例,数值范围为0到1。
R平方值越接近1,表示模型对数据的拟合程度越好。
2. 残差分析:进行残差分析可以帮助我们判断模型是否符合线性回归的基本假设。
一般来说,残差应该满足正态分布、独立性和等方差性的假设。
五、优缺点线性回归分析有以下几个优点:1. 简单易懂:线性回归模型的建立和解释相对较为简单,无需复杂的数学知识。
2. 实用性强:线性回归模型适用于很多实际问题,可以解决很多预测和推断的需求。
然而,线性回归分析也存在以下几个缺点:1. 假设限制:线性回归模型对于变量间关系的假设比较严格,不适用于非线性关系的建模。
线性回归分析线性回归分析是一种常见的统计分析方法,主要用于探索两个或多个变量之间的线性关系,并预测因变量的值。
在现代运营和管理中,线性回归分析被广泛应用于市场营销、财务分析、生产预测、风险评估等领域。
本文将介绍线性回归分析的基本原理、应用场景、建模流程及常见误区。
一、基本原理线性回归分析基于自变量和因变量之间存在一定的线性关系,即当自变量发生变化时,因变量也会随之发生变化。
例如,销售额与广告投入之间存在一定的线性关系,当广告投入增加时,销售额也会随之增加。
线性回归分析的目标是找到这种线性关系的最佳拟合线,并利用该线性方程来预测因变量的值。
二、应用场景线性回归分析可以应用于许多不同的领域,例如:1.市场营销。
通过分析销售额和广告投入之间的关系,企业可以确定最佳的广告投入量,从而提高销售额。
2.财务分析。
线性回归分析可以用于预测公司的收入、费用和利润等财务指标,并帮助企业制定有效的财务战略。
3.生产预测。
通过分析生产量和生产成本之间的关系,企业可以确定最佳的生产计划,从而提高生产效率。
4.风险评估。
通过分析不同变量之间的关系,企业可以评估各种风险并采取相应的措施,从而减少损失。
三、建模流程线性回归分析的建模流程包括以下步骤:1.确定自变量和因变量。
自变量是用来预测因变量的变量,而因变量是需要预测的变量。
2.收集数据。
收集与自变量和因变量相关的数据,并进行初步的数据处理和清理工作。
3.拟合最佳拟合线。
利用最小二乘法拟合最佳拟合线,并计算相关的统计指标(如拟合优度、标准误等)。
4.判断线性关系的签ificance。
利用t检验或F检验来判断线性关系的签ificance,并进行推断分析。
5.进行预测。
利用已知的自变量的值,通过线性方程来预测因变量的值。
四、常见误区在进行线性回归分析时,有一些常见的误区需要注意:1.线性假设误区。
线性回归分析建立在自变量和因变量之间存在线性关系的基础之上,如果这种关系不是线性的,则建立的回归模型将失效。
一元线性回归分析1.理论回归分析是通过试验和观测来寻找变量之间关系的一种统计分析方法。
主要目的在于了解自变量与因变量之间的数量关系。
采用普通最小二乘法进行回归系数的探索,对于一元线性回归模型,设(X1,Y1),(X2,Y2),…,(X n,Y n)是取至总体(X,Y)的一组样本。
对于平面中的这n个点,可以使用无数条曲线来拟合。
要求样本回归函数尽可能好地拟合这组值。
综合起来看,这条直线处于样本数据的中心位置最合理。
由此得回归方程:y=β0+β1x+ε其中Y为因变量,X为解释变量(即自变量),ε为随机扰动项,β0,β1为标准化的偏斜率系数,也叫做回归系数。
ε需要满足以下4个条件:1.数据满足近似正态性:服从正态分布的随机变量。
2.无偏态性:∑(εi)=03.同方差齐性:所有的εi 的方差相同,同时也说明εi与自变量、因变量之间都是相互独立的。
4.独立性:εi 之间相互独立,且满足COV(εi,εj)=0(i≠j)。
最小二乘法的原则是以“残差平方和最小”确定直线位置。
用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。
最常用的是普通最小二乘法(OLS):所选择的回归模型应该使所有观察值的残差平方和达到最小。
线性回归分析根据已有样本的观测值,寻求β0,β1的合理估计值^β0,^β1,对样本中的每个x i,由一元线性回归方程可以确定一个关于y i的估计值^y i=^β0+^β1x i,称为Y关于x的线性回归方程或者经验回归公式。
^β0=y-x^β1,^β1=L xy/L xx,其中L xx=J12−x2,L xy=J1−xy,x=1J1 ,y=1J1 。
再通过回归方程的检验:首先计算SST=SSR+SSE=J1^y−y 2+J1−^y2。
其中SST为总体平方和,代表原始数据所反映的总偏差大小;SSR为回归平方和(可解释误差),由自变量引起的偏差,放映X的重要程度;SSE为剩余平方和(不可解释误差),由试验误差以及其他未加控制因子引起的偏差,放映了试验误差及其他随机因素对试验结果的影响。
线性回归分析的原理与实现线性回归分析是一种常见的统计分析方法,用于研究变量之间的关系。
它通过建立一个线性模型,来预测一个或多个自变量对因变量的影响程度。
本文将介绍线性回归分析的原理和实现方法。
一、线性回归分析的原理线性回归分析的核心思想是建立一个线性模型,用于描述因变量和自变量之间的关系。
假设我们有一个因变量Y和一组自变量X1,X2,...,Xn,我们的目标是找到一组系数β0,β1,β2,...,βn,使得线性模型Y = β0 + β1X1 + β2X2 + ... +βnXn能够最好地拟合数据。
为了找到最佳的系数估计值,我们需要最小化观测值与模型预测值之间的差距。
这个差距可以用残差来表示,即观测值与模型预测值之间的误差。
我们的目标是使残差的平方和最小化,即最小二乘法。
最小二乘法的数学表达式为:min Σ(Yi - (β0 + β1X1i + β2X2i + ... + βnXni))^2通过求解最小化残差平方和的问题,我们可以得到最佳的系数估计值,从而建立起线性模型。
二、线性回归分析的实现线性回归分析可以通过多种方法来实现。
下面我们将介绍两种常用的实现方法:普通最小二乘法和梯度下降法。
1. 普通最小二乘法普通最小二乘法是一种解析解的方法,通过求解线性方程组来得到系数的估计值。
假设我们的数据集有m个样本,n个自变量。
我们可以将线性模型表示为矩阵形式:Y = Xβ + ε其中,Y是一个m行1列的向量,表示因变量;X是一个m行n+1列的矩阵,表示自变量和常数项;β是一个n+1行1列的向量,表示系数估计值;ε是一个m行1列的向量,表示误差项。
我们的目标是最小化误差项的平方和,即最小化:min ε^Tε通过求解线性方程组X^TXβ = X^TY,可以得到系数的估计值。
2. 梯度下降法梯度下降法是一种迭代解的方法,通过不断调整系数的估计值来逼近最优解。
梯度下降法的核心思想是通过计算损失函数对系数的偏导数,来确定下降的方向。
线性回归分析线性回归分析是一种统计学方法,用于建立一个自变量和一个或多个因变量之间的线性关系模型。
它是一种常用的预测和解释性方法,在实际问题的应用广泛。
首先,线性回归分析的基本原理是通过找到最佳拟合直线来描述自变量和因变量之间的关系。
这条直线可以用一元线性回归方程 y =β0 + β1*x 表示,其中y是因变量,x是自变量,β0和β1是回归系数。
通过确定最佳拟合直线,我们可以预测因变量的值,并了解自变量对因变量的影响程度。
其次,线性回归分析需要满足一些假设前提。
首先,自变量和因变量之间呈线性关系。
其次,误差项满足正态分布。
最后,自变量之间不具有多重共线性。
如果这些假设得到满足,线性回归模型的结果将更加可靠和准确。
线性回归分析的步骤通常包括数据收集、模型设定、模型估计和模型检验。
在数据收集阶段,我们要搜集并整理相关的自变量和因变量数据。
在模型设定阶段,我们根据问题的需求选择适当的自变量,并建立线性回归模型。
在模型估计阶段,我们使用最小二乘法来估计回归系数,并得到最佳拟合直线。
在模型检验阶段,我们通过检验回归方程的显著性和模型的拟合程度来评估模型的质量。
通过线性回归分析,我们可以进行预测和解释。
在预测方面,我们可以利用回归模型对新的自变量数据进行预测,从而得到相应的因变量值。
这对于市场预测、销售预测等具有重要意义。
在解释方面,线性回归分析可以帮助我们了解自变量对因变量的影响程度。
通过回归系数的大小和正负,我们可以判断自变量对因变量的正向或负向影响,并量化这种影响的大小。
线性回归分析在许多领域都有广泛的应用。
在经济学中,线性回归模型被用于解释经济变量之间的关系,如GDP与失业率的关系。
在医学领域,线性回归模型可以用于预测患者的疾病风险,如心脏病与吸烟的关系。
在工程领域,线性回归模型可以用于预测材料的强度与温度的关系。
总之,线性回归分析在实践中具有广泛的应用价值。
然而,线性回归分析也存在一些局限性。
首先,线性回归模型只能处理线性关系,对于非线性关系的建模效果不佳。
摘要
.本文通过利用spss,eviews,以及matlab等数学软件对已知数据进行处理,首先用箱图进行分析,进而检测出了强影响点,得出杠杆值。
其次,从回归残差的直方图与附于图
上的正态分布曲线相比较,来验证正态分布。
最后,从相关系数观察变量之间是否线性相关,由相关系数矩阵来检验自变量是否多重共线性。
关键词:线性回归分析线性相关关系强影响点杠杆值残差分析
多重共线性
一. 问题重述
根据所给的数据作如下的回归分析:
要求:1.检测强影响点,并求出杠杆值. 2.正态性检验. 3.相关性检验.
4.自变量的多重共线性检测,若有多重共线性,试消除,再建模.
5.,分析,模型的合理性分析.
6.预测T
X )225,7,13,50,82,81,470(0 时Y 的预测值.
二.问题分析
这是一个关于线性回归分析的问题,题目中我们对强影响点,杠杆值,正态性检验. 相
关性检验,.自变量的多重共线性检测,残差的自相关性等问题进行了分析,如何寻找各变量之间的关
系,建立模型是至关重要的,对此,我们利用spss ,eviews ,以及matlab 等数学软件
对已知数据进行处理,寻找各变量之间的关系,建立符合要求的函数模型。
三.模型假设
各变量的数据与所给的表格中的信息一致。
四.定义与符号说明
五.模型的建立与求解
问题一:检测强影响点,并求出杠杆值.
用spss 软件做如下的箱图可直观的得到有三个强影响点,分别为3,12,34。
图一:箱图
图二
由上图可以看出标记为3,12,34的点为强影点,它们的cook ’s 值为:
Cook 距离为:)1)(1()
1()(22
^^
2
)(1ii
ii i i i n i i i p p p r p y y y C -+=+-=
∑=
⎥⎥
⎥⎥⎥
⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==-.05375.064871.050675.0673926.24597822.23619
)(1 T
T x x x x p
上面的矩阵对角线上的数字即为这几个变量的cook ’s 值。
、
问题二
图三为观测量累计概率图,图的纵坐标为Expected Cumulative Probability(期望累计概率分布),横坐标为 Observed Cumulative Probability(观测累计概率分布)
图中的斜线对应着一个均值为0的正态分布。
如果图中的散点密切地散布在这条斜线附近,说明随机变量残差ε 服从正态分布,从而证明样本确实是来
自于正态总体。
如果偏离这条直线太远,应该怀疑随机变量 的正态性。
由上述散点图可知,40个散点大致散布于斜线附近,因此可以认为残差分布基本
图四
从回归残差的直方图与附于图上的正态分布曲线相比较,可知道服从正态分布分布不是明显地服从正态分布。
问题三..相关性检验. ,,,
1.0
由上面六个P-P图可得X1,X2,X3,X4,X5,X6都是线性的问题四.自变量的多重共线性检测,若有多重共线性,试消除,再建模.
(1)检测自变量之间存在多重共线性
\ 图五
由图五中的相关系数矩阵可以看出,各变量相互之间的相关系数较高,证明确实存在多重共线性。
(2)消除多重共线性
采用逐步回归的办法,去检验和解决多重共线性问题。
分别做Y对的一元回归,结果如图六所示:
图六
图七
图八
表中显示逐步回归过程所建立的模型中剔除掉的变量后各种变量之间的具体数值。
新加入X7后各参数的t检验显著,选择保留,再加入其他新变量逐步回归,
问题五.模型的合理性分析.
问题六 .预测T
X )225,7,13,50,82,81,470(0=时Y 的预测值.
由Coefficient 知,y=9.122+1.805*X1+2.153*X2+1.683*X3+4.206*X4-1.999*X5+0.170*X6
为回归线性方程,当T
X )225,7,13,50,82,81,470(0=时,Y 的预测值为ans =494.9580
六.模型的评价:
我们建立的模型总体来说还是比价合理的,但由于数据量不是很大,当我们进行相关性,正态性分析,消除自变
量时导致效果不是很好,从而导致用该模型求预测时误差大,预测的精度不是很高。
八.参考文献:
【1】姜启源 谢金星 叶俊,数学模型,北京:高等教育出版社 2003 【2】马岚 李雯,数值分析,北京:电子工业出版社 2003
【3】邬学军,周凯,宋军全,数学建模竞赛辅导教程,杭州:浙江大学出版社,2009。