静力学2
- 格式:pdf
- 大小:3.83 MB
- 文档页数:68
第二讲 力平衡(一)精选例题【例1】 如图所示一个均匀的质量为1m 的球挂在天花板上,从同一点挂一个重物质量为2m 。
问所成角度。
O 【解析】相对于点的总力矩为0.)m g (l +R )sin =m 12g R -(l +R sin θθ⎡⎤⎣⎦∴()1212sin []+R m (m +)m R l θ-=该题如果用变力分析去解题,对悬挂2m 的绳对大球的支持力的方向比较困难,而用力矩去解题,显得尤为简单【例2】 如图,重为G 木块用绳子悬挂在两个轻杆支架的交点P ,现给木块一个水平方向的F F 12N 、N 、T 作用力,缓慢增大并且系统保持平衡,求作用力的变化趋势。
N 【解析】可以采用图解法,分别考虑木块以及P 点的受力平衡,将二者的受力三角形画在同一个图中,利用几何相似三角形的方法可以得到三个力的变化趋势。
最后可得,不变,2N 1和T 增加。
【例3】 如图,一个半径为R 非均匀质量光滑的圆球,其重心不在球心O 处,先将它置于A 30︒B A B 30︒C O 水平地面上,平衡时球面上的点和地面接触;再将它置于倾角为的粗糙斜面上,平衡时球面上的点与斜面接触,已知到的圆心角也为,试求球体的重心到球心的距离.【解析】B BC A OA 放在斜面上,球受重力支持力和摩擦力,三力共点必过点的重心在过B 于平面垂直的直线上。
即,又放在水平面上点落地,则此时球受重力和支持力,则球重心必在连线上,则重心位置在C 点.CO==【例6】有一长l重为W的均匀杆AB,A顶端竖直的粗糙墙壁上,杆端与墙间的摩擦系数μB CθμθP A P WPB PA x 为,端用一强度足够而不可伸长的绳悬挂,绳的另一端固定在墙壁点,木杆呈水平状态,绳与杆的夹角为(如图),求杆能保持平衡时与应满足的条件。
杆保持平衡时,杆上有一点存在,若与点间挂一重物,则足够大可以破坏平衡了,而在间任一点悬挂任意重物均不能破坏平衡。
求距离. 【解析】受力分析coT Nsθ=力平衡siT f W Wnθ+=+A力矩平衡:以为支点,θ=Wsin2lTl W+x∴f=W+W-N tan≤Nθμ2W xtanθ=+N W∴0002l2lW Wx xW+W Wtanlμθ-+()≤(+W)∴00()2l2W W)≤(+WtanlW Wx xμθ+-①0W=ntaμθ≥当不挂生物,此即为不挂重物平衡的条件,可得②W0(1)2tan(+1)-W Wμxμθl tanθ-+≤W取穷大,则上式仍成立.∴μθl tan(1)+-1tanxl tanθθμ+≥0⇒x≥wr G【例7】有一个半径为a,高为4a,重为的两端开口的薄壁圆筒,现将筒竖放在光滑的水平面上,之后将半径为,重为的两个完全相同的光滑圆球放入筒内而呈叠放状态,如图,当<r 2<a 2a 时,试求使圆筒不翻倒的条件.【解析】方法一:先看一个直角三角形O 对进行受力分析∴cos sin T =G cot θθ=N T θ=N G ⇒22212-a r ar -a r N =G ar -a sin θG =G =再对筒受力分析A N A 考虑以为支点,考虑翻倒则地面给筒的支持力的作用点移到点.则不翻倒条件。
第二章 部分习题解答2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。
试求A 和C 点处的约束力。
解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。
曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。
AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):0=∑M0)45sin(100=-+⋅⋅M a F A θ aMF A 354.0= 其中:31tan =θ。
对BC 杆有:aM F F F A B C 354.0=== A ,C 两点约束力的方向如图所示。
2-4四连杆机构在图示位置平衡,已知OA=60cm,BC=40cm,作用在BC 上力偶的力偶矩M 2=1N ·m 。
试求作用在OA 上力偶的力偶矩大小M 1和AB 所受的力AB F 。
各杆重量不计。
解:机构中AB 杆为二力杆,点A,B 出的约束力方向即可确定。
由力偶系作用下刚体的平衡条件,点O,C 处的约束力方向也可确定,各杆的受力如图所示。
对BC 杆有: 0=∑M030sin 20=-⋅⋅M C B F B对AB 杆有: A B F F = 对OA 杆有:0=∑M01=⋅-A O F M AF B F A θ θ F BF C F AF OOF AF BF BF CC求解以上三式可得:m N M ⋅=31, N F F F C O AB 5===,方向如图所示。
2-6等边三角形板ABC,边长为a ,今沿其边作用大小均为F 的力321,,F F F ,方向如图a,b 所示。
试分别求其最简简化结果。
解:2-6a坐标如图所示,各力可表示为:j F i F F 23211+=, i F F =2, j F i F F 23213+-=先将力系向A 点简化得(红色的):j F i F F R3+=, k Fa M A 23=方向如左图所示。