抛物线知识点
- 格式:doc
- 大小:1.10 MB
- 文档页数:6
抛物线知识点总结_高三数学知识点总结一、抛物线的定义抛物线是平面上一个点沿着一条直线运动,同时受到一个恒定的垂直于直线的力的作用,这种轨迹叫做抛物线。
抛物线是由二次函数关系定义的曲线。
它是平面上一点到直线上一点的距离与这一点到定点的距离成比例的轨迹。
二、抛物线的标准方程1. 抛物线的标准方程为:y=ax^2+bx+c,其中a≠0。
2. 抛物线的顶点为(-b/2a, c-b^2/4a)。
三、抛物线的性质1. 抛物线的开口方向由二次项系数a的正负号决定。
若a>0,抛物线开口向上;若a<0,抛物线开口向下。
2. 抛物线的轴对称线为x=-b/2a,即抛物线的顶点为轴对称点。
3. 抛物线在顶点处的切线平行于x轴。
4. 抛物线的焦点可表示为(F, p),其中F是焦点坐标,p=1/4a是抛物线焦点到顶点的距离。
5. 抛物线的定点到焦点的距离等于焦距。
6. 过抛物线的顶点和焦点的直线称为抛物线的焦线,焦点为该直线的对称中心。
7. 对于平行于抛物线轴的直线,其交点到焦点距离都相等。
四、抛物线的方程求解1. 已知顶点和焦点求抛物线方程:设抛物线的焦点为(F, p),则抛物线的标准方程为:(y-p)^2=2px。
2. 已知焦点和直线求抛物线方程:设焦点为(F,p),直线为l:x=ay+b,则抛物线的标准方程为:y^2=2px3. 已知抛物线的焦点和焦距求抛物线方程:设抛物线的焦点为(F, p),焦距为2a,则抛物线的标准方程为:(y-p)^2=4ax。
4. 已知抛物线的焦点和顶点求抛物线方程:设抛物线的焦点为(F, p),顶点为(V, q),则抛物线的标准方程为:(y-q)^2=4a(x-v)。
5. 已知抛物线上3点求抛物线方程:设抛物线上3点为A(x1, y1),B(x2, y2),C(x3, y3),则通过抛物线的标准方程组成三元二次函数方程,再通过该方程求解。
五、抛物线的应用1. 计算机图形学中,抛物线可以用于生成曲线和图案。
抛物线的基本知识点抛物线的基本知识点有哪些抛物线是初中数学的重要知识点,主要涉及以下几方面内容:1.定义:指有一个公共的焦点、一条对称轴的两个顶点的二次函数图像,叫抛物线。
2.顶点:在对称轴上,到图象两交点距离相等的点。
3.开口方向:抛物线与X轴的交点叫抛物线的顶点。
4.对称轴:对于二次函数y=ax^2+bx+c(a≠0)对称轴是直线x=-b/2a。
5.抛物线y=ax^2+bx+c(a≠0)的对称轴是直线x=-b/2a,顶点坐标是(-b/2a,(4ac-b^2)/4a),当a>0时,开口向上,当a<0时,开口向下。
6.与坐标轴的交点:把二次函数y=ax^2+bx+c(a≠0)化为顶点式y=a(x-h)^2+k,则y轴与图像的交点为(0,k),x轴与图像的交点为h,h,-b/2a。
7.抛物线与坐标轴的交点:把二次函数y=ax^2+bx+c(a≠0)化为顶点式y=a(x-h)^2+k,当h=0时,抛物线与x轴的交点为(0,k),当k=0时,抛物线与y轴的交点为(0,h),即抛物线的交点为(0,h),(h,0),(0,k),(k,0)。
以上是抛物线的基本知识点,如果在学习过程中遇到问题,可以咨询数学老师。
抛物线的基本知识点汇总抛物线是初中数学的重要知识点,主要涉及以下内容:1.定义:抛物线是轴对称图形,对称轴为直线x=—b/2a,顶点坐标为(—b/2a,(4ac—b2)/4a)。
2.与坐标轴的交点:令y=0,求得方程(),再令x=0,求得方程()。
()与()的交点为抛物线与y轴的交点,即抛物线在y轴上的截距。
3.开口方向:开口向上,a>0;开口向下,a<0。
4.对称轴:对称轴为直线x=-b/2a。
5.顶点坐标:顶点坐标为(-b/2a,(4ac-b2)/4a)。
6.增减性:在直线x=-b/2a左边,y单调递减;在右边,y单调递增。
7.焦半径:抛物线上的点到焦点的距离等于到准线的距离。
抛物线的知识点总结【通用5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!抛物线的知识点总结【通用5篇】抛物线是高考数学的一个重要考点。
抛物线的知识点抛物线知识点概述1. 定义抛物线是一个二次函数的图像,具有U形的曲线。
在数学中,它是平面上所有与一个固定点(焦点)和一条固定直线(准线)距离相等的点的集合。
2. 标准方程一个垂直开口的抛物线的方程是:\[ y = ax^2 + bx + c \]其中,\( a \),\( b \),和 \( c \) 是常数,且 \( a \neq 0 \)。
一个水平开口的抛物线的方程是:\[ x = ay^2 + by + c \]同样,\( a \),\( b \),和 \( c \) 是常数,且 \( a \neq 0 \)。
3. 焦点和准线对于垂直开口的抛物线,焦点的坐标是 \( (h, k + \frac{1}{4a}) \),准线的方程是 \( y = k - \frac{1}{4a} \)。
对于水平开口的抛物线,焦点的坐标是 \( (h + \frac{1}{4a}, k) \),准线的方程是 \( x = h - \frac{1}{4a} \)。
4. 顶点抛物线的顶点是曲线的最高点(对于开口向下的抛物线)或最低点(对于开口向上的抛物线)。
顶点的坐标是 \( (h, k) \)。
5. 对称性抛物线是关于其对称轴对称的。
对称轴是垂直于抛物线开口方向的直线,并且通过顶点。
6. 导数和凹凸性抛物线的导数是 \( y' = 2ax + b \)(对于 \( y = ax^2 + bx + c \))。
抛物线在其顶点处从凹变凸,或者从凸变凹,这取决于 \( a \) 的符号。
7. 应用抛物线在物理学、工程学、建筑学和许多其他领域都有广泛的应用。
例如,在抛体运动中,物体在只受重力作用下的运动轨迹通常是抛物线形状。
8. 旋转和变换抛物线可以通过平移、缩放、旋转等几何变换得到新的抛物线。
这些变换遵循特定的数学规则。
9. 抛物线的性质- 任何从焦点出发的光线,经过抛物线反射后,都会平行于抛物线的对称轴。
抛物线总结知识点一、抛物线的定义1、几何定义抛物线实际上是一个平面上的曲线,其特点是所有点到焦点的距离与直线上的点到焦点的距离相等。
在几何上,抛物线可以用一定的数学方法来绘制,比如几何学中的反射法则,就是一个通过抛物线的特性进行绘制的方法。
2、代数定义抛物线也可以用数学式子来表示,通常来说,一个一般形式的抛物线方程可以表示为:y=ax^2+bx+c。
其中a、b、c为常数,且a≠0。
这个方程就是抛物线的代数表示方法。
二、抛物线的性质1、对称性抛物线具有对称性,即其焦点与直线的对称轴关于抛物线是对称的。
也就是说,如果你在抛物线上选取一个点,并且在该点的正上方或是正下方做等距的另外一个点,那么这两个点与抛物线的焦点的距离是一样的。
2、焦点抛物线的焦点是抛物线中的一个重要点,所有在抛物线上的点到焦点的距离,是和这根线上的点到焦点的距离是相等的。
这也是抛物线对称性的基础。
3、直线抛物线的对称轴是一条直线,这条直线被称为抛物线的直线。
直线与抛物线的焦点以及对称轴是彼此有特殊的关系的,这样的直线通常是抛物线的对称轴。
4、距离性质抛物线上的任意一点到焦点的距离与该点到抛物线的对称轴的距离之间的关系。
通常,这个距离关系就是抛物线的形成依据之一。
三、抛物线的方程1、标准形式标准形式的抛物线通常以y=ax^2+bx+c的数学形式表示。
这种数学形式可以清楚的展现抛物线的双曲性。
2、顶点形式抛物线的顶点形式方程也是一种比较通用的表示方法。
顶点形式的抛物线方程是一种通过抛物线的顶点来表示其位置的方法。
其数学表达式通常为y=a(x-h)^2+k,其中(h,k)为抛物线的顶点坐标。
3、焦点形式焦点形式的抛物线方程则是基于抛物线的焦点和直线来展现其形状和位置的。
该类型的方程通常为x^2=4py,其中p为焦点的距离。
四、抛物线的几何意义1、抛物线的几何意义作为一条特殊的曲线,抛物线在实际中有着丰富的几何意义。
通过抛物线的特性和性质,我们可以从几何角度来认识抛物线。
抛物线性质和知识点总结1. 抛物线的定义和基本形式抛物线是指平面上满足二次方程y=ax^2+bx+c(a≠0)的曲线。
其基本形式是y=ax^2+bx+c,其中a、b、c是常数,称为抛物线的系数。
a决定抛物线的开口方向,当a>0时抛物线开口朝上,当a<0时抛物线开口朝下;b决定抛物线的位置,c决定抛物线与y轴的交点。
2. 抛物线的顶点和对称轴抛物线的顶点是抛物线的最低点(开口向上)或者最高点(开口向下),对于标准形式的抛物线y=ax^2+bx+c,它的顶点坐标为(-b/2a, c-b^2/4a)。
抛物线的对称轴是通过顶点并垂直于x轴的直线,对称轴方程为x=-b/2a。
3. 抛物线的焦点和直线方程抛物线的焦点是到抛物线上所有点的距离到抛物线的对称轴的距离相等的点,焦点的坐标为(-b/2a, 1-1/4a)。
抛物线的直线方程是y=mx+n,其中m和n是常数,直线与抛物线有两个交点。
当直线与抛物线相切时,两个交点重合。
当直线与抛物线没有交点时,这个抛物线不与这条直线相交。
4. 抛物线的焦距和离心率抛物线的焦距是抛物线的顶点到焦点的距离,焦距的大小是2|a|;抛物线的离心率是焦距与顶点到焦点的距离的比值,离心率的大小是1。
5. 抛物线的性质抛物线的性质是抛物线的特征,对于抛物线y=ax^2+bx+c,它的性质包括:a)抛物线的开口方向是由a的符号决定的,a>0时开口向上,a<0时开口向下;b)抛物线的顶点在对称轴上;c)焦点在对称轴上的顶点的上方,离心率等于1;d)与y轴的交点是常数项c;e)抛物线的焦点到直线方程的距离等于抛物线到直线方程的对称轴的距离。
6. 抛物线的知识点抛物线的知识点是在解决抛物线问题时需要掌握的知识,包括:a)抛物线的标准形式、一般形式、顶点形式和焦点形式的相互转化;b)抛物线的顶点、对称轴、焦点和直线方程的求法;c)抛物线与直线的交点和相切点的求法;d)抛物线的焦距和离心率的求法;e)抛物线的方程的实际应用问题。
引言概述:抛物线是高中数学中的重要内容,具有广泛的应用领域,包括物理、工程、经济等。
本文将对抛物线的相关知识进行归纳总结,从定义、性质、方程、焦点与准线、图形以及应用等多个方面进行详细的阐述。
正文内容:一、定义和性质1.抛物线的定义:抛物线是平面内一点到固定点和固定直线的距离之比等于常数的轨迹。
2.焦点与准线的关系:焦点是抛物线上所有点到准线的距离相等的点。
3.对称性:抛物线具有关于准线对称和关于纵轴对称的性质。
4.切线方程:抛物线上任意一点的切线方程为y=mx+c,其中m 是斜率,c是截距。
5.切线与法线的关系:切线与法线互为垂线且交于抛物线上的点。
二、方程和焦点、准线1.标准方程:抛物线的标准方程为y=ax^2+bx+c,其中a、b、c 是常数,a≠0。
2.顶点坐标:抛物线的顶点坐标为(b/2a,f(b/2a)),其中f(x)=ax^2+bx+c。
3.焦点坐标:抛物线的焦点坐标为(h,f(h+1/4a)),其中h=b/2a。
4.准线方程:抛物线的准线方程为y=f(h+1/4a)1/(4a)。
三、图形展示和性质分析1.抛物线的开口方向:a的正负决定抛物线的开口方向,a>0时开口向上,a<0时开口向下。
2.抛物线的焦点位置:焦点在抛物线的顶点上方,焦点的纵坐标为f(h+1/4a)+1/(4a)。
3.抛物线的对称轴:对称轴是通过抛物线的顶点和焦点的直线。
4.抛物线的顶点与焦点距离:顶点与焦点的距离等于抛物线的准线长。
四、应用领域1.物理学应用:抛物线可以描述自由落体运动、抛射运动等。
2.工程学应用:抛物线常用于建筑物的设计、桥梁的设计等。
3.经济学应用:抛物线可以用来表示成本、收入和利润的函数关系。
4.生物学应用:抛物线可用于描述某些生物体运动的轨迹。
5.计算机图像处理应用:抛物线可以用于图像处理算法中的平滑处理。
五、总结本文对抛物线的定义、性质、方程、焦点与准线、图形以及应用进行了详细的阐述。
抛物线知识点总结_高三数学知识点总结抛物线是一种常见的二次函数形式,常用的标准方程为y=ax²+bx+c (a≠0)。
一、抛物线的平移和缩放1. 平移:平移抛物线的顶点到坐标轴原点的方法是将x轴和y轴分别平移a和b个单位,即将抛物线方程中的x替换为x-a,y替换为y-b。
2. 缩放:抛物线关于顶点的对称性使得在抛物线上多取任意一点,将这点关于顶点进行对称得到的点的纵坐标与原点的纵坐标成等差数列,且公差是常量。
我们可以通过改变a来改变抛物线的形态,使得抛物线开口向上或向下,并使得抛物线的开口程度变化。
二、抛物线的顶点、焦点和直线1. 顶点:抛物线的顶点是二次函数的极值点,由公式x=-b/2a和y=f(x)得到。
顶点的坐标为(-b/2a,f(-b/2a))。
2. 焦点:抛物线焦点的纵坐标是顶点的纵坐标f(-b/2a)+1/(4a),焦点的横坐标为-b/2a。
焦点到抛物线的距离等于焦半径r=1/(4a)。
3. 直线:抛物线的准线是与抛物线平行的一条直线,其方程为y=f(-b/2a)-1/(4a)。
三、抛物线的对称轴1. 对称轴:抛物线的对称轴是通过抛物线的顶点和焦点的直线,对称轴与x轴垂直。
通过求焦差得到对称轴的方程,对称轴的方程为x=-b/2a。
四、抛物线的焦半径和离心率1. 焦半径:焦半径是焦点到抛物线上任一点的距离,焦半径的长度为r=1/(4a)。
2. 离心率:离心率是抛物线焦点到焦点所在直线的距离与抛物线到准线的距离的比值,离心率的值为e=1。
五、抛物线的判别式和根的个数抛物线的判别式为Δ=b²-4ac,根的个数与判别式的大小有关。
1. 当Δ>0时,抛物线与x轴有两个交点,即有两个实根。
2. 当Δ=0时,抛物线与x轴相切,即有一个实根。
3. 当Δ<0时,抛物线与x轴无交点,即无实根。
六、抛物线图像的性质1. 抛物线的开口方向与系数a的正负有关,a>0时开口向上,a<0时开口向下。
抛物线知识点总结一、抛物线的定义抛物线是一种特殊的二次曲线,它的数学定义是平面上一点到定点和直线的距离相等,这个定点就是抛物线的焦点,直线就是抛物线的准线。
在直角坐标系中,抛物线的标准方程为:y=ax2+bx+c,其中a≠0。
二、抛物线的性质1. 焦点和准线:抛物线的焦点和准线是抛物线的两个重要属性。
焦点是定点,准线是直线,它们共同决定了抛物线的形状和特性。
2. 对称性:抛物线是关于x轴对称的。
3. 切线和法线:抛物线上的任意一点,它的切线和法线都是经过这个点,且与x轴垂直。
4. 定理一:抛物线的焦点到准线的距离等于焦点到抛物线上任意一点的距离。
5. 定理二:抛物线上任意一点到焦点的距离等于该点到准线的距离。
6. 焦距:抛物线上所有点到焦点的距离的最小值称为抛物线的焦距。
7. 平行于准线的矩形,被含在抛物线内部并且对称。
8. 定理三:抛物线的离心率等于1。
三、抛物线的方程1. 标准方程:y=ax2+bx+c,其中a≠0。
2. 顶点坐标:抛物线的顶点坐标为(-b/2a, c-b2/4a)。
3. 焦点坐标:抛物线的焦点坐标为(-b/2a, c-b2/4a+1/4a)。
4. 焦距:抛物线的焦距为1/|4a|。
四、抛物线的应用抛物线作为一种重要的数学曲线,在各种应用中都有着广泛的应用,如物理、工程、建筑等领域。
1. 物理:在物理学中,抛物线曲线被广泛应用于描述抛体运动的轨迹。
比如,抛体在空中的飞行轨迹、抛物线发射器等都涉及到抛物线的运动规律。
2. 工程:在建筑工程和土木工程中,抛物线曲线常常被用于设计拱形结构或者桥梁的曲线轨迹。
抛物线的弧形轨迹具有良好的支撑性能和稳定性,因此在工程设计中得到了广泛应用。
3. 航天航空:在航天航空技术中,抛物线曲线也被用于设计火箭轨迹和飞行器的运动路径。
比如,抛物线曲线可以描述卫星的发射和轨道运行规律。
4. 光学:在光学中,抛物线曲线也被应用于设计反射镜和折射镜的形状。
抛物线反射镜可以将平行光线汇聚到一个焦点上,因此在光学仪器和望远镜中得到了广泛应用。
抛物线知识点1、掌握的定义 :平面内与一定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线(定点F 不在定直线l 上)。
定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线2、方程、图形、性质标准方程22(0)y pxp =>22(0)y pxp =->22(0)x pyp =>22(0)x py p =->图形统一方程焦点坐标 (,0)2p (,0)2p -(0,)2p(0,)2p -准线方程 2p x =-2p x =2p y =-2p y =范围 0x ≥ 0x ≤ 0y ≥ 0y ≤ 对称性 x 轴 x 轴 y 轴 y 轴 顶点 (0,0)(0,0) (0,0) (0,0)离心率 1e =1e =1e =1e =焦半径3、 通径:过抛物线的焦点且垂直于对称轴的弦称为通径,通径长为;4、 抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线;5、 注意强调p 的几何意义:。
方程及性质1、抛物线的顶点是坐标原点,对称轴是x 轴,抛物线过点(5-,25),则抛物线的标准方程是( )A.y 2=-2xB.y 2=2xC. y 2=-4xD.y 2=-6x2、抛物线28y x =的焦点到准线的距离是( )(A) 1 (B)2 (C)4 (D)8 3、抛物线28y x =的焦点坐标是_______ 4、抛物线22x y =的准线方程是_____________;5、设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。
6、过点(2,2)P 的抛物线的标准方程是____________.7、对于抛物线x y 42=上任意一点Q ,点P (a ,0)都满足|PQ|≥|a|,则a 的取值范围是 A .)0,(-∞B .]2,(-∞C .[0,2]D .(0,2)8、设O 为坐标原点,F 为抛物线x y 42=的焦点,A 是抛物线上一点,若4-=⋅,则点A 的坐标是( )o F x y l ox yF lx yoF lA .)22,2(),22,2(-B .(1,2),(1,-2)C .(1,2)D .)22,2(9、在同一坐标系中,方程)0(0122222>>=+=+b a by ax x b x a 与的曲大致是( )A .B .C .D .10、已知椭圆22221x y a b+=(a >b >0),双曲线22221x y a b -=和抛物线22y px = (p >0 )的离心率分别为e 1、e 2、e 3,则( ) A. e 1e 2<e 3 B.e 1e 2=e 3 C. e 1e 2>e 3 D.e 1e 2≥e 3抛物线曲线几何意义11、动点P 到点(2,0)F 的距离与它到直线20x +=的距离相等,则P 的轨迹方程为____. 12、已知抛物线22(0)y px p =>的准线与圆22670x y x +--=相切,则p 的值为(A)12(B)1(C)2 (D)4 13、以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A.22x +y +2x=0 B. 22x +y +x=0 C. 22x +y -x=0 D. 22x +y -2x=014、点P 到点1(,0)2A ,(,2)B a 及到直线12x =-的距离都相等,如果这样的点恰好只有一个,那么a 的值是( ) A .21 B .23C .21或23D .12-或2115、点M 与点()0,4F 的距离比它到直线05=+x 的距离小1,求点M 的轨迹方程。
16、已知点F(1,0),直线:1,l x =-点B 是l 上的动点,若过B 且垂直于y 轴的直线与线段BF 的垂直平分线交于点M,则点M 的轨迹是( )A.双曲线 B.椭圆 C.圆 D.抛物线17、以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程.18、已知圆的方程为422=+y x ,若抛物线过点1(-A , 0),B (1, 0)且以圆的切线为准线,则抛物线焦点的轨迹方程为( )A .)0(14322≠=+y y xB .)0(13422≠=+y y x C .)0(14322≠=+x y x D .)0(13422≠=+x y x19、过抛物线)0(22>=p px y 的顶点O 作两条互相垂直的弦OB OA ,,再以OB OA ,为邻边作矩形AOBM ,求点M 的轨迹方程。
20、在直角坐标系中,到点(1,1)和直线x +2y =3距离相等的点的轨迹是( ) A.直线B.抛物线C.圆D.双曲线 21、已知实数x,y ()()221132x y x y ++-+-=,则点(),P x y 的运动轨迹是( )A.抛物线B.双曲线C.椭圆D.圆22、与圆(x +1)2+y 2=1外切且与y 轴相切的动圆的圆心轨迹方程为()(A )y 2=-4x (x<0) (B )y=0 (x>0)(C )y 2=-4x (x<0)和y=0 (x>0) (D )y 2=-2x -1 (x<-1) 焦半径23、已知抛物线方程为22 (0)y px p =>,过该抛物线焦点F 且不与x 轴垂直的直线AB 交抛物线于,A B 两点,过点A ,点B 分别作,AM BN 垂直于抛物线的准线,分别交准线于,M N 两点,那么MFN ∠必是 A.锐角 B.直角 C.钝角 D. 以上皆有可能24、抛物线x y 22=上的两点A 、B 到焦点的距离之和是5,则线段AB 中点到y 轴的距离是___________。
25、已知过抛物线24y x =的焦点F 的直线交该抛物线于A 、B 两点,2AF =,则BF =_____________ . 26、设抛物线28y x =上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A. 4 B. 6 C. 8 D.1227、若抛物线2y x =上的点P 到直线1x =-的距离为2,则点P 到该抛物线焦点的距离为________。
28、若抛物线y 2=x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为 ( )A.14⎛± ⎝⎭,B. 18⎛± ⎝⎭,C. 14⎛ ⎝⎭D. 18⎛ ⎝⎭29、己知等边三角形的一个顶点位于抛物线2y x =的焦点,另外两个顶点在抛物线上,则这个等边三角形的边长为________.30、从抛物线x y 42=上一点P 引抛物线准线的垂线,垂足为M ,且|PM|=5,设抛物线的焦点为F ,则△MPF 的面积为() A .5B .10C .20D .1531、抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )A.2B.3C.4D.532、已知A,B,C 为抛物线22(0)y px p =>上不同的三点, F 为抛物线的焦点,且0FA FB FC ++=,求||||||FA FB FC ++=________33、 已知抛物线的顶点在原点,焦点在x 轴的正半轴上,F 为焦点,,,A B C 为抛物线上的三点,且满足0FA FB FC ++=,FA +FB +6FC =,则抛物线的方程为.34、已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且2132x x x =+, 则有( )A.123FP FP FP +=B.222123FPFP FP +=C.2132FP FP FP =+D.2213FPFP FP =· 35、已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 .36、设F 为抛物线24y x =的焦点,A ,B ,C 为抛物线上三点.O 为坐标原点,若FA +FB +FC =0.△OFA ,△OFB ,△OFC 的面积分别为S 1,S 2,S 3,则21S +22S +23S 的值为( )A .9B .6C . 4D . 337、过抛物线y 2=4x 的焦点作直线交抛物线于A(x 1,y 1),B(x 2,y 2),如果x 1+x 2=6,那么|AB|=( ) A.8 B.10 C.6 D.438、设抛物线24x y =的焦点为F ,经过点(1,2)P 的直线与抛物线交于A 、B 两点,又知点P 恰好为AB 的中点,则AF BF +的值是 ( ) A.3B.4 C.6 D.17839、 已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且2AK AF =,则AFK ∆的面积为( ) (A)4(B)8(C)16(D)3240、 设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,PA l ⊥,A 为垂足,如果直线AF 斜率为3-,那么PF =( )(A)43 (B) 8 (C) 83 (D) 1641、直线l 过抛物线x y =2的焦点F ,交抛物线于B A 、两点,且点A 在x 轴上方,若直线l 的倾斜角θ≥4π,则|FA|的取值范围是 ( )A. ⎪⎭⎫⎢⎣⎡23,41B. ⎥⎦⎤+ ⎝⎛2243,41C. ⎥⎦⎤+ ⎝⎛221,41D. ⎥⎦⎤+ ⎝⎛-221,22142、已知定点N(1, 0),动点A 、B 分别在图中抛物线y 2=4x 及椭圆x 24+y23=1的实线部分上运动,且AB ∥x 轴,则△NAB 的周长L 的取值范围是43、已知椭圆22143x y +=和抛物线24y x =,斜率为0的直线AB 在第一象限内分别交椭圆与抛物线于A,B 两点,点M(1,0),则||||BM AM -的最大值为 ( ) A 、112 B 、14 C 、12D 、144、过抛物线2y ax =(0a >)的焦点F 用一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于( )A .2aB .a 21C .4aD .a4 过焦点弦45、过抛物线x y =2的焦点作一条直线与抛物线交于A 、B 两点,它们的横坐标之和等于3,则这样的直线( )A .有且只有一条 B .有且只有两条 C .有无穷多条 D .不存在46、过抛物线2(0)y ax a =>的焦点F 作一直线交抛物线于A 、B 两点,若线段AF 、BF 的长分别为m 、n ,则mn m n+等于( ) A.12aB.14aC.2aD.4a47、 设抛物线22y x =与过其焦点的直线交于,A B 两点,则OA OB •的值( )A34 B 34- C 3 D 3- 48、 如图,已知O 是坐标原点,过点)0,5(P 且斜率为k 的直线l 交 抛物线x y 52=于),(11y x M 、),(22y x N 两点. (1)求21x x 和21y y 的值;(2)求证:ON OM ⊥.49、抛物线2y 4x F,=的焦点为准线为,与x 轴相交于点E ,过F 且倾斜角等于60°的直线与抛物线在x 轴上方的部分相交于点A ,AB ⊥,垂足为B ,则四边形ABEF 的面积等于( ) A 、33B 、43C 、63D 、83 50、过抛物线22(0)y px p =>的焦点F 且倾斜角为60的直线l 交抛物线于A 、B 两点,若||3AF =, 则此抛物线方程为( )A .23y x =B .26y x =C .232y x =D .22y x =51、过抛物线22(0)y px p =>的焦点F 作直线l ,交抛物线于,A B 两点,交其准线于C 点.若3CB BF =,则直线l 的斜率为_________.52、已知以F 为焦点的抛物线24y x =上的两点A 、B 满足3AF FB =,则弦AB 的中点到准线的距离为________.53、已知F 是抛物线24C y x =:的焦点,过F 且斜率为3的直线交C 于A B ,两点.设FA FB >,则FA与FB 的比值等于___________. 最值问题54、已知抛物线,42x y =焦点为F,)2,2(A ,P 为抛物线上的点,则PF PA +的最小值为_____55、已知点P 在抛物线24y x =上,那么点P 到点(21)Q -,的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为______________.56、已知点P 是抛物线x y 42=上的点,设点P 到抛物线准线的距离为1d ,到圆1)3()3(22=-++y x 上一动点Q 的距离为212,d d d +则的最小值是_______ .57、已知点Q (4,0)及抛物线y =122x 上一动点P (x ,y ),则y +|PQ |的最小值是__58、抛物线2y x =-上的点到直线4380x y +-=距离的最小值是 ( )A.3B.75 C.85 D.4359、已知抛物线24y x =上的点P 到抛物线的准线距离为1d ,到直线3490x y -+=的距离为2d , 则12d d +的最小值为__________.60、已知抛物线2x y =上有一条长为2的动弦AB ,则AB 中点M 到x 轴的最短距离为_______________61、若实数12,,32,2-=+≤x yx y x y y x 则且满足的取值范围是_______________ 62、已知点()x y ,在抛物线24y x =上,则22132x y ++的最小值是___________.63、抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线px y 22=p (>)0,弦AB 过焦点,△ABQ 为其阿基米德三角形,则△ABQ 的面积的最小值为( )A.22p B.2p C.22p D.24p。