第1章 集合论
- 格式:ppt
- 大小:818.50 KB
- 文档页数:64
《点集拓扑学》第一章集合论初步本章介绍有关集合论的一些基木知识.从未经定义的“集合”和“元素”两个概念出发,给出集合运算、关系、映射以及集合的基数等方面的知识.至于选择公理,只是稍稍提了一下,进一步的知识待到要用到时再阐述.旨在不会过早地陷入繁难的逻辑困惑之中。
这里所介绍的集合论通常称为“朴素的集合论”,如果对集合的理论有进一步的需求,例如打算研究集合论本身或者打算研究数理逻辑,可以去研读有关公理集合论的专著.即令就朴素集合论本身而言,我们也无意使本章的内容构成一个完全自我封闭的体系,主要是我们没有打算重建数系,而假定读者了解有关正整数,整数,有理数,实数的基木知识,以及其中的四则运算,大小的比较(<和W),和实数理论中关于实数的完备性的论断(任何由实数构成的集合有上界必有上确界)等,它们对于读者决不会是陌生的.此外,对于通常的(算术)归纳原则也按读者早己熟悉的方式去使用,而不另作逻辑上的处理.§1.1集合的基本概念集合这一概念是容易被读者所理解的,它指的是由某些具有某种共同特点的个体构成的集体.例如我们常说“正在这里听课的全体学生的集合”,“所有整数的集合”等等.集合也常称为集,族,类.集合(即通常所谓的“集体”)是由它的元素(即通常所谓的“个体”构成的.例如正在这里听课的全体学生的集合以正在听课的每一个学生为它的元素;所有整数的集合以每一个整数为它的元素.元素也常称为元,点,或成员.集合也可以没有元素.例如平方等于2的有理数的集合,既大于1 又小于2的整数的集合都没有任何元素.这种没有元素的集合我们称之为空集,记作0・此外,由一个元素构成的集合,我们常称为单点集.集合的表示法:(1)用文句来描述一个集合由哪些元素构成(像前面所作的那样), 是定义集合的一个重要方式.(2)描述法:我们还通过以下的方式来定义集合:记号匕|关于x的一个命题P}表示使花括号中竖线后而的那个命题P成立的所有元素x构成的集合.例如,集合{* X为实数,并且0<Xl}即通常所谓开区间(0, 1).在运用集合这种定义方式时有时允许一些变通,例如集合{戏以是实数}便是集合{刃丿=/,其中%是实数}的简略表示,不难明口这个集合实际上是由全体非负实数构成的.集合表示方式中的竖线“丨”也可用冒号“:”或分号”来代替.(3)列举法:也常将一个集合的所有元素列举出来再加上花括号以表示这个集合.例如表示由元素 TJ构成的集合.如果确实不至于发生混淆,在用列举的办法表示集合时容许某种省略.例如,有时我们可以用{1, 2, 3,・・・}表示全体正整数构成的集合,用{1, 3, 5,…}表示全体正奇数相成的集合.但我们并不鼓励这种做法,因为后而的规律不是很清楚,容易产生误解.我们再三提请读者注意:不管你用任何一种方式定义集合,最重要的是不允许产生歧义,也就是说你所定义的集合的元素应当是完全确定的.在本书中,我们用:乙表示全体正整数构成的集合,称为正整数集;Z表示全体整数构成的集合,称为整数集;Q表示全体有理数构成的集合,称为有理数集;R表示全体实数构成的集合,称为实数集;并且假定读者熟知这些集合.以下是一些常用的记号:e:表示元素与集合的关系,如:xex , xe{x}等G表示集合与集合的关系,如:AUB (等价于(这个记号即是通常数学课木中的匚)二:表示与上述相反的含义.表示两个集合相等,女口:A二B (等价于以下的这个定理等价于形式逻辑中的相应命题,从直觉着去看也是自明的.定理1.1.1设A, B, C都是集合,贝!J(1)A=A;(2)^A=B,则B=A;(3)^A=B, B=C,则A=C.定理1. 1.2设A, B, C都是集合,则(1)A";(2)若AuB, BUA,则A=B;(3)若AUB, BUC,则A".证明(1)显然.(2)AUB 意即:若xWA,贝iJxGB;BS意即:若xGB,则xWA.这两者合起来正好就是A=B的意思.(3)xGA.由于AUB,故xGB;又由于B UC,从而x^C.综上所述,如果xeA就有xec.此意即AUC.因为空集0不含任何元素,所以它包含于每一个集合之中.由此我们可以得出结论:空集是惟一的.设A, B是两个集合.如果AUB,我们则称A为B的子集;如果A是B的子集,但A又不等于B,即AUB, AHB,也就是说A 的每一个元素都是B的元素,但B中至少有一个元素不是A的元素,这时,我们称A为B的真子集.我们常常需要讨论以集合作为元素的集合,并且为了强调这一特点,这类集合常称为集族.例如,缶{⑴,{1,2}, {1,2,3}}是一个集族. 它的三个元素分别为:{1}, {1,2}, {1,2, 3}及d设X是一个集合,我们常用尸(X)表示X的所有子集构成的集族, 称为集合X的幕集.例如,集合{1, 2}的幕集是P{⑴,{1, 2},⑵,0}.木章中所介绍的集合论是所谓“朴素的”集合论.在这种集合论中,“集合”和“元素”等基本概念均不加定义而被认作是自明的.正因为如此,历史上曾经产生过一些悖论.而对于绝大多数读者来说了解朴素的集合己是足够的了,只是要求他们在运用的时候保持适当的谨慎,以免导致逻辑矛盾•例如,我们应当知道一个集合本身不能是这个集合一个元素.即:若A是集合则AWA不成立.这一点是容易理解的.例如,由一些学生组成的一个班级决不会是这个班级里的一名学生.因此,我们不能说“所有集合构成的集合”,因为如果有这样一个“集合”的话,它本身既是一个集合,就应当是这个“所有集合构成的集合”的一个元素了.也因此,我们应当能够了解一个元素a和仅含一个元素a的单点集4}是两回事,尽管我们有时为了行文的简便而在记号上忽略这个区别.作业:掌握集合、元素的概念、表示法熟练区分“G”与“U”的意义§1.2集合的基本运算在这一节中我们介绍集合的并、交、差三种基本运算,这三种运算的基本规律,以及它们与集合的包含关系之间的基本关联.定义1.2. 1设A与B是两个集合.集合{x|xeA或xWB}称为集合A与集合B的并集或并,记作AUB, 读为A并B.集合{x|x eA且xWB}称为集合A与集合B的交集或交,记作AAB, 读为A交B.若AQB二0,则称集合A与集合B无交或不相交;反之,若AQBH0,则称集合A与集合B有(非空的)交.集合{x|xeA且x吃B}称为集合A与集合B的差集,记作A\B或A -B,读为A差B,或A减B.关于集合的并、交、差三种运算之间,有以下的基本规律.定理1.2.1设A, B, C都是集合.则以下等式成立:(1)幕等律AUA=AADA=A(2)交换律AUB=BUA AnB=BnA(3)结合律(AUB) UC=AU (BUC)(AAB) nc=An (BAC)(4)分配律(APB) UC=(AUC) Cl (BUC)(AUB) nc=(Anc)u (Bnc)(5)DeMongan 律A-(BUC)= ( (A-B) A (A-C)A-((BnC) = (A-B)U(A-C)集合的并、交、差三种运算与集合间的包含关系之间有着以下基本关联.定理1.2.2设A, B是两个集合.下列三个条件等价:(1)A UB;(2)AnB=A;(3)AUB=B・定义1.2.2设X是一个基础集.对于X的任何一个子集A,我们称X-A 为A (相对于基础集X而言)的补集或余集记作占.我们应当提醒读者,补集占的定义与基础集的选取有关.所以在研究某一个问题时,若用到补集这个概念,在整个工作过程中基础集必须保持不变.定理1.2.3设X是一个基础集.若A, B为X的子集,则Au0=A,Ar^0 = 0,AuX = X,Ar^X =AAuA = X,Ar\A r = 0}{AuBy =A r\B,XAr\B')' = A以上证明均只须用到集合的各种定义,此处不证,略去. 作业:熟记这两节的各种公式.掌握证明两个集合A二B与AUB的基本方法KugO冷亡虫,=疋B(/ = E o 且 u R A B u 力)§1.3关系我们从前在数学的各种科目中学过诸如函数、次序、运算,以及等价等种种概念,它们的一个共同的特点在于给出了某些给定集合的元素之间的某种联系.为了明确地定义它们,我们先定义“关系”,而为了定义关系,又必需先有两个集合的笛卡儿积这个概念.定义1.3. 1设X和Y是两个集合.集合{ (x, y) |xex, yey}称为X与Y的笛卡儿积,记作XXY,读为X叉乘Y.其中(x, y)是一个有序偶,x称为(x, y)的第一个坐标,y称为(x, y)的第二个坐标.X称为XXY的第一个坐标集,Y称为XXY的第二个坐标集•集合X与自身的笛卡儿积XXX称为X的2重(笛卡儿)积,通常简单记作胪.有点儿不幸的是我们用于有序偶的记号和用于“开区间”的记号是一样的,有时容易混淆.因此在可能发生混淆的情形下应当加以说明,以避免误解.给定两个集合,通过取它们的笛卡儿积以得到一个新的集合,这个办法对于读者并不陌生.以前学过的数学中通过实数集合构作复数集合,通过直线构作平面时,用的都是这个办法.我们应当注意,一般说来集合X与集合Y的笛卡儿积XXY完全不同于集合Y与集合X的笛卡儿积YXX.定义1. 3. 3设X,Y是两个集合•如果R是X与Y的笛卡儿积XXY 的一个子集,即RUXXY,则称R是从X到Y的一个关系.定义1. 3.4设R是从集合X到集合Y的一个关系,即RCXXY.如果(x, y) WR,则我们称x与y是R相关的,并且记作xRy・如果AUX, 则Y的子集{yWY|存在xeA使得xRy}称为集合A对于关系R而言的象集,或者简单地称为集合A的象集,或者称为集合A的R象,并且记作R (A) , R (X)称为关系R的值域.关系的概念是十分广泛的.读者很快便会看到,以前在另外的数学学科中学过的函数(映射),等价,序,运算等等概念都是关系的特例.这里有两个特别简单的从集合X到集合Y的关系,一个是XXY 本身,另一个是空集(1).请读者自己对它们进行简单的考查.定义1. 3.5设R是从集合X到集合Y的一个关系,即RCXXY.这时笛卡儿积YXX的子集{ (y, x) eYXX|xRy}是从集合Y到集合X的一个关系,我们称它为关系R的逆,并且记作尺一】.如果BUY, X的子集氏"(B)是集合B的氏一】象,我们也常称它为集合B对于关系R而言的原象,或者集合B的R原象.特别,关系氏" 的值域氏"(Y)也称为关系R的定义域.定义1. 3.6设R是从某个X到集合Y的一个关系,即RuXX Y, S 是从集合y到集合Z的一个关系,即SuYX乙集合{ (x, z) exXY 存在yGY使得xRy并且ySz}是笛卡儿积XXZ的一个子集,即从集合X到集合Z的一个关系,此关系称为关系R与关系S的复合或积,记作SoR.定理1.3.1设R是从集合X到集合Y的一个关系,S是从集合Y 到集合Z的一个关系,T是从集合Z到集合U的一个关系.贝!J:(1)(L)J 二R证明(略)定理1.3.2设R是从集合X到集合Y的一个关系,S是从某个Y 到集合Z的一个关系.则对于X的任意两个子集A和B,我们有:(1)R (AUB) =R (A) UR (B);(2)R (AAB) UR (A) AR (B);(3)(SoR) (A) =S(R(A)).证明(略)在本节的最后我们要提到有限个集合的笛卡儿积的概念,它是两个集合的笛卡儿积的概念的简单推广.定义1. 3. 7 设瓦耳必是n>l个集合.集合I x i e X、® € X2e X x")称为舟‘兀*•••** 的笛卡儿积,并且记作或者[]益其中(心心…石为有次序的n元素组,勺(i=l, 2, —n)称为n 元素组(忑旳…心)的第i个坐标,X i (i = l, 2,…, n)称为笛卡儿积乂\莫2”••召的第i个坐标集.n>l个集合X的笛卡儿积XXXX-XX常简单地记作炉n个集合的笛卡儿积的概念读者必然也不会感到陌生,在线性代数中n维欧氏空间作为集合而言就是n个直线(作为集合而言)的笛卡儿积.需要提醒读者的是,如果你在给定的n个集合中交换了集合的次序,一般说来得到的笛卡儿积会是完全不同的集合.至今我们并未定义“0个集合的笛卡儿积”,此事将来再以某种方式补充・(参见§9.1) 作业:理解“关系”的概念,掌握“关系”与“映射”的异同,“映射” 与“函数”的异同.(映射要求象惟一,关系没要求.函数要求定义域与值域是数域,而映射不一定)掌握运算乘积的概念与性质掌握集合的笛卡儿积中元素的形式§1.4等价关系初等数论中的同余类的概念,群论中的商群的概念,乃至于解析几何中的自由向量的概念等等都是读者所熟知的.这些概念的精确定义事实上都有赖于本节中所讨论的等价关系的概念.在本书中我们将通过等价关系来定义拓扑空间的商空间.定义1. 4. 1设X是一个集合.从集合X到集合X的一个关系将简称为集合X中的一个关系.集合X中的关系{(x, x) |xex}称为恒同关系,或恒同,对角线,记作△ (X)或△・定义1.4.2设R是集合X中的一个关系.关系R称为自反的,如果厶(X) CR,即对于任何xex,有xRx;关系R称为对称的,如果恥L , 即对于任何x, yex,如果xRy则yRx;关系R称为反对称的,如果RnR-1 =0,即对于任何x, yex, xRy和yRx不能同时成立;关系R 称为传递的,如果RoRUR,即对丁-任何x, y, zGX,如果xRy, yRz, 则有xRz.集合X中的一个关系如果同时是自反、对称和传递的,则称为集合X中的一个等价关系.容易验证集合X中的恒同关系△ (X)是自反、对称、传递的,因此是X中的一个等价关系.集合X的幕集尸(X)中两个元素(即集合X的两个子集)之间的“相等关系”可以理解为集合尸(X) X尸(X)的子集{ (A, B) |A, B"(X), A=B}从定理1.1.1中可见,它是自反、对称、传递的,因此是尸(X) 中的一个等价关系.集合X的幕集尸(X)中两个元素(即集合X的两个子集)之间的“包含关系”可以理解为集合尸(X) X尸(X)的子集{ (A, B) |A, B" (X), AuB}根据定理1.1.2可见,它是自反的、传递的,但容易知道它不是对称的,因此不是尸(X)中的一个等价关系.集合X的幕集尸(X)中两个元素(即集合X的两个子集)之间的“真子集关系”可以理解为集合尸(X) X尸(X)的子集{(A, B) |A, BW尸(X), A U B,AHB}根据定理1.1.3可见,它是反对称的,传递的,但它不是自反的, 因而不是尸(X)中的一个等价关系.实数集合R中有一个通常的小于关系<,即RXR的子集{ (x, y) |x, yGR, x<y}容易验证关系<是反对称的,传递的,但不是自反的.设p是一个素数,我们在整数集合Z中定义一个关系三p如下:=?-{ (x, y) WZXZ]存在nGZ 使得x —y 二np}关系J常称为模P等价关系,容易验证模P等价关系J是自反的, 对称的,传递的,因此是z中的一个等价关系.定义1. 4.3设R是集合X中的一个等价关系.集合X中的两个点x, y,如果满足条件:xRy,则称x与y是R等价的,或简称为等价的; 对于每一个xeX,集合X的子集:{yWXlxRy}称为x的R等价类或等价类,常记作【心或[x],并且任何一个yG【心都称为R等价类【心的一个代表元素;集族{t^l xeX}称为集合X相对于等价关系R而言的商集,记作X/R.我们考虑整数集合Z中的模2等价关系勺,易见,1巳3和2巳8.因此1与3是勺等价的,2和8也是三2等价的.整数2所属的等价类是所有偶数构成的集合,每一个偶数都可以叫做这个等价类的一个代表元素.此外易见,商集Z/三2有且仅有两个元素:一个是所有奇数构成的集合,另一个是所有偶数构成的集合.下面这个定理说明,给定了一个等价关系,等于说给定了一个分类的原则,把一个非空集合分割成一些非空的两两无交的等价类,使得这集合的每一个元素都在某一个等价类中.定理1.4.1设R是非空集合X中的一个等价关系.贝!(1)如果xex,则xW【心,因而【刃宀;(2)对于任意x, yGX,或者MlwAL,或者证明(1)设xex,由于R是自反的,所以xRx,因此*丘闪匚・・・【刃上工0・(3)对于任意x, yWX,如果,设zW[x]C[y].此时有zRx,且zRy.由于R是对称的,所以xRz・又由于R是传递的,所以xRy・对于任何一个t e【刃丘,有t Rx,由上述xRy和R的传递性可见tRy, 即tel-xh.这证明MbuAL同理可证【刃上ukk.因此【刃2【词上(注意:要证或者…或者…,应从以下入手:否定掉一个,去证另一个)在初等数论中我们早就知道整数模(素数)P的等价关系J将整数集合Z分为互不相交的等价类,每一个等价类记作[刘去,称为整数X的模P同余类.让我们再回忆一下在解析几何学中定义自由向量的过程:首先将固定向量定义为平面(或n维欧氏空间)中的有序偶;然后在全体固定向量构成的集合(暂时记为X)中定义一个关系〜,使得两个固定向量x和y 〜相关(即x〜y)当且仅当x能通过平而(或n维欧氏空间)的一个平移与y重合.容易验证这个关系〜是X中的一个等价关系.每一个~等价类便称为一个自由向量.作业:熟练掌握等价关系,等价类的概念.掌握商集的概念.明确商集的构成§1.5映射数学分析中的函数概念,群论中的同态概念,线性代数中的线性变换概念等等都是读者所熟知的概念.这些概念的精确定义事实上都有赖于本节中所讨论的映射概念.定义1. 5. 1设F是从集合X到集合Y的一个关系.如果对于每一个x WX存在惟一的一个y丘Y使得xFy,则称F是从X到Y的一个映射, 并且记作F: X-Y.换言之,F是一个映射,如果对于每一个xex:(1)存在yWY,使得xFy;(2)如果对于H必GY有^^和入绥,则HT2.定义1. 5.2设X和Y是两个集合,F: X-Y(读做F是从X到Y的一个映射).对于每一个xex,使得xFy的唯一的那个yGY称为x的象或值,记作F (x);对于每一个yGY,如果xex使得xFy (即y是x的象),则称x是y的一个原象(注意:yeY可以没有原象,也可以有不止一个原象).由于映射本身便是关系,因此,如果F是从集合X到集合Y的一个映射,那么:(1)对于任何AUX,象F (A)有定义,并且F(A) = {F(x) xeA}(2)对于任何BUY,原象F- (B)有定义,并且厂】(B) ={xex F(x)eB} (y±意:厂匕)与严(g)的异同,前者不一定有意义,而后者总存在;前者表示元素,后者表示集合)(3)如果Z也是一个集合并且G: Y-Z,则关系的复合GoF作为一个从X到Z的关系有定义;(4)尺一】作为从Y到X的一个关系有定义,但一般说来应"不是一个从Y到X的映射(这要看F是否是一一映射);(5) F的定义域有定义,并且它就是X;(意味着X中的每个元素都必须有象)(6) F的值域有定义,并且它就是F (X)・(F(X)不一定充满Y)定理1.5.1设X, Y和Z都是集合.如果F: X-Y和G: Y-乙则SF: X-Z;并且对于任何xGX,有GoF(X)=G(F(x))(这实际上是映射的积的本质)证明(略)(但要理解上式等号左右两边的不同含义,前者是两个映射的积(也是一个映射)作用在x上,后者是F先作用在x上,然后G 再作用在F (x)±).今后我们常用小写字母f, g, h,……表示映射.定理1. 5.2设X和Y是两个集合,f:X~Y・如果A, BUY 则(1)r1(AUB)=广" (A)U厂(B);(2)(AAB)=广" (A)nr1(B);(3)(A-B)=厂(A)-了' (B)・简言之,映射的原象保持集合的并,交,差运算.证明(略)・定义1. 5.3设X和Y是两个集合,X-Y.如果Y中的每一个点都有原象(即f的值域为Y,亦即f (X)二Y),则称f是一个满射,或者称f为一个从X到Y上的映射;如果X中不同的点的象是Y中不同的点(即对于任何如果心工乃,则有八1"了(心),则称f 是一个单射;如果f既是一个单射又是一个满射,则称f为一个既单且满的映射,或者一一映射.如果f (X)是一个单点集,则称f是一个常值映射,并且当f(X)二{y}时,我们也说f是一个取常值y的映射.易见,集合X中的恒同关系△ (X)是从X到X的一个一一映射,我们也常称之为(集合X上的)恒同映射或恒同,有时也称之为单位映射,并且也常用记号“或i: X-X来表示它.根据定义易见,对于任何xex,有i (x)=x.概言之,恒同映射便是把每一个点映为这个点自身的映射.由于下面的这个定理,一一映射也称为可逆映射.定理1. 5.3设X和Y是两个集合.又设f:X-Y.如果f是一个一一映射,则厂便是一个从Y到X的映射(因此我们可以写广:Y-X),并且是既单且满的.此外我们还有:广'n和"厂=妆证明(略)定理1. 5.4设X, Y和Z都是集合,f:XfY, g: Y-Z.如果f 和g都是单射,则gof:X~Z也是单射;如果f和g都是满射,则g。
集合论与图论以前学习的高等数学(数学分析)都是连续函数,而计算机是离散型结构,所以它所研究的对象应是离散型的。
因此,做为计算机理论的核心课程《离散数学》就显然非常重要,计算机专业学生必须开设此课程。
目的:培养学生抽象思维和逻辑思维的能力要求:概念第一,正确使用概念进行正确的推理。
特点:抽象,概念多;与其它课程不同,不是以计算为主,而是以推理论证为主;比较难。
内容:⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎩集合映射集合论关系无穷集合图的基本概念树和割集离散数学图 论 连通度和匹配平面图的欧拉公式和图的着色有向图近世代数数理逻辑形式语言与自动机可计算理论等等离散:不考虑实数的性质,只考虑有限或可数的整数。
因此可用归纳法。
第一篇集合论集合论是德国数学家康托(Cantor)在1874年建立的,它是现代数学的基础,在当今数学中每个对象本质上都是集合。
有时我们说:“数学能嵌套在集合论中”其含义就是指数学的一些对象如:数、函数、线、面等都可以用集合来定义。
换句话说,数学的各个分支在本质上都是研究这种或那种对象的集合。
例如:几何学——研究点、线、面的集合;数学分析——连续函数的集合;代数——研究数的集合以及在此集合上定义有关运算的集合等等。
因此,把集合论作为现代各种数学的基础是有道理的,也是合适的。
集合论的特点:(1)研究的对象十分广泛:数、图形或其它任何客体都可以作为研究的对象。
(2)因为它研究的对象是如此广泛,为了便于研究必须寻找对象的共性,而要做到这一点,就必须进行抽象。
(3)在抽象化的基础上,可用统一的方法来研究和处理集合论的各类问题。
第一章 集合及其运算§1集合的基本概念在日常生活中,经常会遇到“集合”的概念,例如:所有中国人的组成的集合;坐标面上的有点的集合,自然数集,实数集,全世界无产者等等。
集合是集合论中最基本的概念,所以很难给出精确的定义。
因此,我们把“集合”作为原始的概念给出非形式定义,只给予一种描述说明这个概念的含义。
高一数学必修1第一章知识点总结高一数学必修1第一章主要包括三个部分:集合论、函数与映射、数列与数列的极限。
下面将对这三个部分进行总结。
一、集合论1. 集合的概念:集合是由一些确定的事物(称为元素)构成的整体。
2. 集合的表示方法:列举法、描述法和图示法。
3. 集合的运算:并集、交集、补集、差集、元素的判断和包含关系。
4. 集合的性质:幂集、集合的基数和集合的运算律。
二、函数与映射1. 函数的定义与表示:函数是一个对应关系,每个输入都有唯一的输出。
2. 映射的定义与表示:映射是一个集合到另一个集合的对应关系。
3. 函数的性质:定义域、值域、单调性、奇偶性、判定性质等。
4. 反函数与复合函数:反函数是一个函数的逆过程,复合函数是两个函数的结合。
三、数列与数列的极限1. 数列的概念:数列是按照一定规律排列的一组数。
2. 等差数列与等比数列:等差数列是指每一项与前一项之差都相等的数列,等比数列是指每一项与前一项之比都相等的数列。
3. 数列的通项公式与递推公式:通项公式是通过数列项的位置计算项的值,递推公式是通过前一项计算后一项的值。
4. 数列的极限:数列极限是数列中项的无限逼近某个数的过程,包括数列的有界性、极限存在与不存在以及数列极限的计算。
综上所述,高一数学必修1第一章主要是基础的数学知识点。
通过学习集合论、函数与映射以及数列与数列的极限,可以奠定后续数学学习的基础。
这些知识点在高中数学中会贯穿始终,为后续的学习打下坚实的基础。
因此,学生应该重视这些知识点的学习,理解其概念、运算法则,尽量多做相关习题,从而提高数学的综合素养和解题能力。
同时,也应注重数学的实际运用,将所学的数学知识应用到现实生活中,培养数学思维和解决问题的能力。
第1章集合论一、内容提要1.集合:集合是数学中没有给出精确定义的基本数学概念。
我们通常称集合是具有某种特定的研究对象的聚合,其中每一个对象称为这个集合的元素。
通常用大写的英文字母A,B,C,D,…表示集合,用小写的英文字母a,b,c,d,…表示集合中的元素。
个体与集合之间的关系是属于或不属于的关系:当a 是集合A中的元素时,称为a属于A,并记作a ∈A;当a 不是集合A中的元素时,称为a不属于A,并记作a∉ A。
2.集合表示法:集合通常有三种表示法:文字表示法、元素列举法(罗列法)和谓词表示法。
我们规定用花括号——{ } 表示集合。
文字表示法用文字表示集合的元素,两端加上花括号,如:{ 奇数},{ 闭区间[0,1]上的连续函数}等;元素列举法(罗列法)将集合中的元素逐一列出,两端加上花括号,比较适合集合中的元素有限(较少或有规律)、无限(离散而有规律)的情况,如:{ 1,2,3,4,5},{ 2,4,6,8,10,… }等;谓词表示法的形式{ x : P(x) } 或者{ x︱P(x) },其中:P表示x所满足的性质(一元谓词)。
比较适合在对集合中的元素性质了解甚详,且易于用精确的数学语言来刻划时使用,如:{ x : x∈I∧x<8}等。
3.空集:不含任何元素的集合称为空集,记为∅。
所要研究的问题所需的全部对象(元素)所构成的集合称为全集,记为X(或U ,E)。
空集是唯一的,而哦全集是相对唯一的,不是绝对唯一的。
4.全集和子集:对于两个集合A,B,若A中的每个元素x都是B的一个元素,则称A包含在B 中(或者说B包含A),记为A⊆B。
同时称A是B的子集(称B是A 的超集(superset))。
如果A是B的子集,且B中总有一些或一个元素不属于A,则称A是B的真子集,记为A⊂B。
5.补集:由所有不属于A的元素构成的集合,称为A的补集,记作A'。
6.幂集:一个集合A的所有子集构成的集合称为A的幂集,记为2A( 或P (A) )。
高一集合第一章知识点随着新学年的开始,高一学生们进入了一个全新的学习阶段。
第一章是集合论,是高中数学的重要基础知识之一。
集合论是数学的一个分支,研究元素的组成和元素之间的关系。
本文将从集合的概念、表示方式、运算以及一些常见的应用方面,探讨高一集合第一章的知识点。
一、集合的概念1. 集合是什么?集合是由一定对象组成的整体或类。
这些对象称为集合的元素。
例如,自然数集合{1, 2, 3, 4, ...},是由自然数组成的一个集合。
2. 集合的表示方式集合可以用两种方式表示:(1)列举法:将集合中的元素逐个罗列出来。
例如,集合A={1, 2, 3}。
(2)描述法:用描述集合元素的特性或条件来表示。
例如,集合B={x | x是大于1小于等于4的整数}。
二、集合的运算高一集合第一章的重点之一是集合的运算。
集合的运算包括交集、并集、差集和补集。
1. 交集对于两个集合A和B,它们的交集是包含两个集合共有元素的新集合。
用符号∩表示。
例如,集合A={1, 2, 3}和集合B={2, 3, 4}的交集为A∩B={2, 3}。
2. 并集对于两个集合A和B,它们的并集是包含两个集合所有元素的新集合。
用符号∪表示。
例如,集合A={1, 2, 3}和集合B={2, 3, 4}的并集为A∪B={1, 2, 3, 4}。
3. 差集对于两个集合A和B,它们的差集是包含属于集合A但不属于集合B的元素的新集合。
用符号-表示。
例如,集合A={1, 2, 3}和集合B={2, 3, 4}的差集为A-B={1}。
4. 补集相对于一个给定的集合U,U中不在集合A中的元素构成了集合A 的补集。
用符号A'表示。
例如,如果U是全体自然数的集合,集合A={1, 2, 3}的补集为A'={4, 5, 6, ...}。
三、集合的应用集合论作为数学的基础理论,在实际生活中也有一些常见的应用。
1. 数据分析在统计学中,集合论被广泛应用于数据分析。
高一数学第1章知识点汇总在高中数学学科中,第1章是新学期开始的第一个单元。
本章主要包含一些基础的数学知识和概念,为学生打下坚实的数学基础。
下面将对本章的知识点进行汇总和简要介绍。
一、集合论集合是数学中重要的基础概念。
集合是由一些确定的、互不相同的元素构成的整体。
常用的表示集合的方式有描述法和列举法。
集合之间的关系有并集、交集和差集等。
二、函数函数是一种特殊的关系,它把每一个自变量和唯一的因变量相对应。
函数可以用图像、公式和表格来表示。
函数的基本性质有定义域、值域、单调性、奇偶性和周期性等。
三、数列与数列的极限数列是按照一定规则排列的一组数。
常见的数列有等差数列和等比数列。
数列的极限是指数列逐渐趋向于一个确定的值。
当数列的通项公式存在极限时,称数列收敛;否则称数列发散。
四、排列与组合排列是从一组元素中按照一定顺序选取若干个元素进行排列。
组合是从一组元素中不考虑顺序地选取若干个元素进行组合。
排列和组合常用于计算概率、统计和数学证明等问题。
五、三角函数三角函数是数学中常见的一类函数。
常见的三角函数有正弦函数、余弦函数和正切函数等。
三角函数有周期性和对称性等性质。
三角函数在几何、物理等领域中有广泛的应用。
六、立体几何立体几何是研究三维空间中物体的形状、大小和位置关系的数学分支。
常见的立体几何概念有平面、直线、角、棱、面等。
立体几何在现实生活中的应用广泛,如建筑、工程、设计等领域。
七、平面向量平面向量是用有向线段表示的量。
平面向量有大小和方向两个特征。
平面向量的基本运算有加法、减法和数量乘法等。
平面向量在解决几何问题和物理问题中有重要作用。
八、数学归纳法数学归纳法是一种证明方法。
数学归纳法分为递推步和基础步两个步骤。
基础步是证明命题在某个特定数值时成立;递推步是证明命题从某个特定数值成立时,对于下一个数值也成立。
以上是高一数学第1章的知识点汇总。
本章的内容相对较为简单,但是对于数学建模和后续学习打下了基础。