四川省双流中学2014-2015学年高一下学期期中考试数学文试题
- 格式:doc
- 大小:1.03 MB
- 文档页数:10
四川省成都市双流中学2014-2015学年高一上学期期中数学试卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x∈N|1<x≤2},则()A.1∈A B.∈A C.π∈A D.2∈A2.(5分)若函数f(x)=log a x(a>0且a≠1)经过点(4,2),则f(2)=()A.B.1C.2D.43.(5分)集合M={0,1,2,3},集合P={x|x2=9},则M∩P=()A.{﹣3,0,1,2,3} B.{0,1,2,3} C.{0,1,2} D. {3}4.(5分)与y=x为同一个函数的是()A.B.C.D.5.(5分)定义在集合{1,2,3,4}上的函数f(x),g(x)分别由下表给出:x 1 2 3 4 x 1 2 3 4f(x) 3 4 2 1 g(x) 4 3 1 2则与f[g(1)]相同的是()A.g(f(3))B.g(f(1))C.g(f(4))D.g(f(2))6.(5分)下列结论正确的是()A.30.8<30.7B.0.75﹣0.1<0.750.1C.l n3.4<ln8.5 D.l g0.3>lg0.57.(5分)已知偶函数f(x)在[0,+∞)上单调递减,则f(1)和f(﹣10)的大小关系为()A.f(1)>f(﹣10)B.f(1)<f(﹣10)C.f(1)=f(﹣10)D.f(1)与f(﹣10)的大小关系不确定8.(5分)如果函数f(x)=x2﹣(a﹣1)x+3在区间(4,+∞)上是增函数,那么实数a的取值范围是()A.(﹣∞,9]B.[5,+∞)C.[9,+∞)D.(﹣∞,5]9.(5分)已知函数的图象与x轴的交点分别为(a,0)和(b,0),则函数g(x)=a x﹣b图象可能为()A.B.C.D.10.(5分)已知函数f(x)满足f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max(p,q)表示p,q中的较大值,min(p,q)表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.a2﹣2a﹣16 B.a2+2a﹣16 C.﹣16 D.16二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)=.12.(5分)函数f(x)=+的定义域是.13.(5分)已知y=f(x)在定义域(﹣1,1)上是减函数,且f(1﹣a)<f(2a﹣1),则a 的取值范围是.14.(5分)若函数y=a与函数y=|2x﹣1|的图象有两个公共点,则a的取值范围是.15.(5分)D(x)=,则给出下列结论①函数D(x)的定义域为{x|x≠0};②函数D(x)的值域[0,1];③函数D(x)是偶函数;④函数D(x)不是单调函数.⑤对任意的x∈R,都存在T0∈R,使得D(x+T0)=D(x).其中的正确的结论是(写出所有正确结论的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(Ⅰ)计算;(Ⅱ)计算2log510+log50.25.17.(12分)设全集U=R,集合A={x|﹣1≤x<4},B={x|x﹣2≥0},C={x|2m﹣1<x<m+1,m∈R}.(Ⅰ)求A∩B;(Ⅱ)求(∁U A)∪(∁U B).(Ⅲ)若C⊆A,求实数m的取值范围.18.(12分)已知函数f(x)=﹣(a>0,x>0)(Ⅰ)判断函数f(x)在(0,+∞)上的单调性,并用函数单调性定义加以证明;(Ⅱ)若f(x)在上的值域是,求实数a的值.19.(12分)设某旅游景点每天的固定成本为500元,门票每张为30元,变动成本与购票进入旅游景点的人数的算术平方根成正比.一天购票人数为25时,该旅游景点收支平衡;一天购票人数超过100时,该旅游景点须另交保险费200元.设每天的购票人数为x,盈利额为y.(Ⅰ)求y与x之间的函数关系;(Ⅱ)试用程序框图描述算法(要求:输入购票人数,输出盈利额);(Ⅲ)该旅游景点希望在人数达到20人时即不出现亏损,若用提高门票价格的措施,则每张门票至少要多少元(取整数)?注:可选用数据:=1.41,=1.73,=2.24.20.(13分)已知函数f(x)=x2﹣(2a﹣1)x﹣3(Ⅰ)当a=2时,若∈[﹣2,3],求函数f(x)的值域;(Ⅱ)若函数f(x)在[﹣2,3]上的最小值为g(a).①求函数g(a)的表达式;②是否存在实数a,使得g(a)=1,若存在,求出实数a的值,若不存在,请说明理由.21.(14分)已知函数f(x)=2x+1定义在R上.且f(x)可以表示为一个偶函数g(x)与一个奇函数h(x)之和.(1)求g(x)与h(x)与的解析式;(2)设h(x)=t,p(t)=g(2x)+2mh(x)+m2﹣m﹣1(m∈R),求出p(t)的解析式;(3)若p(t)≥m2﹣m﹣1对于t∈R恒成立,求m的取值范围.四川省成都市双流中学2014-2015学年高一上学期期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x∈N|1<x≤2},则()A.1∈A B.∈A C.π∈A D.2∈A考点:元素与集合关系的判断.专题:集合.分析:用列举法将集合表示出来即可.解答:解:∵A={x∈N|1<x≤2}={2},∴2∈A故选:D点评:本题考查集合的描述法表示属于基础题.2.(5分)若函数f(x)=log a x(a>0且a≠1)经过点(4,2),则f(2)=()A.B.1C.2D.4考点:对数函数的单调性与特殊点.专题:函数的性质及应用.分析:由题意和对数的运算易得a=2,代值计算可得.解答:解:∵函数f(x)=log a x经过点(4,2),∴log a4=2,即a2=4,解得a=2,∴f(2)=log22=1故选:B点评:本题考查对数函数的性质,属基础题.3.(5分)集合M={0,1,2,3},集合P={x|x2=9},则M∩P=()A.{﹣3,0,1,2,3} B.{0,1,2,3} C.{0,1,2} D. {3}考点:交集及其运算.专题:集合.分析:集合M与集合P的公共元素,构成集合M∩P,由此利用集合M={0,1,2,3},P={x|x2=9}={3,﹣3},能求出M∩P.解答:解:∵集合M={0,1,2,3},集合P={x|x2=9}={3,﹣3},∴M∩P={3},故选:D.点评:本题考查集合的交集及其运算,是基础题.解题时要认真审题,仔细解答.4.(5分)与y=x为同一个函数的是()A.B.C.D.考点:判断两个函数是否为同一函数.专题:计算题;函数的性质及应用.分析:判断函数是否相等要看两个方面,对应关系与定义域.解答:解:选项A:y=|x|,对应关系不同,选项B:定义域为{x|x≠0},定义域不同,选项C:成立,选项D:定义域为{x|x≥0},定义域不同.故选C.点评:本题考查了函数相等的判断,只需对定义域与对应关系两者都判断即可.5.(5分)定义在集合{1,2,3,4}上的函数f(x),g(x)分别由下表给出:x 1 2 3 4 x 1 2 3 4f(x) 3 4 2 1 g(x) 4 3 1 2则与f[g(1)]相同的是()A.g(f(3))B.g(f(1))C.g(f(4))D.g(f(2))考点:函数的值.专题:函数的性质及应用.分析:根据表格的数值,求出对应的函数值即可.解答:解:由表格可得g(1)=4,则f[g(1)]=f(4)=1,g(f(3))=g(2)=3,g(f(1))=g(3)=1,g(f(4))=g(1)=4,g(f(2))=g(4)=2,故与f[g(1)]相同的是g(f(1)),故选:B点评:本题主要考查函数值的计算,根据表格计算对对应的函数值是解决本题的关键.6.(5分)下列结论正确的是()A.30.8<30.7B.0.75﹣0.1<0.750.1C.l n3.4<ln8.5 D.l g0.3>lg0.5考点:对数值大小的比较.专题:函数的性质及应用.分析:利用对数函数与指数函数的单调性即可得出.解答:解:A.考察函数y=3x在R上单调递增,∴30.8>30.7,不正确.B.考察函数y=0.75x在R上单调递减,∴0.75﹣0.1>0.750.1,不正确.C.考察函数y=lnx在(0,+∞)上单调递增,∴ln3.4<ln8.5.D.考察函数y=lgx在(0,+∞)上单调递增,∴lg0.3<lg0.5.故选:C.点评:本题考查了对数函数与指数函数的单调性,属于基础题.7.(5分)已知偶函数f(x)在[0,+∞)上单调递减,则f(1)和f(﹣10)的大小关系为()A.f(1)>f(﹣10)B.f(1)<f(﹣10)C.f(1)=f(﹣10)D.f(1)与f(﹣10)的大小关系不确定考点:二次函数的性质.专题:计算题;函数的性质及应用.分析:由偶函数的性质可得f(﹣10)=f(10),借助函数的单调性可得f(1)与f(﹣10)的大小关系.解答:解:∵f(x)为偶函数,∴f(﹣10)=f(10),又f(x)在[0,+∞)上单调递减,0<1<10,∴f(1)>f(10),即f(1)>f(﹣10),故选A.点评:该题考查函数的单调性、奇偶性及其综合运用,属基础题,利用函数的性质把问题转化到已知区间上解决是解题关键.8.(5分)如果函数f(x)=x2﹣(a﹣1)x+3在区间(4,+∞)上是增函数,那么实数a的取值范围是()A.(﹣∞,9]B.[5,+∞)C.[9,+∞)D.(﹣∞,5]考点:二次函数的性质.专题:计算题;函数的性质及应用.分析:由题意可知(4,+∞)为函数增区间的子集,借助图象可得关于a的不等式,解出可得答案.解答:解:函数f(x)=x2﹣(a﹣1)x+3的对称轴为x=,由题意可得,≤4,解得a≤9,∴实数a的取值范围是(﹣∞,9],故选A.点评:该题考查二次函数的单调性,二次函数问题常常借助图象解决.正确理解函数f(x)在区间[a,b]单调递增的含义是解题关键.9.(5分)已知函数的图象与x轴的交点分别为(a,0)和(b,0),则函数g(x)=a x﹣b图象可能为()A.B.C.D.考点:指数函数的图像变换.专题:函数的性质及应用.分析:由题意可得a,b的值,函数g(x)=a x﹣b的可能图象可以看成吧y=a x向下平移b 个单位得到的,画出函数的简图,结合所给的选项可得结论.解答:解:∵函数的图象与x轴的交点分别为(a,0)和(b,0),则a=2,b=,或a=,b=2.①当a=2,b=时,函数g(x)=a x﹣b即函数g(x)=2x﹣,其大致图象是:②当a=,b=2时,函数g(x)=a x﹣b即函数g(x)=x﹣2,其大致图象是:故选C.点评:本题主要考查函数的图象的变换规律,函数的单调性和特殊点,属于基础题.10.(5分)已知函数f(x)满足f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max(p,q)表示p,q中的较大值,min(p,q)表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.a2﹣2a﹣16 B.a2+2a﹣16 C.﹣16 D.16考点:函数最值的应用.专题:压轴题;函数的性质及应用.分析:本选择题宜采用特殊值法.取a=﹣2,则f(x)=x2+4,g(x)=﹣x2﹣8x+4.画出它们的图象,如图所示.从而得出H1(x)的最小值为两图象右边交点的纵坐标,H2(x)的最大值为两图象左边交点的纵坐标,再将两函数图象对应的方程组成方程组,求解即得.解答:解:取a=﹣2,则f(x)=x2+4,g(x)=﹣x2﹣8x+4.画出它们的图象,如图所示.则H1(x)的最小值为两图象右边交点的纵坐标,H2(x)的最大值为两图象左边交点的纵坐标,由解得或,∴A=4,B=20,A﹣B=﹣16.故选C.点评:本题主要考查了二次函数的图象与性质、函数最值的应用等,考查了数形结合的思想,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)=4﹣π.考点:方根与根式及根式的化简运算.专题:计算题.分析:由π<4,得,由此能求出原式的值.解答:解:∵π<4∴.故答案为:4﹣π.点评:本题考查根式的化简运算,解题时要注意被开方数的符号,合理地选取公式.12.(5分)函数f(x)=+的定义域是[﹣].考点:函数的定义域及其求法.专题:计算题;函数的性质及应用.分析:要使函数f(x)有意义,则需,解出即可得到定义域.解答:解:要使函数f(x)有意义,则需,即,即有﹣x,则定义域为:[﹣].故答案为:[﹣].点评:本题考查函数的定义域的求法,注意偶次根式被开方式非负,考查运算能力,属于基础题.13.(5分)已知y=f(x)在定义域(﹣1,1)上是减函数,且f(1﹣a)<f(2a﹣1),则a 的取值范围是.考点:函数单调性的性质.专题:计算题.分析:根据f(1﹣a)<f(2a﹣1),严格应用函数的单调性.要注意定义域.解答:解:∵f(x)在定义域(﹣1,1)上是减函数,且f(1﹣a)<f(2a﹣1)∴,∴故答案为:点评:本题主要考查应用单调性解题,一定要注意变量的取值范围.14.(5分)若函数y=a与函数y=|2x﹣1|的图象有两个公共点,则a的取值范围是(0,1).考点:指数函数的图像与性质.专题:计算题;数形结合.分析:先作出函数y=|2x﹣1|图象,再由直线y=a与函数y=|2x﹣1|的图象有两个公共点,作出直线,移动直线,用数形结合求解.解答:解:作出函数y=|2x﹣1|图象:若直线y=a与函数y=|2x﹣1|的图象有两个公共点由图象可知0<a<1,∴a的取值范围是0<a<1.故答案为:(0,1)点评:本题主要考查指数函数的图象和性质,主要涉及了函数的图象变换及函数的单调性,解答的关键是数形结合的思想方法.15.(5分)D(x)=,则给出下列结论①函数D(x)的定义域为{x|x≠0};②函数D(x)的值域[0,1];③函数D(x)是偶函数;④函数D(x)不是单调函数.⑤对任意的x∈R,都存在T0∈R,使得D(x+T0)=D(x).其中的正确的结论是③④⑤(写出所有正确结论的序号).考点:分段函数的应用.专题:阅读型;函数的性质及应用.分析:由函数定义域的概念易知结论①不正确;由函数值域的概念易知结论②不正确;由偶函数定义可证明结论③正确;由函数单调性定义,易知④结论正确;由分段函数的定义和有理数与无理数的概念,可证明结论⑤正确.解答:解:由于D(x)=,则①函数的定义域为R,故①错;②函数D(x)的值域是{0,1},故②错;③由于D(﹣x)==D(x),则D(x)是偶函数,故③正确;④由于D()=0,D(2)=1,D()=0,显然函数D(x)不是单调函数,故④正确;⑤当x为有理数时,D(x)=1,要使D(x+T0)=D(x)=1,则存在T0∈Q,使得x+T0为有理数成立;当x为无理数时,D(x)=0,要使D(x+T0)=D(x)=0,则存在T0∈R,使得x+T0为无理数成立.对任意的x∈R,都存在T0∈R,使得D(x+T0)=D(x).故⑤正确.故答案为:③④⑤点评:本题考查分段函数及运用,考查函数的性质和运用,考查函数的单调性、奇偶性、值域等性质,考查推理能力,属于中档题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(Ⅰ)计算;(Ⅱ)计算2log510+log50.25.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:函数的性质及应用.分析:(Ⅰ)利用分数指数幂的去处法则求解.(Ⅱ)利用对数的去处法则求解.解答:解:(Ⅰ);====.…(6分)(Ⅱ)2log510+log50.25=log5100+log50.25=log525=2.点评:本题考查指数式和对数式化简求值,是基础题,解题时要注意运算法则的合理运用.17.(12分)设全集U=R,集合A={x|﹣1≤x<4},B={x|x﹣2≥0},C={x|2m﹣1<x<m+1,m∈R}.(Ⅰ)求A∩B;(Ⅱ)求(∁U A)∪(∁U B).(Ⅲ)若C⊆A,求实数m的取值范围.考点:交、并、补集的混合运算;集合的包含关系判断及应用.专题:集合.分析:(Ⅰ)进行交集的运算即可;(Ⅱ)进行补集、并集的运算即可;(Ⅲ)若C⊆A,便有C=∅和C≠∅两种情况,C=∅时,2m﹣1≥m+1;C≠∅时,要使C⊆A,则m 应满足,所以分别求出这两种情况下的m的取值范围再求并集即可.解答:解:(Ⅰ)A∩B={x|2≤x<4};(Ⅱ)(C U A)∪(C U B)={x|x<﹣1,或x≥4}∪{x|x<2}={x|x<2或x≥4};(Ⅲ)(1)当C=∅,即2m﹣1≥m+1,即m≥2时,满足C⊆A;(2)当C≠∅,即2m﹣1<m+1,即m<2时,则:,解得0≤m≤3;∴0≤m<2综合(1)(2)可得m≥0;∴实数m的取值范围为[0,+∞).点评:考查集合的交、并、补的运算,以及子集的概念,不要漏了C=∅的情况.18.(12分)已知函数f(x)=﹣(a>0,x>0)(Ⅰ)判断函数f(x)在(0,+∞)上的单调性,并用函数单调性定义加以证明;(Ⅱ)若f(x)在上的值域是,求实数a的值.考点:函数单调性的性质;函数单调性的判断与证明.专题:函数的性质及应用.分析:(Ⅰ)根据函数单调性的定义即可判断函数f(x)在(0,+∞)上的单调性,(Ⅱ)根据函数的单调性和值域之间的关系,建立方程关系即可求出a的值.解答:解:(Ⅰ)函数f(x)在(0,+∞)上的单调递增,下面用定义证明证明:任取0<x1<x2,则f(x1)﹣f(x2)=﹣()=﹣=,又∵0<x1<x2,∴0<x1x2,x1﹣x2<0,∴<0,即f(x1)<f(x2)∴函数f(x)在(0,+∞)上的单调递增…(8分)(Ⅱ)∵f(x)在上单调递增,∴f()=,f(2)=2,则,解得a=.点评:本题主要考查函数单调性的判断和证明,根据函数的定义是解决本题的关键.19.(12分)设某旅游景点每天的固定成本为500元,门票每张为30元,变动成本与购票进入旅游景点的人数的算术平方根成正比.一天购票人数为25时,该旅游景点收支平衡;一天购票人数超过100时,该旅游景点须另交保险费200元.设每天的购票人数为x,盈利额为y.(Ⅰ)求y与x之间的函数关系;(Ⅱ)试用程序框图描述算法(要求:输入购票人数,输出盈利额);(Ⅲ)该旅游景点希望在人数达到20人时即不出现亏损,若用提高门票价格的措施,则每张门票至少要多少元(取整数)?注:可选用数据:=1.41,=1.73,=2.24.考点:分段函数的应用.专题:应用题;综合题;数学模型法;算法和程序框图.分析:(Ⅰ)由题意设出可变成本的解析式,用门票收入减去固定成本与可变成本,即得所求的y与x之间的函数关系;(Ⅱ)根据(Ⅰ)的结论,采用选择结构的框图;(Ⅲ)设每张门票至少需要a元,代入不超过100人时的解析式,令其大于0,解出参数a的取值范围,得出其最小值.解答:解:(Ⅰ)依题意可设变动成本y1=k,当x=25时,有30×25﹣500﹣5k=0解得,k=50,故y=30x﹣500﹣50(0<x≤100,x∈N)当x>100时,y=30x﹣500﹣50﹣200=30x﹣50﹣700,∴y=.(Ⅱ)如图表示:输入购票人数x,输出盈利额y的程序框图.(Ⅲ)设每张门票至少需要a元,则20a﹣50﹣500≥0,即20a≥100+500,即a≥5+25=5×2.24+25=36.2,又a取整数,故取a=37.答:每张门票至少需要37元.点评:本题考查函数模型的选择与应用,根据实际问题选择合适的模型是解决实际问题的变化关系常用的方法,其步骤是,建立函数模型,求解函数,得出结论,再反馈回实际问题中去.同时考查算法和程序框图,属于中档题.20.(13分)已知函数f(x)=x2﹣(2a﹣1)x﹣3(Ⅰ)当a=2时,若∈[﹣2,3],求函数f(x)的值域;(Ⅱ)若函数f(x)在[﹣2,3]上的最小值为g(a).①求函数g(a)的表达式;②是否存在实数a,使得g(a)=1,若存在,求出实数a的值,若不存在,请说明理由.考点:二次函数在闭区间上的最值;函数解析式的求解及常用方法;函数的零点.专题:函数的性质及应用.分析:(Ⅰ)当a=2时,函数f(x)=﹣,若x∈[﹣2,3],利用二次函数的性质求得它的最值,可得函数的值域.(Ⅱ)由f(x)=﹣,x∈[﹣2,3],再分对称轴在此区间的左侧、中间、由侧三种情况,分别求得f(x)得最小值g(a)的解析式,根据g(a)=1,分类讨论,分别求得a的值,综合可得结论.解答:解:(Ⅰ)当a=2时,函数f(x)=x2﹣3x﹣3=﹣,若x∈[﹣2,3],则函数f(x)的最小值为f()=﹣;最大值为f(﹣2)=7,故函数的值域为[﹣,7].(Ⅱ)∵f(x)=x2﹣(2a﹣1)x﹣3=﹣,x∈[﹣2,3],(1)当,即a≤﹣时,函数f(x)的最小值为f(﹣2)=4a﹣1;(2)当﹣2<≤3,即﹣<a≤时,函数f(x)的最小值为f()=﹣;(3)当>3,即a>时,函数f(x)的最小值为f(3)=9﹣6a;综上可得,①g(a)=.②当a≤﹣时,由4a﹣1=1,得,∴此时a∈∅;当﹣<a≤时,由﹣=1,得4a2﹣4a+17=0,∵△<0得a∈∅,∴此时a∈∅;当a>时,由9﹣6a=1,得a=,∴此时,a∈∅;综上,不存在实数a,使得g(a)=1成立.点评:本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,体现了分类讨论的数学思想,属基础题.21.(14分)已知函数f(x)=2x+1定义在R上.且f(x)可以表示为一个偶函数g(x)与一个奇函数h(x)之和.(1)求g(x)与h(x)与的解析式;(2)设h(x)=t,p(t)=g(2x)+2mh(x)+m2﹣m﹣1(m∈R),求出p(t)的解析式;(3)若p(t)≥m2﹣m﹣1对于t∈R恒成立,求m的取值范围.考点:函数恒成立问题;函数解析式的求解及常用方法.专题:函数的性质及应用.分析:(1)若f(x)=g(x)+h(x),其中g(x)为偶函数,h(x)为奇函数,利用函数奇偶性的定义,则有f(﹣x)=g(﹣x)+h(﹣x)=g(x)﹣h(x),解上述关于g(x),h(x)的方程组得出g(x)与h(x)的解析式.(2)由于p(t)=g(2x)+2mh(x)+m2﹣m﹣1(m∈R),将g(2x)化为t的表达式后,则p(t)的解析式可求出.(3)p(t)=t2+2mt+m2﹣m+1≥m2﹣m﹣1对于t∈R恒成立,即t2+2mt+2≥0对于t∈R恒成立,则△=(2m)2﹣4×2≤0即可.解答:解:(1)若f(x)=g(x)+h(x)①,其中g(x)为偶函数,h(x)为奇函数,则有f(﹣x)=g(﹣x)+h(﹣x),即f(﹣x)=g(x)﹣h(x)②,由①②解得,.∵f(x)=2x+1,∴,.(2)由,则t∈R,平方得,∴,∴p(t)=t2+2mt+m2﹣m+1.(3)p(t)=t2+2mt+m2﹣m+1≥m2﹣m﹣1对于t∈R恒成立,即t2+2mt+2≥0对于t∈R恒成立,则△=(2m)2﹣4×2≤0,解得.点评:本题考查函数奇偶性的应用,方程组法、换元法求函数解析式,不等式恒成立.具有一定的综合性.。
2014-2015学年第二学期高一期中联考数学试卷一、选择题:(在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内,每小题5分,共60分).1.)30cos(︒-的值是( )A .21-B .21C .23-D .232. 已知数列{}n a 的前n 项和为n S ,若),(22+∈-=N n a S n n 则=2a ( ) A. 4 B. 2 C. 1 D. 2-3.已知数列{}n a 的前n 项和为n S ,且12+=n S n ,则下列结论正确的是( ) A.n a =21n - B.n a =21n + C.n a = 2 (=1)2 1 (>1)n n n ⎧⎨-⎩D.n a = 2 (=1)2 1 (>1)n n n ⎧⎨+⎩4.在锐角ABC ∆中,角B A 、所对的边分别为,b a 、若b B a 2sin 2=,则角A 等于( )A.6πB.4π C. 3π D. 4π或π435.在ABC ∆中,,8,54cos =⋅=A 则ABC ∆的面积为( )A. 3B. 56C. 512D. 66.设),,1(x =)3,2(-=x ,若当m x =时,//,当n x =时,⊥.则=+n m ( )A. 2-B. 1-C. 0D. 2-或1-7. 数列{}n a 为等差数列, n S 为前n 项和,566778,,S S S S S S <=>,则下列错误的是( )A. 0<dB.07=aC.59S S >D. 6S 和7S 均为n S 的最大值 8.数列{}n a 满足,1,311nn n a a a a -==+则=2015a ( ) A .21B . 3C .21-D .329.在ABC ∆中,角C B A 、、所对的边分别是,c b a 、、若,cos cos sin CcB b A a ==则ABC ∆的形状是( )A .等边三角形B .等腰直角三角形C .直角非等腰三角形D .等腰非直角三角形 10.已知函数)2||,0)(2cos()(πϕωπϕω<>-+=x x f 的部分图象如图所示,则)6(π+=x f y 取得最小值时x 的集合为( )A.⎭⎬⎫⎩⎨⎧∈-=Z k k x x ,6ππ B.⎭⎬⎫⎩⎨⎧∈-=Z k k x x ,3ππC.⎭⎬⎫⎩⎨⎧∈-=Z k k x x ,62ππ D.⎭⎬⎫⎩⎨⎧∈-=Z k k x x ,32ππ11.已知2sin 21cos 2αα=+,则tan 2α=( )A .43-B .43C .43或0D .43-或012.已知数列{}n a 满足q q qa a n n (221-+=+为常数, )1||<q , 若{},30,6,2,6,18,,,6543---∈a a a a 则=1a ( )A. 2-B. 2-或126C. 128D. 0或128第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题卡相应位置上).13.若等比数列{}n a 满足2031=+a a ,4042=+a a ,则公比q = 14.已知等差数列{}n a 的前n 项和为n S ,且满足π2515=S ,则8tan a 的值是15. 已知AC 为平行四边形ABCD 的一条对角线,且),3,1(),4,2(==则=|| 16. ①在ABC ∆中,若,sin sin B A >则B A >;②若满足条件a BC AB C ==︒=,3,60的ABC ∆有两个,则32<<a ; ③在等比数列{}n a 中,若其前n 项和a S nn +=3,则实数a =1-;④若等比数列{}n a 中2a 和10a 是方程016152=++x x 的两根,则,22522108422=++a a a a且.46±=a其中正确的命题序号有 (把你认为正确的命题序号填在横线上).三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. (本小题满分10分)已知函数()()x x x x f 2cos cos sin 2++=(1)求()x f 的最小正周期和单调递增区间; (2)求()x f 的图像的对称中心和对称轴方程.18. (本小题满分12分)在ABC ∆中,角C B A 、、所对的边分别是,c b a 、、已知bc a c b +=+222. (1)求角A 的大小; (2)如果36cos =B ,2=b ,求ABC ∆的面积.19. (本小题满分12分)n S 是等差数列{}n a 的前n 项和,115=a ,355=S . (1)求{}n a 的通项公式;(2)设n an a b =(a 是实常数,且0>a ),求{}n b 的前n 项和n T .20.(本小题满分12分)已知向量)4cos ,4(sinx x =,=4x,cos 4x ),记()x f ⋅=. (1)若()1=x f ,求cos()3x π+的值;(2)若ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足()C b B c a cos cos 2=-,求角B 的大小及函数()A f 的取值范围.21.(本小题满分12分)已知B A 、是海面上位于东西方向(B 在A 东)相距5(3海里的两个观察点,现位于A 点北偏东︒45,B 点北偏西︒60的D 点有一艘轮船发出求救信号,位于B 点南偏西︒60且与B 点相距C 点的救援船立即前往营救,其航行速度为30海里∕小时.(1)在D 点的轮船离B 点有多远?(2)该救援船到达D 点需要多长时间?22.(本小题满分12分)已知数列{}n a 的前n 项和为122,3,111-+==++n n n n a a a S )(+∈N n .(1)求;,32a a (2)求实数,λ使⎭⎬⎫⎩⎨⎧+nn a 2λ为等差数列,并由此求出n a 与n S ; (3)求n 的所有取值,使+∈N a S nn,说明你的理由.2014~2015学年第二学期高一期中联考数学答案二、填空题:(每小题5分,共20分)13._ 2 ; 14. - 15. ;16. ① ③三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.解:(1)∵()x x x x f 2cos cos sin 21++= ……………………………………………1分x x 2cos 2sin 1++= ………………………………………………2分142sin 2+⎪⎭⎫ ⎝⎛+=πx ………………………………3分∴函数()x f 的最小正周期为ππ==22T …………………………………………4分 由πππππk x k 224222+≤+≤+-,(Z k ∈)得()Z k k x k ∈+≤≤+-,883ππππ ………………………………………………5分∴()x f 的单调增区间是⎥⎦⎤⎢⎣⎡++-ππππk k 8,83,()Z k ∈…………………………6分(2)令,42ππk x =+则Z k k x ∈+-=,28ππ…^^^…………………………………7分()x f ∴的图像的对称中心为).1,28(ππk +-…^^^^……………………………8分 令,242πππk x +=+得Z k k x ∈+=,28ππ…^^^……………………………9分 ()x f ∴的图像的对称轴方程为Z k k x ∈+=,28ππ…^^^^…………………10分18.解:(1)因为bc a c b +=+222,所以212cos 222=-+=bc a c b A ,……………………2分又因为()π,0∈A ,所以3π=A …………………………………………………4分(2)因为36cos =B ,()π,0∈B ,所以33cos 1sin 2=-=B B …………5分 由正弦定理B b A a sin sin =,得3sin sin ==BA b a ……………………………………7分因为bc a c b +=+222,所以0522=--c c ……………………………………8分解得61±=c ,因为0>c ,所以16+=c ……………………………………10分故△ABC 的面积2323sin 21+==A bc S …………………………………………12分 19.解:(1)由已知可得:1141=+d a ,3524551=⨯+da 即721=+d a ……………2分 解得,2,31==d a ………………………………………………………………4分 12+=∴n a n ……………………………………………………………………5分 (2)12+=n a n 12+==∴n a n a ab n………………………………………6分∴212321a aa b b n n n n ==+++,……………………………………………………………7分∵0≠a ,∴{}n b 是等比数列,31a b =,2a q =,……………………………8分∴①当1=a 时,n T q b n ===,1,11……………………………………………9分②当0>a 且1≠a 时,()22311aa a T nn --=,………………………………………11分 综上:()⎪⎩⎪⎨⎧≠>--== 1且0,111,223a a a a a a n T n n ……………………………………………12分注:没有讨论1=a 的只扣1分.20.解:(1)4cos 4cos 4sin3)(2xx x x f +⋅=⋅=…………………………………1分 22cos12sin 23x x ++=………………………………………2分 21)62sin(212cos 212sin 23++=++=πx x x ………………3分 1)(=x f 121)62sin(=++∴πx …………………………………………4分 .214121)62(sin 21)3cos(2=⨯-=+-=+∴ππx x …………………………6分 (2) ()C b B c a cos cos 2=-∴由正弦定理得()C B B C A cos sin cos sin sin 2=-……………………8分,cos sin cos sin cos sin 2C B B C B A =-∴),sin(cos sin 2C B B A +=∴………………………………………………9分 ,π=++C B A A C B sin )sin(=+∴ 且,0sin ≠A ,21cos =∴B 又),,0(π∈B 3π=∴B ……………………………………10分 (注:直接由射影定理:a B c C b =+cos cos 得到a B a =cos 2,即21cos =B 的不扣分) ,320π<<∴A ,2626πππ<+<∴A ;1)62sin(21<+<∴πA 又,21)62sin()(++=πx x f ,21)62sin()(++=∴πA A f故函数()A f 的取值范围是).23,1(…………………………………………………12分21.解:(1)由题意知)33(5+=AB 海里,,454590,306090︒=︒-︒=∠︒=︒-︒=∠DAB DBA …………………………1分 ︒=︒+︒-︒=∠∴105)3045(180ADB ………………………………………2分在DAB ∆中,由正弦定理得,sin sin ADBABDAB DB ∠=∠…………………………4分︒︒+︒︒⋅+=⋅+=∠∠⋅=∴︒︒︒60sin 45cos 60cos 45sin 45sin )33(5105sin 45sin )33(5sin sin ADB DAB AB DB 31042622)33(5=+⨯+=(海里)……………………………………6分(2)320,60)6090(30==-+︒=∠+∠=∠︒︒︒BC ABC DBA DBC 海里,……7分 在DBC ∆中,由余弦定理得9002132031021200300cos 2222=⨯⨯⨯-+=∠⨯⨯-+=DBC BC BD BC BD CD …………………………………………………………………………9分30=∴CD (海里)………………………………………………………………………10分则需要的时间13030==t (小时) ……………………………………………………11分 答:在D 点的轮船离B 点310海里,该救援船到达D 点需要1小时.………………………………12分22.解:(1) 据题意可得.25,932==a a ……………………………………………………2分(2)由12211-+=++n n n a a 可得.1212111=---++n n n n a a ……………………………4分 故1-=λ时,⎭⎬⎫⎩⎨⎧+nn a 2λ成等差数列,且首项为1211=-a ,公差为1=d . (注:由前3项列方程求出1-=λ后,没有证明的扣1分)n a nn =-∴21即12+⋅=n n n a . ……………………………………………………5分 此时n n S n n +⨯++⨯+⨯+⨯=)2232221(32 令n n n T 223222132⨯++⨯+⨯+⨯= ,则n T S n n +=又n n n T 223222132⨯++⨯+⨯+⨯= ………………………………① 则143222322212+⨯++⨯+⨯+⨯=n n n T ……………………②①-②得22)1(222221132-⨯-=⨯-++++=-++n n n n n n T22)1(1+⨯-=∴+n n n Tn n n T S n n n ++⨯-=+=∴+22)1(1.……………………………………………8分 (3)12221222)1(11+⋅-+=+⋅++⋅-=++nn n n n n n n n n n a S …………………………………9分 结合xy 2=及x y 21=的图像可知22n n >恒成立 n n >∴+12即021<-+n n 012>+⋅n n 2<∴nna S ……………………………………………………10分当1=n 时,+∈==N a S a S n n 111…………………………………………………11分 当2≥n 时0>n a 且}{n a 为递增数列 0>∴n S 且n n a S > 1>∴n na S 即21<<n n a S ∴当2≥n 时,+∉N a S nn 综上可得1=n …………………………………………………………………12分。
四川省双流县中学2017届高一下学期期中考试模拟试题高一数学(理科)20150403本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第7页.全卷满分150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若0cos >θ,且02sin <θ,则角θ的终边所在象限是(A )一象限 (B )二象限 (C )三象限 (D )四象限 2. 015sin 45cos 15cos 45sin -的值为 (A )23-(B )21 (C ) 21- (D ) 23 3.△ABC 中,已知tanA=31,tanB=21,则∠C 等于 (A )30° (B )45° (C )60° (D )135° 4.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知45,60,1B A b ︒===,则a 为(A 6 (B )32(C ) 1 (D ) 2 5.若tan()3αβ+=,tan()5αβ-=,则tan 2α= (A )74(B )-74 (C ) 21 (D )-21 6.若函数)sin()(θω+=x x f 的图象(部分)如图所示,则ω和θ的取值是 (A )3,1πθω== (B )3,1πθω-==(C )6,21πθω==(D )6,21πθω-== 7.设)5,4(),,2(),1,(C b B a A 为坐标平面上三点,O 为坐标原点,若与在方向上的投影相同,则b a 与满足的关系式是(A )354=-b a (B )345=-b a (C )4514a b += (D )1445=+b a 8.设π20<≤x ,且x x x cos sin 2sin 1-=-,则l 1l 2l 3ACB(A )π≤≤x 0 (B )474ππ≤≤x (C )454ππ≤≤x (D )232ππ≤≤x 9.在△ABC 中,若22222222ac b b c a b a -+-+=,则△ABC 是 (A )等腰三角形 (B )直角三角形(C )等腰直角三角形 (D )等腰三角形或直角三角形 10.已知等比数列{}n a 中,3a ,7a 是方程2890x x -+=的两个根,则5a 等于(A )3 (B )3- (C ) 3或3- (D ) 3或3-11.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D .现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,则塔高AB 为 (A )tan sin s θα⋅ (B )tan sin sin cos s θβαβ⋅(C )tan sin sin()s θβαβ⋅+ (D ) tan sin sin()s θβαβ⋅-12.如图123,,l l l 是同一平面内的三条平行线,12l l 与间的距离为1,23l l 与间的距离为2,正三角形ABC 的三顶点分别在123,,l l l 上,则△ABC 的边长是( ) (A )23 (B )463 (C )3174 (D )2213第Ⅱ卷二、填空题:本大题共4个小题,每小题4分,共16分.把答案填在答题卷的相应位置.............. 13. sin15cos15= .14.已知4π=+B A ,则=++)tan 1)(tan 1(B A15. 在ABC ∆中,D 为BC 边上一点,3BC BD =,2AD =,135ADB ∠=︒,若2AC AB =,则BD =______________.▲ ▲ ▲16.设α为第四象限角,若sin 313sin 5αα=,则tan 2α=__________________四川省双流县中学2017届高一下学期期中考试模拟试题高一数学答题卷20150403一、选择题答题卡(每小题5分,共60分)二、填空题答题卡(每小题4分,共16分)13._________ 14.________ 15. ________ 16. (Ⅰ)__________(Ⅱ)__________ ;三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分) (Ⅰ)化简40sin 140sin 40cos 40sin 212---; (Ⅱ)求证:ααααtan 1tan 12cos 2sin 1-+=+.18.(本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别是,,a b c ,向量(sin ,cos )m A A =,(sin ,cos )n B B =-,且满足12m n ⋅=. (Ⅰ)求角C 的大小;(Ⅱ)若2,a b c -==,求ABC ∆的面积.19.(本小题满分12分)已知向量,,满足1||,1||==,||3||k k -=+,0>k , (Ⅰ)用k 表示⋅,并求a 与的夹角θ的最大值; (Ⅱ)如果//,求实数k 的值。
2014-2015学年高一下学期期中考试数学试卷-Word版含答案2014——2015学年下学期高一年级期中考数学学科试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 不等式0121≤+-x x 的解集为( )A.⎝ ⎛⎭⎪⎫-∞,-12∪[1,+∞) B.⎣⎢⎡⎦⎥⎤-12,1C.⎝ ⎛⎦⎥⎤-∞,-12∪[1,+∞) D. ⎝ ⎛⎦⎥⎤-12,12. 若0<<b a ,则下列不等式不能成立的是 ( ) A.ba11> B .b a 22> C .b a > D .b a )21()21(> 3. 不等式16)21(1281≤<x 的整数解的个数为 ( )A .10B .11C .12D .134. 等差数列{}n a 中,如果39741=++a a a ,27963=++a a a ,则数列{}n a 前9项的和为( )A .297B .144C .99D .665. 已知直线1l :01)4()3(=+-+-y k x k 与2l :032)3(2=+--y x k 平行,则k 的值是( )A .1或3B .1或5C .3或5D .1或26. 在△ABC 中,80=a ,70=b ,45=A ,则此三角形解的情况是 ( ) A 、一解 B 、两解 C 、一解或两解 D 、无解7. 如果0<⋅C A ,且0<⋅C B ,那么直线0=++C By Ax 不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.已知点()5,x 关于点),1(y 的对称点为()3,2--,则点()y x p ,到原点的距离为( )A .4B .13C .15D .179. 计算机是将信息转换成二进制进行处理的,二进制即“逢二进一”,如(1 101)2表示二进制数,将它转换成十进制数是1×23+1×22+0×21+1×20=13,那么将二进制数(11…114个01)2转换成十进制数是( )A .216-1B .216-2C .216-3D .216-4 10. 数列{}n a 满足21=a ,1111+-=++n n n a a a ,其前n 项积为n T ,则=2014T ( ) A.61B .61- C .6 D .6- 11. 已知0,0>>y x ,且112=+yx,若m m y x 222+>+恒成立,则实数m 的取值范围是( )A .(-∞,-2]∪[4,+∞)B .(-2,4)C .(-∞,-4]∪[2,+∞)D .(-4,2) 12. 设数列{}n a 的前n 项和为n S ,令nS S S T nn +++=21,称n T 为数列n a a a ,,,21 的“理想数”,已知数列50021,,,a a a 的“理想数”为2004,那么数列12,50021,,,a a a 的“理想数”为( ) A .2012 B .2013 C .2014 D .2015第Ⅱ卷(非选择题 共90分)19.(12分) 已知直线l 过点)2,3(P ,且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求OAB ∆的面积的最小值及此时直线l 的方程.20. (12分) 某观测站C 在城A 的南偏西20˚的方向上,由A 城出发有一条公路,走向是南偏东40˚,在C 处测得距C 为31千米的公路上B 处有一人正沿公路向A 城走去,走了20千米后,到达D 处,此时C 、D 间距离为21千米,问还需走多少千米到达A 城?21. (12分) 在各项均为正数的等差数列{}n a 中,对任意的*N n ∈都有12121+=+++n n n a a a a a . (1)求数列{}n a 的通项公式n a ;(2)设数列{}n b 满足11=b ,na n nb b 21=-+,求证:对任意的*N n ∈都有212++<n n n b b b .22. (12分)设函数())0(132>+=x xx f ,数列{}n a 满足11=a ,)1(1-=n n a f a ,*N n ∈,且2≥n .(1)求数列{}n a 的通项公式; (2)对*N n ∈,设13221111++++=n n n a a a a a a S ,若ntS n 43≥恒成立,求实数t 的取值范围.答案一、选择题:(每题5分,共60分)13、 3 14、349π15、 2 16、 ①②⑤三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 解:(1)由题意,得⎩⎪⎨⎪⎧a 3a 6=55,a 3+a 6=a 2+a 7=16.∵公差d>0,∴⎩⎪⎨⎪⎧a 3=5,a 6=11,∴d =2,a n =2n -1.(2)∵b n =a n +b n -1(n≥2,n ∈N *), ∴b n -b n -1=2n -1(n≥2,n ∈N *).∵b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1(n≥2,n ∈N *),且b 1=a 1=1,∴b n =2n -1+2n -3+…+3+1=n 2(n≥2,n ∈N *). ∴b n =n 2(n ∈N *).题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D BBCCACDCDDA18. 解析 27(1)4sin cos 2180,:22B C A A B C +-=++=︒由及得 22272[1cos()]2cos 1,4(1cos )4cos 5214cos 4cos 10,cos ,20180,60B C A A A A A A A A -+-+=+-=-+=∴=︒<<︒∴=︒即 22222222(2):cos 211cos ()3.2223123,3: 2 :.221b c a A bcb c a A b c a bc bc b c b b a b c bc bc c c +-=+-=∴=∴+-=+===⎧⎧⎧=+==⎨⎨⎨===⎩⎩⎩由余弦定理得代入上式得由得或 19. 解:由题意设直线方程为x a +y b =1(a >0,b >0),∴3a +2b =1.由基本不等式知3a +2b ≥26ab,即ab≥24(当且仅当3a =2b,即a =6,b =4时等号成立).又S =12a ·b ≥12×24=12,此时直线方程为x 6+y4=1,即2x +3y -12=0.∴△ABO 面积的最小值为12,此时直线方程为2x +3y -12=0. 20. 解 据题意得图02,其中BC=31千米,BD=20千米,CD=21千米,∠CAB=60˚.设∠ACD = α ,∠CDB = β . 在△CDB 中,由余弦定理得:71202123120212cos 222222-=⨯⨯-+=⋅⋅-+=BD CD BC BD CD β,734cos 1sin 2=-=ββ.()CDA CAD ∠-∠-︒=180sin sin α ()β+︒-︒-︒=18060180sin()143523712173460sin cos 60cos sin 60sin =⨯+⨯=︒-︒=︒-=βββ在△ACD 中得1514352321143560sin 21sin sin =⨯=⋅︒=⋅=αA CD AD . 所以还得走15千米到达A 城. 21. 解:(1)设等差数列{a n }的公差为d.令n =1,得a 1=12a 1a 2.由a 1>0,得a 2=2.令n =2,得a 1+a 2=12a 2a 3,即a 1+2=a 1+2d ,得d =1.从而a 1=a 2-d =1.故a n =1+(n -1)·1=n. (2)证明:因为a n =n ,所以b n +1-b n =2n ,所以b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1 =2n -1+2n -2+…+2+1 =2n -1.又b n b n +2-b 2n +1=(2n -1)(2n +2-1)-(2n +1-1)2=-2n <0, 所以b n b n +2<b 2n +1.22. 解:(1)由a n =f ⎝⎛⎭⎪⎫1a n -1,可得a n -a n -1=23,n ∈N *,n≥2.所以{a n }是等差数列.又因为a 1=1,所以a n =1+(n -1)×23=2n +13,n ∈N *.(2)因为a n =2n +13,所以a n +1=2n +33,所以1a n a n +1=92n +12n +3=92⎝⎛⎭⎪⎫12n +1-12n +3.所以S n =92⎝ ⎛⎭⎪⎫13-12n +3=3n 2n +3,n ∈N *. S n ≥3t 4n ,即3n 2n +3≥3t 4n ,得t≤4n 22n +3(n ∈N *)恒成立.令g(n)=4n 22n +3(n ∈N *),则g(n)=4n 22n +3=4n 2-9+92n +3=2n +3+92n +3-6(n ∈N *).令p =2n +3,则p≥5,p ∈N *.g(n)=p +9p -6(n ∈N *),易知p =5时,g(n)min =45.所以t≤45,即实数t 的取值范围是⎝⎛⎦⎥⎤-∞,45.。
2014-2015学年四川省成都市双流中学高一(下)期中数学试卷(理科)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={﹣1,0,1,2},集合B={x∈R|x2=1},则A∩B=()A.{1}B.{﹣1,1}C.{﹣1,0,1}D.{﹣1,0,1,2}2.(5分)设数列{a n}中,已知a1=1,a n=1+(n>1),则a3=()A.B.C.D.23.(5分)已知三角形△ABC中,角A,B,C的对边分别为a,b,c,若a=5,b=8,C=60°,则=()A.B.﹣20C.20D.4.(5分)若,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a 5.(5分)已知cosα=,α∈(0,π),则cos(α﹣)的值为()A.B.C.D.6.(5分)设定义在R上的奇函数f(x)在区间(0,+∞)上单调递增,则不等式f(x﹣1)<0的解集是()A.(﹣∞,1)B.(1,+∞)C.(0,+∞)D.(﹣∞,0)7.(5分)已知函数f(x)=Asin(x+φ),x∈R(其中ω>0,|φ|<)的部分图象如图所示.设点是图象上y轴右侧的第一个最高点,CD⊥DB,则△BDC的面积是()A.3B.πC.2πD.3π8.(5分)已知等差数列的前n项和为S n,则使得S n最大的序号n的值是()A.5或6B.7或8C.7D.89.(5分)函数f(x)=图象大致是()A.B.C.D.10.(5分)已知等差数列{a n}和单调递减数列{b n}(n∈N*),{b n}通项公式为b n=λn2+a7•n.若a3,a11是方程x2﹣x﹣2=0的两根,则实数λ的取值范围是()A.(﹣∞,﹣3)B.C.D.(﹣3,+∞)11.(5分)已知lg2,,lg(1﹣y)顺次成等差数列,则()A.y有最大值1,无最小值B.y有最小值﹣1,最大值1C.y有最小值,无最大值D.y有最小值,最大值112.(5分)已知函数f(x)=,把方程f(x)﹣x=0的实数解按从小到大的顺序排列成一个数列,设,则数列{h(a n)}的各项之和为()A.36B.33C.30D.27二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)sin215°﹣cos215°=.14.(5分)若3,a,b,c,15成等差数列,则a+b+c=.15.(5分)如图,某城市的电视发射塔CD建在市郊的小山上,小山的高BC为30米,在地面上有一点A,测得A,C间的距离为78米,从A观测电视发射塔CD的视角(∠CAD)为45°,则这座电视发射塔的高度CD约为.米(结果保留到整数).16.(5分)已知幂函数f(x)=x2,若x1≥x2≥x3,x1+x2+x3=1,f(x1)+f(x2)+f (x3)=1,则x1+x2的取值范围是.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或推演步骤)17.(10分)已知A(1,2),B(2,3),C(﹣2,5)为平面直角坐标系xOy内三点,其中O为坐标原点.(Ⅰ)求证:;(Ⅱ)若D为x轴上一点,且与共线,求D点的坐标.18.(12分)设{a n}(n∈N*)是等差数列,且a5=10,a10=20.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设S n为数列{a n}的前n项和,求数列的前n项和T n.19.(12分)(Ⅰ)化简;(Ⅱ)已知点P(cosθ,sinθ)在直线y=﹣2x上,求的值.20.(12分)已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且满足,求f(B)的值域.21.(12分)如图,我国南海某处的一个圆形海域上有四个小岛,小岛B与小岛A、小岛C相距都为5nmile,与小岛D相距为nmile.小岛A对小岛B与D的视角为钝角,且.(Ⅰ)求小岛A与小岛D之间的距离和四个小岛所形成的四边形的面积;(Ⅱ)记小岛D对小岛B与C的视角为α,小岛B对小岛C与D的视角为β,求sin(2α+β)的值.22.(12分)在平面直角坐标系中,已知O为坐标原点,点A的坐标为(a,b),点B的坐标为(cosωx,sinωx),其中ω>0.设f(x)=.(Ⅰ)记函数y=f(x)的正的零点从小到大构成数列{a n}(n∈N*),当a=,b=1,ω=2时,求{a n}的通项公式与前n项和S n;(Ⅱ)记函数g(x)=2x,且g(b)=g(a)•g(﹣2).当x∈R时,设f(x)的值域为M,不等式x2+mx<0的解集为N,若N⊆M,求实数m的最大值;(Ⅲ)令ω=1,a=t2,b=(1﹣t)2,若不等式f(θ)﹣>0对任意的t∈[0,1]恒成立,求θ的取值范围.2014-2015学年四川省成都市双流中学高一(下)期中数学试卷(理科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={﹣1,0,1,2},集合B={x∈R|x2=1},则A∩B=()A.{1}B.{﹣1,1}C.{﹣1,0,1}D.{﹣1,0,1,2}【解答】解:∵A={﹣1,0,1,2},B={x∈R|x2=1}={﹣1,1},∴A∩B={﹣1,1}.故选:B.2.(5分)设数列{a n}中,已知a1=1,a n=1+(n>1),则a3=()A.B.C.D.2【解答】解:∵a1=1,a n=1+(n>1),∴a2=1+=1+1=2,a3=1+=1+=;故选:C.3.(5分)已知三角形△ABC中,角A,B,C的对边分别为a,b,c,若a=5,b=8,C=60°,则=()A.B.﹣20C.20D.【解答】解:如图,.故选:C.4.(5分)若,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【解答】解:∵,c==,∵b6=()6=22=4,c6=()6=9,∴1<b<c,∴a<b<c,故选:A.5.(5分)已知cosα=,α∈(0,π),则cos(α﹣)的值为()A.B.C.D.【解答】解:∵cosα=,α∈(0,π),∴=.∴cos(α﹣)===.故选:C.6.(5分)设定义在R上的奇函数f(x)在区间(0,+∞)上单调递增,则不等式f(x﹣1)<0的解集是()A.(﹣∞,1)B.(1,+∞)C.(0,+∞)D.(﹣∞,0)【解答】解:∵定义在R上的奇函数f(x)必有f(0)=0;又奇函数在对称区间上单调性相同;∴f(x)在R上单调递增;∴由f(x﹣1)<0得f(x﹣1)<f(0);∴x﹣1<0;∴不等式f(x﹣1)<0的解集为(﹣∞,1).故选:A.7.(5分)已知函数f(x)=Asin(x+φ),x∈R(其中ω>0,|φ|<)的部分图象如图所示.设点是图象上y轴右侧的第一个最高点,CD⊥DB,则△BDC的面积是()A.3B.πC.2πD.3π【解答】解:由函数f(x)=Asin(x+φ),x∈R的部分图象可得A=2,即CD=2.∵,∴,∴.故选:D.8.(5分)已知等差数列的前n项和为S n,则使得S n最大的序号n的值是()A.5或6B.7或8C.7D.8【解答】解:(解法一)∵,∴a n=+(n﹣1)(﹣)=﹣n+1;由﹣n+1≥0知,n≤6;∴当n=5或n=6时S n最大;(解法二)∵=,∵n∈N*,∴当n=5或n=6时S n最大;(解法三)该数列为,观察知当n=5或n=6时S n最大.故选:A.9.(5分)函数f(x)=图象大致是()A.B.C.D.【解答】解:∵f(x)的定义域是{x|x≠0},且是偶函数,可排除C;当x>0时,分母为恒为正值,分子符号不定,即x>0时,f(x)不可能恒为正值,可排除B;当x>0时,f(x)不可能只有一个零点,可排除A.(当x→+∞时,分子|cosx|≤1,分母ln(|x|+1)→+∞,∴f(x)→0,排除A.)故选:D.10.(5分)已知等差数列{a n}和单调递减数列{b n}(n∈N*),{b n}通项公式为b n=λn2+a7•n.若a3,a11是方程x2﹣x﹣2=0的两根,则实数λ的取值范围是()A.(﹣∞,﹣3)B.C.D.(﹣3,+∞)【解答】解::∵a3,a11是x2﹣x﹣2=0的两根,∴a3+a11=1.(或两根为2,﹣1⇒a3+a11=1)∵{a n}是等差数列,∴,∴.﹣b n<0对n∈N*恒成立,∵{b n}递减,∴b n+1,∴对n∈N*恒成立.∵,∴.故选:B.11.(5分)已知lg2,,lg(1﹣y)顺次成等差数列,则()A.y有最大值1,无最小值B.y有最小值﹣1,最大值1C.y有最小值,无最大值D.y有最小值,最大值1【解答】解:∵lg2,,lg(1﹣y)顺次成等差数列,∴,∴.∴.∵,∴.故选:C.12.(5分)已知函数f(x)=,把方程f(x)﹣x=0的实数解按从小到大的顺序排列成一个数列,设,则数列{h(a n)}的各项之和为()A.36B.33C.30D.27【解答】解:方程f(x)﹣x=0的实数解可化为函数f(x)与函数y=x的交点的横坐标,作函数f(x)与函数y=x的图象如下,结合图象可得,a n=n﹣2;又∵的定义域为(﹣2,8),∴数列{h(a n)}中a n仅可以取﹣1,0,1,2,3,4,5,6,7;又∵h(x)+h(6﹣x)==6,且,∴h(﹣1)+h(0)+h(1)+h(2)+h(3)+h(4)+h(5)+h(6)+h(7)=(h(﹣1)+h(7))+(h(0)+h(6))+(h(1)+h(5))+(h(2)+h(4))+h(3)=6×4+3=27.故选:D.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)sin215°﹣cos215°=﹣.【解答】解:,故答案为:﹣.14.(5分)若3,a,b,c,15成等差数列,则a+b+c=27.【解答】解:由等差数列的对称性知,b是3,15的等差中项且a+c=3+15,∴.故答案为:27.15.(5分)如图,某城市的电视发射塔CD建在市郊的小山上,小山的高BC为30米,在地面上有一点A,测得A,C间的距离为78米,从A观测电视发射塔CD的视角(∠CAD)为45°,则这座电视发射塔的高度CD约为145.米(结果保留到整数).【解答】解:如图,,.由,得7CD=1014⇒CD≈145.故答案为:145.16.(5分)已知幂函数f(x)=x2,若x1≥x2≥x3,x1+x2+x3=1,f(x1)+f(x2)+f (x3)=1,则x1+x2的取值范围是[,] .【解答】解:根据题意得,x1+x2=1﹣x3①,②,①式两边平方减去②式,整理得:③;由①、③知x1,x2是方程的两实数根,∴△=﹣4(﹣x3)≥0,即﹣3+2x3+1≥0,解得﹣≤x3≤1;又x1≥x2≥x3,x1+x2+x3=1,∴x3+x3+x3≤1,∴x3≤;∴﹣≤x3≤,∴﹣≤1﹣(x1+x2)≤,∴≤x1+x2≤;即x1+x2的取值范围是[,].故答案为:[,].三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或推演步骤)17.(10分)已知A(1,2),B(2,3),C(﹣2,5)为平面直角坐标系xOy内三点,其中O为坐标原点.(Ⅰ)求证:;(Ⅱ)若D为x轴上一点,且与共线,求D点的坐标.【解答】解:(Ⅰ)证明:,;∴;∴;(Ⅱ);设D点坐标为(x,0),则;∵与共线;∴(﹣4)×(﹣2)﹣2×(x﹣1)=0;解得x=5;∴D点坐标为(5,0).18.(12分)设{a n}(n∈N*)是等差数列,且a5=10,a10=20.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设S n为数列{a n}的前n项和,求数列的前n项和T n.【解答】解:(Ⅰ)设数列{a n}的公差为d,依题意得,解得,∴.(Ⅱ)由(Ⅰ)得,∴,∴.19.(12分)(Ⅰ)化简;(Ⅱ)已知点P(cosθ,sinθ)在直线y=﹣2x上,求的值.【解答】(本题满分12分)解:(Ⅰ)原式==…(2分)=…(4分)=.…(6分)(Ⅱ)由题意得sinθ=﹣2cosθ,∴tanθ==﹣2.…(7分)∴…(9分)==…(11分)=tanθ=﹣2.…(12分)(改编自必修4第143页第三章习题3.2第1题第(8)小题)20.(12分)已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且满足,求f(B)的值域.【解答】(本题满分12分)解:(Ⅰ)∵…(1分)==…(3分)=.…(5分)∴f(x)的最小正周期.…(6分)(Ⅱ)由及正弦定理可得2sinBcosA=sinAcosC+sinCcosA=sin(A+C).又A+B+C=π,∴2sinBcosA=sinB.∵,又∵.…(9分)由(Ⅰ),∴,∵△ABC是锐角三角形,∴且.∴.…(10分)∴.∴∴.∴f(B)的值域是.…(12分)21.(12分)如图,我国南海某处的一个圆形海域上有四个小岛,小岛B与小岛A、小岛C相距都为5nmile,与小岛D相距为nmile.小岛A对小岛B与D的视角为钝角,且.(Ⅰ)求小岛A与小岛D之间的距离和四个小岛所形成的四边形的面积;(Ⅱ)记小岛D对小岛B与C的视角为α,小岛B对小岛C与D的视角为β,求sin(2α+β)的值.【解答】解:(Ⅰ)∵,且角A为钝角,∴.在△ABD中,由余弦定理得:AD2+AB2﹣2AD•AB•cosA=BD2.∴⇒AD2+8AD﹣20=0.解得AD=2或AD=﹣10(舍).∴小岛A与小岛D之间的距离为2n mile.…(2分)∵A,B,C,D四点共圆,∴角A与角C互补.∴,.在△BDC中,由余弦定理得:CD2+CB2﹣2CD•CB•cosC=BD2.∴⇒CD2﹣8CD﹣20=0.解得CD=﹣2(舍)或CD=10.…(4分)=S△ABC+S△BCD∴S四边形ABCD===3+15=18.∴四个小岛所形成的四边形的面积为18平方n mile.…(6分)(Ⅱ)在△BDC中,由正弦定理得:.∵DC2+DB2>BC2,∴α为锐角,∴.…(7分)又∵,.…(8分)∴sin(2α+β)=sin[α+(α+β)]…(10分)=sinαcos(α+β)+cosαsin(α+β)=sinαcos(α+β)+cosαsin(α+β)==.…(12分)22.(12分)在平面直角坐标系中,已知O为坐标原点,点A的坐标为(a,b),点B的坐标为(cosωx,sinωx),其中ω>0.设f(x)=.(Ⅰ)记函数y=f(x)的正的零点从小到大构成数列{a n}(n∈N*),当a=,b=1,ω=2时,求{a n}的通项公式与前n项和S n;(Ⅱ)记函数g(x)=2x,且g(b)=g(a)•g(﹣2).当x∈R时,设f(x)的值域为M,不等式x2+mx<0的解集为N,若N⊆M,求实数m的最大值;(Ⅲ)令ω=1,a=t2,b=(1﹣t)2,若不等式f(θ)﹣>0对任意的t∈[0,1]恒成立,求θ的取值范围.【解答】解:(Ⅰ)由题得==.…(1分)由.…(2分)当k=1时,且(常数),∴{a n}为首项是,公差为的等差数列.∴.…(3分)∴.…(4分)(Ⅱ)由g(a)=g(b)+g(﹣2)得2a=2b×2﹣2⇒2a=2b﹣2⇒b=a+2.…(5分)∵,∴f(x)的值域为.…(6分)∵x2+mx=0的解为0或﹣m,∴N=[﹣m,0]或N=[0,﹣m].∴要使得N⊆M,须.…(7分)∵,∴.∴,即.∴实数m的最大值为.…(8分)(Ⅲ)由题得=t2cosθ+(1﹣t)2sinθ﹣t(1﹣t)=(1+sinθ+cosθ)t2﹣(2sinθ+1)t+sinθ∴题意等价于(1+sinθ+cosθ)t2﹣(2sinθ+1)t+sinθ>0对任意的t∈[0,1]恒成立.令t=0,t=1,得sinθ>0,cosθ>0.…(9分)∵1+2sinθ<2+2sinθ+2cosθ,∴对称轴恒成立.∴对称轴落在区间(0,1)内.…(10分)∴题意等价于,得.…(11分).∴θ的取值范围是.…(12分)。
第1页 共10页 ◎ 第2页 共10页绝密★启用前2014-2015学年度期中卷高一数学考试范围:必修一;考试时间:120分钟;命题人: 注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)1.已知集合{}1,2,3M =,{}2,3,4N =,则 ( ) A .M N ⊆ B .N M ⊆ C .{}1,4MN = D .{}2,3M N =【答案】D【解析】解:因为根据已知 的集合,可以判定集合间的关系,以及集合的运算,那么显然选项D 成立。
2.设集合}1,0,1{-=M ,},{2a a N =,则使M∩N=N 成立的a 的值是( ) A .1 B .0 C .-1 D .1或-1 【答案】C 【解析】试题分析:由于集合中的元素互不相同,所以20,1a a a a ≠⇒≠≠.又因为M∩N=N ,所以1a =-. 考点:集合的特征及集合的基本运算. 3.设,则( )A .﹣2<x <﹣1B .﹣3<x <﹣2C .﹣1<x <0D .0<x <1 【答案】A【解析】因为y=3x在R 上单调递增,又,故﹣2<x <﹣1故选A4.若0.90.48 1.54,8,0.5a b c -===则( )A .c b a >> B. a c b >> C.b a c >> D.b c a >> 【答案】D【解析】0.9 1.80.48 1.44 1.5 1.542,82.(0.5)2.-===函数2x y =是增函数,1.8 1.5 1.44,>>所以.a c b >>故选D5.函数()f x =的定义域是 A. {x ︱34x >} B. {01x x <≤} C. {1x x ≥} D. {x ︱314x <≤} 【答案】D 【解析】略6.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f xf f +=+=则=)5(f ()A.0B .1C .25D .5【答案】C【解析】令x=-1可得(1)(1)(2)(1)(2),(2)2(1)1,f f f f f f f =-+=-+∴==13(3)(1)(2)122f f f ∴=+=+=,35(5)(3)(2)122f f f =+=+=.7.某同学家门前有一笔直公路直通长城,星期天,他骑自行车匀速前往旅游,他先前进了a km ,觉得有点累,就休息了一段时间,想想路途遥远,有些泄气,就沿原路返回骑了b km(b <a ), 当他记起诗句“不到长城非好汉”,便调转车头继续前进. 则该同学离起点的距离s 与时间t 的函数关系的图象大致为 ( )【答案】C【解析】分析:本题根据运动变化的规律即可选出答案.依据该同学出门后一系列的动作,匀速前往对应的图象是上升的直线,匀速返回对应的图象是下降的直线,等等,从而选出答案. 解答:解:根据他先前进了akm ,得图象是一段上升的直线,DCBA第3页 共10页 ◎ 第4页 共10页由觉得有点累,就休息了一段时间,得图象是一段平行于t 轴的直线,由想想路途遥远,有些泄气,就沿原路返回骑了bkm (b <a ),得图象是一段下降的直线, 由记起诗句“不到长城非好汉”,便调转车头继续前进,得图象是一段上升的直线, 综合,得图象是C , 故选C .点评:本小题主要考查函数的图象、运动变化的规律等基础知识,考查数形结合思想.属于基础题. 8.函数的单调增区间为( )A .B .(3,+∞)C .D .(﹣∞,2)【答案】D【解析】由题意知,x 2﹣5x+6>0∴函数定义域为(﹣∞,2)∪(3,+∞),排除A 、C , 根据复合函数的单调性知的单调增区间为(﹣∞,2),故选D9.若函数()1(0,1)1x mf x a a a =+>≠-是奇函数,则m 为 A.1- B.2 C.1 D.2-【答案】B 【解析】 试题分析:111111x a(),()()xxxm m mf x f x aaa --=+=+-=-+--- 由于函数是奇函数,()(),f x fx ∴-=-即x a (1)1(1)2111x x x x m m m a a a a -+=-+∴=--- 所以2m =,故选:B.考点:函数的奇偶性10. 下列每组中两个函数是同一函数的组数共有( ) (1)2()1f x x =+和2()1f v v =+(2) y =和y =(3) y=x 和321x xy x +=+ (4) y=和y(A) 1组 (B) 2组 (C) 3组 (D) 4组 【答案】C【解析】根据同意哈函数的定义可知选项A 中定义域和对应关系相同,成立,选项B 中,定义域相同,对应关系相同,选项C 中,相同,选项D 中,定义域不同,故是同一函数的 组数有3组,故选C 11.已知1a >,函数x y a =与log ()a y x =-的图像可能是( )【答案】B【解析】试题分析:因为根据1a >,可知指数函数递增函数,排除C ,D 选项,同时在选项A,B 中,由于对数函数log ()a y x =-的图像与log a y x =的图像关于y 轴堆成,那么可知.排除A.正确的选项为B.考点:本题主要是考查同底的指数函数与对数函数图像之间的关系的运用。
四川省双流中学2015-2016学年度高一(下)入学考试数 学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至2页,第Ⅱ卷2共4页,共4页.满分150分.考试时间120分钟.务必将选择题和填空题答案写在答题卷的相应位置.第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.答案务必写在答题卷的相应位置.1.若sin 0α<,且tan 0α<,则α是(A)第一象限角 (B)第二象限角 (C)第三象限角 (D)第四象限角 2.函数()cos(2)6f x x π=-的最小正周期是(A)2π(B)π (C)2π (D)4π 3.设函数21,1()2,1x x f x x x⎧+≤⎪=⎨>⎪⎩,则((3))f f =(A)15 (B)3 (C)23 (D)1394.已知3=a ,2=b ,若3⋅=-a b ,则a 与b 的夹角为(A)3π (B)4π (C)23π (D)34π5.如图所示,向量OA =uu r a ,OB =uu u r b ,OC =uu u rc ,若3AC CB =-uu u r uu r,则(A)1322=-+c a b (B)3122=-c a b(C)2=-+c a b (D)2=+c a b6.三个实数2334222()()log 333p q r ===,,的大小关系正确的是(A)p q r >> (B) q r p >> (C) r p q >>(D) p r q >>7.根据表格中的数据,可以判定方程20xe x --=的一个根所在的区间为(A)(1,0)- (B)(0,1) (C)(1,2) (D)(2,3)8.在股票买卖过程中,经常用两种曲线来描述价格变化的情况:一种是即时曲线()y f x = , 另一种平均价格曲线()y g x =,如(2)3f =表示股票开始买卖后2小时的即时价格为3元;(2)3g =表示2小时内的平均价格为3元.下面给出了四个图象,实线表示()y f x =,虚线表示()y g x =,其中可能正确的是(A) (B) (C) (D)9.放射性元素由于不断有原子放射出微粒子而变成其它元素,其含量不断减少,这种现象称为衰变.假设在某放射性元素的衰变过程中,其含量M 与时间t (单位:年)满足函数关系:0()kt M t M e -=(0,M k 均为非零常数,e 为自然对数的底数),其中0M 为0t =时该放射性元素的含量,若经过5年衰变后还剩余90%的含量,则该放射性元素衰变到还剩余40%,至少需要经过(参考数据:ln 0.2 1.61≈-,ln 0.40.92≈-,ln 0.90.11≈-)(A)40年 (B)41年 (C)42年 (D)43年10.已知定义在R 上的奇函数)(x f ,当0>x 时,121,02()1(2),22x x f x f x x -⎧-<≤⎪=⎨->⎪⎩,则关于x 的方程26[()]()10f x f x --=的实数根的个数为(A)6 (B)7 (C)8 (D)9第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.答案务必写在答题卷的相应位置.11.已知()4,2a =,()6,y b =,且//a b ,则y = . 12.已知4cos 5α=,(0,)απ∈,则tan α= . 13.已知向量,,a b c 彼此不共线,且,,a b c 两两所成的角相等,若1=a ,1=b ,3=c ,则=a+b+c .14.已知偶函数()f x 满足(2)()f x f x +=,且当[0,1]x ∈时,()f x x =,若在区间[1,3]-上函数()()g x f x kx k =--有4个零点,则实数k 的取值范围是_____________. 15.设a ,b 是两个非零向量,则下列命题为真命题的是 ①若a 与b 的夹角为60︒,则==-a b a b ; ②若==-a b a b ,则a 与a +b 的夹角为60︒; ③若+=-a b a b ,则存在非零实数λ,使得λ=b a ; ④若存在非零实数λ,使得λ=b a ,则+=-a b a b ; ⑤若a 与b 共线且同向,则⋅=a b a b .其中的正确的结论是 (写出所有正确结论的序号).数学答题卷一、选择题(每小题5分,共50分)二、填空题:(每小题5分,共25分)11.________________. 12.________________. 13.________________. 14.________________. 15.________________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) (Ⅰ)计算lg83lg5+;(Ⅱ)计算11203217(0.027)()(2)1)79----+-.17.(本小题满分12分)已知角α的终边经过点43(,)55P - (Ⅰ)求sin α的值;(Ⅱ)求sin()tan()2sin()cos(3)πααππαπα--⋅+-的值.18.(本小题满分12分)已知函数()sin(2)3f x x π=-.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)当[0,]2x π∈时,求函数()f x 的最大值和最小值及相应的x 的值..19.(本小题满分12分)已知函数21()21x x f x -=+(Ⅰ)试判断函数的单调性并加以证明;(Ⅱ)当a x f <)(恒成立时,求实数a 的取值范围.20.(本小题满分13分)某电力公司调查了某地区夏季居民的用电量y (万千瓦时)是时间t (024t ≤≤,单位:小时)的函数,记作()y f t =,下表是某日各时的用电量数据:经长期观察()y f t =的曲线可近似地看成函数sin()(0,0)y A t B A ωϕϕπ=++><<. (Ⅰ)根据以上数据,求出函数sin()(0,0)y A x B A ωϕϕπ=++><<的解析式;(Ⅱ)为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高高峰时期的电价,同时降低低峰时期的电价,鼓励企业在低峰时用电.若居民用电量超过2.25万千瓦时,就要提高企业用电电价,请依据(Ⅰ)的结论,判断一天内的上午8:00到下午18:00,有几个小时要提高企业电价?21.(本小题满分14分)对于函数(),(),()f x g x x ϕ 如果存在实数,a b 使得()()()x a f x b g x ϕ=⋅+⋅,那么称()x ϕ为(),()f x g x 的线性组合函数.如对于()1f x x =+,2()2g x x x =+,2()2x x ϕ=-,存在2,1a b ==-,使得()2()()x f x g x ϕ=-,此时()x ϕ就是(),()f x g x 的线性组合函数. (Ⅰ)设222()1,(),()23f x x g x x x x x x ϕ=+=-=-+,试判断()x ϕ是否为(),()f x g x的线性组合函数?并说明理由;(Ⅱ)设212()log ,()log ,2,1f x x g x x a b ====,线性组合函数为()x ϕ,若不等式23()2()0x x m ϕϕ-+<在4x ⎤∈⎦上有解,求实数m 的取值范围;(Ⅲ)设()91(),()1x f x x g x x==≤≤,取,01a b =>,线性组合函数()x ϕ使()x b ϕ≥ 恒成立,求b 的取值范围.参考答案二、填空题:本大题共5小题,每小题5分,共25分. 11.3. 12.34. 13.2. 14.1(0,]4. 15.③⑤. 三、解答题:本大题共6小题,共75分.16.(本小题满分12分)解析:(Ⅰ)3.…………………………………………………………………………6分 (Ⅱ)45-.……………………………………………………………………12分 17.(本小题满分12分) 解析:(Ⅰ)35-.…………………………………………………………………………6分 (Ⅱ)54.…………………………………………………………………………12分 18.(本小题满分12分)解析:(Ⅰ)令222()232k x k k ππππ-≤-≤π+∈Z 解得()1212k x k k π5ππ-≤≤π+∈Z 所以函数sin(2)3y x π=-的单调增区间为5[,]()1212k k k πππ-π+∈Z ……………6分 (Ⅱ)因为[0,]2x π∈,所以2[0,]x ∈π,(2)[,]333x ππ2π-∈-所以当233x ππ-=-,即0x =时,in(2)3y s x π=-取得最小值-当232x ππ-=,即12x 5π=时,sin(2)3y x π=-取得最大值1 ……………12分19.解析:(Ⅰ)函数122)(+-=x x xx f 的定义域为R ,函数)(x f 在R 上是增函数,设21,x x 是R 内任意两个值,并且21x x <则12122212)()(221121+--+-=-x x x x x f x f )12)(12()12)(12()12)(12(211221+++--+-=x x x x x x )12)(12()22(22121++-=x x x x ……………………………………………………………………5分 21x x < 2122x x <∴.0)12)(12()22(2)()(212121<++-=-∴=x x x x x f x f 即)()(21x f x f <∴ )(x f ∴是R 上的增函数.……………………………………………………………7分(Ⅱ)12211212)(+-=+-=x x x x f 02>x 112>+∴x 22120<+>∴x02122<+<-∴x121211<+-<-∴x即1)(1<<-x f ………………………………………………………………………10分当1,)(≥<a a x f 恒成立时…………………………………………………………12分 20.解析:(Ⅰ)由表中数据,知12T =,6πω=.由 2.51.5A B A B +=⎧⎨-+=⎩,得0.5A =,2B = ∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.故所求函数解析式为0.5sin()262y x ππ=++.…………………………………………5分(Ⅱ)由题意知,0.5sin()2 2.2562x ππ++>. ∴0.5sin()0.2562x ππ+>即1cos 62x π>.∴22363k t k πππππ-+<<+(k ∈Z ). ∴212212k t k -+<<+(k ∈Z ).………………………………………………………10分 ∵024t ≤≤,故可令0,1,2k =,得02t ≤<或1014t <<或2224t <≤.∴在一天内的上午8:00到下午18:00,有4个小时要提高企业电价.………………13分 22.(本小题满分14分)。
2014-2015学年度春学期三校期中联考试卷高一数学一.填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知直线l :30x ay -+=的倾斜角为o30,则实数a 的值是_____________. 2.不等式26510x x --+≤的解集是_________________.3.数列{}n a 为等差数列,已知389220a a a ++=,则7a =___________.4.在ABC ∆中,角C B A 、、所对的边分别为c b a 、、,若 120,3,1===C c b ,则ABC ∆的面积是__________.5.若{}n a 为等差数列,其前n 项和为n S ,若9,384==S S ,则17181920a a a a +++=_____.6.在公比为2=q 的等比数列}{n a 中,n S 是其前n 项和,若64255,2==m m S a ,则=m .7.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若222a b bc -=, sin 3sin C B =,则A =____________.8.等比数列{}n a 的前n 项和为,n S 且212n n n S S S ++=+,则数列{}n a 的公比为_____. 9.已知(2,3),(4,1),A B -直线:10l kx y k +-+=与线段AB 有公共点,则k 的取值是 _____________.10.变量y x ,满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3|||3|z x y =+-的取值范围是__________.11..数列{}n a 的首项为11a =,数列{}n b 为等比数列且1n n nab a +=,若511102=b b 则21a = .12在ABC ∆中,角C B A 、、所对的边分别为c b a 、、,45a C ==,tan 21tan A cB b+=, 则边长c 的值是____________.13.设数列{}n a 的前n 项和为n S ,且121a a ==,(){}2n n nS n a ++为等差数列,则 n a =_______________.14.已知函数22()21,f x x ax a =-+-若关于x 的不等式(())0f f x <的解集为空集,则 实数a 的取值范围是___________.二.解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内.作答,解答时应写出文字说明,证明过程或演算步骤.(15,16,17题每题14分,18,19,20题每题16分) 15.在ABC ∆中,角C B A 、、所对的边分别为c b a 、、,且1cos 2a C cb +=. (1)求角A 的大小(2)若4a b =,求边c 的大小.16.已知直线l 经过点(3,4)P .(1)若直线l 的倾斜角为(90)θθ≠,且直线l 经过另外一点(cos ,sin )θθ,求此时直线l 的 方程;(2)若直线l 与两坐标轴围成等腰直角三角形,求直线l 的方程.17.设数列{}n a 的前n 项和为,n S 且满足2n n S a =-. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足111,n n n b b b a +==+,求数列{}n b 的通项公式; (3)设(3)n n c n b =-,求数列n c 的前n 项和n T .18.如图,在ABC Rt ∆中,P BC AC ACB ,2,3,2===∠π是ABC ∆内的一点.(1)若P 是等腰直角三角形PBC 的直角顶点,求PA 的长; (2)若32π=∠BPC ,设θ=∠PCB ,求PBC ∆的面积)(θS 的解析式,并求)(θS 的最大值·19.已知函数b x a a x x f +-+-=)5(3)(2(1)当不等式0)(>x f 的解集为)3,1(-时,求实数b a ,的值; (2)若对任意实数a ,0)2(<f 恒成立,求实数b 的取值范围; (3)设b 为常数,解关于a 的不等式0)1(<f .20.设数列}{n a ,}{n b ,}{n c ,已知41=a ,31=b ,51=c ,n n a a =+1,21nn n c a b +=+,21n n n b a c +=+(*N ∈n ). (1)求数列}{n n b c -的通项公式; (2)求证:对任意*N ∈n ,n n c b +为定值;(3)设n S 为数列}{n c 的前n 项和,若对任意*N ∈n ,都有]3,1[)4(∈-⋅n S p n ,求实数p 的取值范围.2014-2015学年度春学期期中试卷高一数学参考答案及评分建议 2015.4一.填空题(每空5分,共70分)1. 2. 1[,)(,1]6+∞⋃-∞-, 3. 5, 4. 4, 5.15. , 6. 8,7.3π, 8. 12-, 9.43k ≥或23k ≤-, 10.[3,92], 11.4, 12. 13. 12n n-, 14. 2a ≤-.二.解答题(第15-17题每题14分,第18-20题每题16分)15 .解:(1)利用正弦定理,由1cos 2a C c b +=,得1sin cos sin sin 2A C CB +=.……2分 因为sin sin()sin cos cos sin B AC A C A C =+=+,所以1sin cos sin 2C A C =.……4分因为sin 0C ≠,所以1cos 2A =.………6分因为0A π<<,所以.3A π=………8分(2)由余弦定理,得2222cos a b c bc A =+-,因为4a b ==,3A π=,所以211316242c c =+-⨯⨯⨯,即2430c c -+=,………12分 解得1c =或3c =………14分 16.解:(1)直线l 的斜率为4sin sin tan 3cos cos k θθθθθ-===-,………2分解得4cos 3sin θθ=,即4tan 3θ=……4分 所以直线l 的斜率为43,直线l 的方程为43y x =;………6分(2)由题意知,直线l 的斜率必存在,且不为零,则设:4(3)l y k x -=-,………7分 分别令,x y 等于零得到x 轴上的截距为43k-+,y 轴上的截距为34k -+,………8分 由43k-+=34k -+,得43k -+=34k -+,解得1k =-或43k =;………10分或者43k-+=34k -,解得1k =或43k =;………12分经检验43k =不合题意,舍去.………13分综上:k 的值为1±,直线l 的方程为:1y x =+或7y x =-+.……14分(用截距式也可)17.解:(1)当1n =时,111112,1a S a a a +=+=∴=.………1分 因为2n n S a =-,即112,2n n n n a S a S +++=∴+=. 两式相减得:12n n a a +=,………2分 因为0n a ≠,所以*11()2n n a n N a +=∈.………3分 所以数列{}n a 是首项11a =,公比为12的等比数列, 所以11()2n n a -=.………4分(2)因为1111,()2n n n n n n b b a b b -++=+∴-=,………5分利用累加得:1221111()111121()()22()1222212n n n n b b -----=++++==--.………7分又因为11b =,所以1132()2n n b -=-.………8分 (3)因为11(3)2()2n n n C n b n -=-=,………9分所以012111112[()2()3()()]2222n n T n -=++++.123111112[()2()3()()]22222n n T n =++++. ………10分 由-,得:01211111112[()()()()]2()222222n nn T n -=++++-.………11分故11()18184244()84()8222212nn n n n n nT n n -+=-=--=--………14分18.解:(1)因为P 是等腰直角三角形PBC 的直角顶点,且2BC =, 所以,4PCB PC π∠==,………1分又因为,24ACB ACP ππ∠=∴∠=,………2分在PAC ∆中,由余弦定理得:2222cos 54PA AC PC AC PC π=+-⋅=,………5分所以PA =………6分(2)在PBC ∆中,32π=∠BPC ,θ=∠PCB ,所以3PBC πθ∠=-,………7分 由正弦定理得2,2sin sin sin()33PB PCππθθ==-………8分,sin()3PB PC πθθ∴==-………9分 所以PBC ∆得面积12()sin sin()sin 233S PB PC ππθθθ=⋅=-………11分=22sin cos sin 22333θθθθθ-=+-……12分=sin(2)(0,)3633ππθθ+-∈,………14分 所以当6πθ=时,PBC ∆………16分 19 .解:(1) 0)(>x f 即0)5(32>+-+-b x a a x ∴0)5(32<---b x a a x ∴⎩⎨⎧=---=--+0)5(3270)5(3b a a b a a ……2分∴⎩⎨⎧==92b a 或⎩⎨⎧==93b a (若用根与系数关系也算对) ……………………4分(2)0)2(<f ,即0)5(212<+-+-b a a 即0)12(1022>-+-b a a …………6分∴0<∆恒成立 21-<∴b …………………………10分 (3)0)1(<f 即0352>+--b a a ,∴△=b b 413)3(4)5(2+=+---10当0<∆即413-<b 时, R a ∈ …………………………………12分20当0=∆即413-=b 时,解集为{,a a 25|≠R a ∈} ………………………14分30当0>∆即413->b 时,解集为{a 21345++>b a 或21345+-<b a } ……16分20. 解:(1)因为n n a a =+1,41=a ,所以4=n a (*N ∈n ), …………1分所以222421+=+=+=+nn n nn c c c a b ,2221+=+=+n n n n b b a c , )(21)(2111n n n n n n b c c b b c --=-=-++, …………………………………2分即数列}{n n b c -是首项为2,公比为21-的等比数列, …………………………3分所以1212-⎪⎭⎫⎝⎛-⋅=-n n n b c . ………………………………………………………4分(2)4)(2111++=+++n n n n c b c b , ……………………………………5分所以)8(2142811-+=-+=-+++n n n nn n c b c b c b ,………………………………8分 而0811=-+c b ,所以由上述递推关系可得,当*N ∈n 时,08=-+n n c b 恒成立,即n n c b +恒为定值.………………………………………………………………………10分(3)由(1)、(2)知⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛-⋅=-=+-1212,8n n n n n b c c b ,所以1214-⎪⎭⎫ ⎝⎛-+=n n c ,…………11分所以⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--+=⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛--+=nnn n n S 2113242112114,所以⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⋅=-⋅nn p n S p 21132)4(, …………………………………………12分由]3,1[)4(∈-⋅n S p n 得3211321≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⋅≤np ,因为0211>⎪⎭⎫⎝⎛--n,所以nnp ⎪⎭⎫ ⎝⎛--≤≤⎪⎭⎫ ⎝⎛--2113322111, ……………………13分当n 为奇数时,n n ⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--21112111随n 的增大而递增,且121110<⎪⎭⎫ ⎝⎛--<n, 当n 为偶数时,n n ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--21112111随n 的增大而递减,且12111>⎪⎭⎫ ⎝⎛--n, 所以,n ⎪⎭⎫ ⎝⎛--2111的最大值为34,n⎪⎭⎫⎝⎛--2113的最小值为2. …………………15分 由nn p ⎪⎭⎫⎝⎛--≤≤⎪⎭⎫ ⎝⎛--2113322111,得23234≤≤p ,解得32≤≤p . …………16分 所以,所求实数p 的取值范围是]3,2[.。
2014-2015学年四川省成都市双流县棠湖中学高一(下)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.(5分)已知集合A={x|1≤x≤3},B={﹣1,1,2,3},则A∩B等于()A.{1,2}B.{2,3}C.{1,2,3}D.{﹣1,1,2,3}2.(5分)已知a n+1﹣a n﹣3=0,则数列{a n}是()A.等差数列B.等比数列C.摆动数列D.既等差数列又等比数列3.(5分)设函数f(x)=,则f(f())的值是()A.﹣1B.C.2D.44.(5分)数列﹣1,,﹣,,…的一个通项公式a n是()A.(﹣1)n B.(﹣1)nC.(﹣1)n D.(﹣1)n5.(5分)在△ABC中,若a=2bsinA,则B等于()A.30°B.60°C.30°或150°D.60°或120°6.(5分)等差数列{a n}中,前10项和S10=120,那么a2+a9的值是()A.12B.16C.24D.487.(5分)在△ABC中,B=135°,C=15°,a=5,则此三角形的最大边长为()A.B.C.D.8.(5分)在△ABC中,bcosA=acosB,则三角形的形状为()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形9.(5分)设a=sin14°+cos14°,b=2sin30.5°cos30.5°,c=,则a,b,c的大小关系()A.a<b<c B.b<a<c C.c<b<a D.a<c<b10.(5分)△ABC的内角A,B,C所对的边a,b,c满足(a+b)2﹣c2=4,且C=60°,则ab的值为()A.B.C.1D.11.(5分)如图,菱形ABCD的边长为2,∠BAD=60°,M为DC的中点,若N 为菱形内任意一点(含边界),则的最大值为()A.3B.C.6D.912.(5分)数列{a n}的通项a n=n2(cos2﹣sin2),其前n项和为S n,则S30为()A.470B.490C.495D.510二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)cos=.14.(4分)数列{a n}前n项和S n=n2+n+1,则a n=.15.(4分)已知函数f(x)=log2x+x﹣2,函数f(x)的零点x0∈(n,n+1),n ∈N*,则n=.16.(4分)设数列{a n}的前n项和为S n,且a1=1,a n+1=2S n(n=1,2,3…),给出下列四个命题:①数列{a n}是等比数列;②数列{S n}是等比数列;③∃常数c>0,使≤c(n∈N+)恒成立;④若S n(3a n﹣2γ)+2≥0(n=1,2,3…)恒成立,则γ∈(+∞,).以上命题中正确的命题是(写出所有正确命题的序号).三、解答题:本大题共6小题,共74分.解答应写出必要的文字说明,证明过程或演算步骤.17.(12分)已知向量=(1,0),=(2,1)(1)求+3及﹣;(2)当k为何实数时,k﹣与+3平行,平行时它们是同向还是反向?18.(12分)等比数列{a n}中,已知a1=2,a4=16(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n项和S n.19.(12分)设函数f(x)=sin(2x+)+2sinxcosx.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若x∈[﹣,],求函数f(x)的最大值和最小值.20.(12分)郑州市某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC、△ABD,经测量AD=BD=7米,BC=5米,AC=8米,∠C=∠D.(Ⅰ)求AB的长度;(Ⅱ)若环境标志的底座每平方米造价为5000元,不考虑其他因素,小李、小王谁的设计使建造费用最低(请说明理由),最低造价为多少?()21.(12分)已知,且.①求tan2α的值;②求cosβ的值;③求β的大小.22.(14分)已知数列{a n}是首项为a1=,公比q=的等比数列.设b n+2=3loga n(n∈N*),数列{c n}满足c n=a n•b n.(1)求证:数列{b n}成等差数列;(2)求数列{c n}的前n项和S n;(3)若c n≤+m﹣1对一切正整数n恒成立,求实数m的取值范围.2014-2015学年四川省成都市双流县棠湖中学高一(下)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.(5分)已知集合A={x|1≤x≤3},B={﹣1,1,2,3},则A∩B等于()A.{1,2}B.{2,3}C.{1,2,3}D.{﹣1,1,2,3}【解答】解:∵A={x|1≤x≤3},B={﹣1,1,2,3},∴A∩B={1,2,3},故选:C.2.(5分)已知a n+1﹣a n﹣3=0,则数列{a n}是()A.等差数列B.等比数列C.摆动数列D.既等差数列又等比数列【解答】解:由题意知,a n+1﹣a n﹣3=0,则a n+1﹣a n=3,∴数列{a n}是以3为公差的等差数列,故选:A.3.(5分)设函数f(x)=,则f(f())的值是()A.﹣1B.C.2D.4【解答】解:函数f(x)=,则f()=log2=﹣1,即有f(f())=f(﹣1)=2﹣1=,故选:B.4.(5分)数列﹣1,,﹣,,…的一个通项公式a n是()A.(﹣1)n B.(﹣1)nC.(﹣1)n D.(﹣1)n【解答】解:数列等价为﹣,,﹣,,…,即﹣,,﹣,,…,故数列的通项公式为(﹣1)n,故选:C.5.(5分)在△ABC中,若a=2bsinA,则B等于()A.30°B.60°C.30°或150°D.60°或120°【解答】解:∵,∴,∵根据正弦定理,∴=,∴sinB=,又B为三角形的内角,∴B=60°或120°故选:D.6.(5分)等差数列{a n}中,前10项和S10=120,那么a2+a9的值是()A.12B.16C.24D.48【解答】解:由等差数列的求和公式可得:=120,解得a1+a10=24,由等差数列的性质可得a2+a9=a1+a10=24,故选:C.7.(5分)在△ABC中,B=135°,C=15°,a=5,则此三角形的最大边长为()A.B.C.D.【解答】解:在△ABC中,B=135°,C=15°,则此三角形的A=30°,且最大边为AC边,由正弦定理,可以求出AC===.故选:C.8.(5分)在△ABC中,bcosA=acosB,则三角形的形状为()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形【解答】解:在△ABC中,∵acosB=bcosA,∴由正弦定理得:sinAcosB=sinBcosA,∴sin(A﹣B)=0,∴A﹣B=0,∴A=B.∴△ABC的形状为等腰三角形.故选:A.9.(5分)设a=sin14°+cos14°,b=2sin30.5°cos30.5°,c=,则a,b,c的大小关系()A.a<b<c B.b<a<c C.c<b<a D.a<c<b【解答】解:∵a=sin14°+cos14°=sin(14°+45°)=sin59°,b=2sin30.5°cos30.5°=sin61°,c==sin60°,又函数y=sinx在(0°,90°)上是增函数,∴sin59°<sin60°<sin61°即:a<c<b.故选:D.10.(5分)△ABC的内角A,B,C所对的边a,b,c满足(a+b)2﹣c2=4,且C=60°,则ab的值为()A.B.C.1D.【解答】解:∵△ABC的边a、b、c满足(a+b)2﹣c2=4,∴c2=(a+b)2﹣4=a2+b2+2ab﹣4,又C=60°,由余弦定理得c2=a2+b2﹣2abcosC=a2+b2﹣ab,∴2ab﹣4=﹣ab,∴ab=.故选:A.11.(5分)如图,菱形ABCD的边长为2,∠BAD=60°,M为DC的中点,若N 为菱形内任意一点(含边界),则的最大值为()A.3B.C.6D.9【解答】解::以点A位坐标原点建立如图所示的直角坐标系,由于菱形ABCD 的边长为2,∠A=60°,M为DC的中点,故点A(0,0),则B(2,0),C(3,),D(1,),M(2,).设N(x,y),N为平行四边形内(包括边界)一动点,对应的平面区域即为平行四边形ABCD及其内部区域.因为=(2,),=(x,y),则=2x+y,结合图象可得当目标函数z=2x+y 过点C(3,)时,z=2x+y取得最大值为9,故选:D.12.(5分)数列{a n}的通项a n=n2(cos2﹣sin2),其前n项和为S n,则S30为()A.470B.490C.495D.510【解答】解:由于{cos2﹣sin2}以3为周期,故S30=(﹣+32)+(﹣+62)+…+(﹣+302)=∑[﹣+(3k)2]=∑[9k﹣]=﹣25=470故选:A.二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)cos=﹣.【解答】解:cos=cos(π﹣)=﹣cos=﹣,故答案为:﹣.14.(4分)数列{a n}前n项和S n=n2+n+1,则a n=.【解答】解:当n=1时,a1=S1=1+1+1=3.当n≥2时,a n=S n﹣S n﹣1=n2+n+1﹣[(n﹣1)2+(n﹣1)+1]=2n.∴a n=.故答案为:.15.(4分)已知函数f(x)=log2x+x﹣2,函数f(x)的零点x0∈(n,n+1),n ∈N*,则n=1.【解答】解:f(x)=log2x+x﹣2在(0,+∞)上单调递增且连续,且f(1)=0+1﹣2=﹣1<0,f(2)=1+2﹣2=1>0;故函数f(x)的零点x0∈(1,2),故n=1;故答案为:1.16.(4分)设数列{a n}的前n项和为S n,且a1=1,a n+1=2S n(n=1,2,3…),给出下列四个命题:①数列{a n}是等比数列;②数列{S n}是等比数列;③∃常数c>0,使≤c(n∈N+)恒成立;④若S n(3a n﹣2γ)+2≥0(n=1,2,3…)恒成立,则γ∈(+∞,).以上命题中正确的命题是②③(写出所有正确命题的序号).【解答】解:①∵a1=1,a n+1=2S n,∴a n+2=2S n+1,两式相减得a n+2﹣a n+1=2S n+1﹣2S n=2a n+1,即a n+2=3a n+1,即,(n≥2),当n=1时,a2=2a1=2,,∴数列{a n}不是等比数列;∴①错误.②a n+1=2S n=S n+1﹣S n,即3S n=S n+1,∴,(n≥1),即数列{S n}是等比数列;∴②正确.③由①知,当n≥2时,=2•3n﹣2,a1=1,则,,则=+=1+,∴当c时,使恒成立;∴③正确.④由S n(3a n﹣2γ)+2≥0得3S n a n﹣2γS n+2≥0,即(n=1,2,3…)恒成立,当n=1时,,当n≥2时,=,当且仅当,即3n﹣1=1,n=1取等号,此时不成立.设t=3n﹣1,当n≥2时,t≥3,∵y==t+在[3,+∞)上单调递增,∴y,∴要使(n=1,2,3…)恒成立,则,即γ,∴④错误.故正确的是②③,故答案为:②③.三、解答题:本大题共6小题,共74分.解答应写出必要的文字说明,证明过程或演算步骤.17.(12分)已知向量=(1,0),=(2,1)(1)求+3及﹣;(2)当k为何实数时,k﹣与+3平行,平行时它们是同向还是反向?【解答】解:(1)∵向量=(1,0),=(2,1),∴+3=(1,0)+3(2,1)=(7,3);﹣=(1,0)﹣(2,1)=(﹣1,﹣1);(2)∵k﹣=k(1,0)﹣(2,1)=(k﹣2,﹣1),+3=(7,3),且k﹣∥+3;∴3(k﹣2)﹣7×(﹣1)=0;解得k=﹣;此时k﹣=(﹣,﹣1),+3=(7,3),两向量平行时且反向.18.(12分)等比数列{a n}中,已知a1=2,a4=16(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n项和S n.【解答】解:(I)设{a n}的公比为q由已知得16=2q3,解得q=2∴=2n(Ⅱ)由(I)得a3=8,a5=32,则b3=8,b5=32设{b n}的公差为d,则有解得.从而b n=﹣16+12(n﹣1)=12n﹣28所以数列{b n}的前n项和.19.(12分)设函数f(x)=sin(2x+)+2sinxcosx.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若x∈[﹣,],求函数f(x)的最大值和最小值.【解答】解:(Ⅰ)函数f(x)=sin(2x+)+2sinxcosx=sin2x+cos2x+sin2x=sin2x+cos2x=sin(2x+).令2kπ﹣≤2x +≤2kπ+,求得kπ﹣≤x ≤kπ+,可得函数f (x )的单调递增区间为[kπ﹣,kπ+],k ∈z .(Ⅱ)由x ∈[﹣,],得2x +∈[0,],得sin (2x +)∈[0,1],所以f (x )的最大值为,最小值为0.20.(12分)郑州市某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC 、△ABD ,经测量AD=BD=7米,BC=5米,AC=8米,∠C=∠D . (Ⅰ)求AB 的长度;(Ⅱ)若环境标志的底座每平方米造价为5000元,不考虑其他因素,小李、小王谁的设计使建造费用最低(请说明理由),最低造价为多少? ()【解答】解:(Ⅰ)在△ABC 中,由余弦定理得cosC==. ①…(2分)在△ABD 中,由余弦定理得cosD==. ②…(4分)由∠C=∠D 得 cosC=cosD ,AB=7,所以 AB 长度为7米.…(6分) (Ⅱ)小李的设计符合要求.理由如下:S △ABD =•sinD ,S △ABC =•sinC .因为 AD•BD >AC•BC ,所以 S △ABD >S △ABC . 故选择△ABC 建造环境标志费用较低.…(8分)因为:AD=BD=AB=7,所以△ABD 是等边三角形,∠D=60°, 故,S △ABC =•sinC=10, 所以,总造价为:5000×10=50000≈86600.…(12分)21.(12分)已知,且.①求tan2α的值;②求cosβ的值;③求β的大小.【解答】解:①由cosα=,可得∴tanα==4,∴=﹣②由,得又∵,∴∴cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)=③由②得∵,∴22.(14分)已知数列{a n}是首项为a1=,公比q=的等比数列.设b n+2=3loga n(n∈N*),数列{c n}满足c n=a n•b n.(1)求证:数列{b n}成等差数列;(2)求数列{c n}的前n项和S n;(3)若c n≤+m﹣1对一切正整数n恒成立,求实数m的取值范围.【解答】(1)证明:由已知可得,=,b n+2=3=3n,∴b n=3n﹣2,b n+1﹣b n=3,∴数列{b n}为等差数列,其中b1=1,d=3.(2)解:c n=a n•b n=,∴S n=++…+,=++…+,两式相减可得:=+…+﹣=﹣=,∴S n=.(3)解:c n=a n•b n=,∴c n﹣c n==﹣9.+1当n=1时,c2=c1;当n≥2时,c n+1<c n,∴(c n)max=c1=c2=.∵c n≤+m﹣1对一切正整数n恒成立,∴+m﹣1,化为m2+4m﹣5≥0,解得m≤﹣5或m≥1.∴实数m的取值范围是m≤﹣5或m≥1.。
双流中学2017届高一(下)五月周考试题数学(理科)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分.第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的. 1.已知α为锐角,4sin 5α=,则tan()4πα+= A .17- B .17C .7D .7-2.在ABC ∆中,15=a ,10=b ,60A =,则此三角形解的个数为A .0B .1C .2D .不确定 3.已知31cos sin =+αα,则=⎪⎭⎫ ⎝⎛-απ4sin 2 A .181 B .1817C .98D .924.等差数列{}n a 的前n 项和为n S ,55-=S ,459-=S ,则4a 的值为A .1-B .2-C .3-D .4-5.已知向量,a b 满足2a = ,1b = ,且()3a a b ?=,则向量a 与b的夹角为A .60°B .30°C .150°D .120°6.化简A .2sin5B .4cos52sin5+C .4cos52sin 5--D .2sin5-7.记等比数列{}n a 的前n 项积为*()n T n N ∈,已知1120m m m a a a -+-=,且21128m T -=,则m =A .3B .4C .5D .7 8.设等差数列}{n a 的前n 项和为,n S 且满足,0,01615<>S S 则15152211,,,a S a S a S 中最大的项为 A .66a S B .77a S C .99a S D .88a S 9.设向量,,abc 满足1a b == ,12a b ⋅= ,()()0a c b c -⋅-=,则||c 的最大值是A .213+ B .213- C .3 D .110.等差数列{}n a 的公差()0,1-∈d ,()1sin sin sin cos cos cos sin 72623262323232=+-+-a a a a a a a a ,且145a π=,则使得数列{}n a 的前n 项和0n S >的n 的最大值为A . 11B .10C .9D .8第Ⅱ卷(非选择题 共70分)二、填空题:本大题共7小题,每小题3分,共21分.11.已知向量(2,1)a = ,(1,3)b =- ,()a a b λ⊥-,则实数λ= ▲ .12.设各项都为正数的等比数列{}n a 的前n 项和为n S ,若12,3693=-=S S S ,则=6S ▲ .13.已知⎪⎭⎫ ⎝⎛-απ4c o s =53,sin 4πβ⎛⎫+ ⎪⎝⎭=-1312,3,44ππα⎛⎫∈ ⎪⎝⎭,5,4πβπ⎛⎫∈ ⎪⎝⎭,则()βα+sin = ▲ .14.在ABC ∆中,如果sin A C =,30B =,那么角A = ▲ .15.设数列{}n a 是以1为首项,2为公差的等差数列,数列{}n b 是以1为首项,2为公比的等比数列, 则12...+++n b b b a a a = ▲ .16.在ABC ∆中,M 是BC 的中点,5AM =,8BC =,则AB AC ⋅= ▲ .17.若钝角三角形三内角的度数依次成等差数列,且最小边长与最大边长的比值为m ,则m 的取值范围是 ▲ .三、解答题:本大题共5小题,共49分. 解答应写出文字说明,证明过程或演算步骤. 18.(本题满分9分)已知函数x x x x x f 44sin cos sin 32cos )(-+=. (1)求)(x f 的最小正周期和对称轴;(2)若⎥⎦⎤⎢⎣⎡∈2,0πx ,求)(x f 的值域.19.(本题满分10分)在ABC ∆中,c b a ,,分别为内角C B A ,,所对的边,且满足(2)cos cos a c B b C -=.(1)求角B ;(2)若3b a c =-=,求ABC ∆的面积.20.(本题满分10分)设数列{}n a 是等差数列,数列{}n b 是各项都为正数的等比数列,且112,3a b ==,355356,26a b a b +=+=.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列21n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T . 21.(本题满分10分)设向量()⎪⎭⎫ ⎝⎛+=-+=2sin ,,cos 3,22ααλλm m b a ,其中αλ,,m 为实数.(1)若812cos ,0+=⋅==αλb a m,求αtan ;(2)若b a2=,求mλ的取值范围.22.(本题满分10分)已知数列{}n b 满足1131,1104n nb b b +==-()*∈n N ,设212n n a b =-(1)求证:数列{}n a 是等差数列;(2)数列{}n c a 为等比数列,且125,8c c ==,若对任意的*n N ∈都有()27n n k c a -<成立,求实数k 的取值范围.双流中学2017届高一(下)五月周考试题参考答案11、5 12、9 13、 65- 14、 ︒120 15、221--+n n 16、 9 17、⎪⎭⎫⎝⎛21,018、(1)()2sin 26⎛⎫=+ ⎪⎝⎭f x x π,π=T ,对称轴()Z k k x ∈+=26ππ (2)[]()1,2∈-f x19、(1)60=︒B ;(2) 由余弦定理()B ac ac c a b cos 2222-+-=,得10=ac325sin 21==∴∆B ac S ABC20、(1)123,13-⋅=-=n n n b n a (2)()()⎪⎭⎫ ⎝⎛+--=+-=+531131615313112n n n n a a n n⎪⎭⎫⎝⎛+-+-=53123110761n n T n21、(1)812cos 2sin cos 3+=⋅-=⋅αααb a09t a n 34t a n 72=--αα 3t a n =∴α或733tan -=α(2)由b a2=,得⎩⎨⎧+=-=+ααλλsin cos 3222m m[]2,23sin 2sin cos 3222-∈⎪⎭⎫ ⎝⎛+=+=+-∴παααλλ, 解得223≤≤-λ[]1,624222-∈+-=+=∴λλλλm22、(1)112222212121211214++-=-=-=----⎛⎫-- ⎪⎝⎭n n n nnn a a b b b b(2)72=-n a n , 数列{}n c a 的公比358==a a q ,首项35-=a ,()n n c c a n 27331-=⋅-=- 372+∴=n n c ,对任意的*n N ∈都有723-<n n k 成立令723-=n n n d ,14203---=n n n n d d当4=n 或5=n 时,()min 181=-n d ,811-<∴k。
双流中学2014-2015学年下期半期考试高一文科数学命题人:覃 朗 审题人:谭文衷本试卷分为选择题和非选择题两部分。
第Ⅰ 卷(选择题)1至2页,第Ⅱ 卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟.注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上. 2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效. 3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚. 4.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 5.保持答题卡卡面清洁,不折叠、不破损.考试结束后,妥善保存将本试卷,只交答题卡.第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,满分60分。
在每小题给出的四个选项中。
只有一项是符合题目要求的。
1.已知集合{0,2,4}=A ,集合{|04}=≤≤B x x ,则A B =.{0}A .{0,2,4}B .{2,4}C .{0,2}D2.已知α为第三象限角,5sin 13α=-,则cos α= 12.13-A 5.13-B 5.13C 12.13D3.的一个通项公式是.n Aa = .n B a .n C a =.n D a 4.已知三角形ABC ∆中,5,8,60a b C ===,则⋅= CB CA.2A .20B .-C .20-D5.在ABC ∆中,,,a b c 分别是内角,,A B C 所对边,且sin cos cos =+a A b C c B 则ABC ∆的形状是.A 锐角三角形 .B 等腰直角三角形 .C 等腰三角形 .D 直角三角形6.若213131)31(,2,2log -===c b a ,则,,a b c 的大小关系正确的是.<<A a b c .<<B b c a.<<C c a b .<<D c b a7.已知等差数列10,8,6,4 的前n 项和为n S ,则使得n S 最大的序号n 的值是 .5A .6B.56或C .67或D8.设∆ABC 的内角,,A B C 所对边的长分别为,,a b c ,若2,3sin 5sin +==b c a A B ,则角=C.3πA 2.3πB 3.4πC 5.6πD9.已知函数()sin()f x A x ωϕ=+,x R ∈(其中0,2πωϕ><)的部分图象如图所示.设点2(,2)3C π是图象上y 轴右侧的第一个最高点,CD DB ⊥ ,BDC ∆的面积是3π,则 1.,26πωϕ==A1.,23πωϕ==B .2,6πωϕ==C .2,3πωϕ==D10.函数cos ()ln(1)xf x x =+图象大致是11.化简2tan()cos242cos ()4πααπα+⋅=-.tan αA .t a n α-B .1C .1D - 12.已知数列{}n a 的通项公式为 2()n a n n N *=-∈,设22()log 8xf x x x+=+-,则数列{}()n f a 的各项之和为.36A.33B.30C.27D(A )(B )第Ⅱ卷(非选择题 共90分)二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置上) 13.22cos 15sin 15-=oo▲ .14.若3,,,,15a b c 成等差数列,则a b c ++= ▲ .15.首项为24-的等差数列,从第10项起开始为正数,则公差d 的取值范围为 ▲ . 16.已知幂函数2()f x x =,若123x x x 吵,1231x x x ++=,123()()()1f x f x f x ++=,则12x x +的取值范围是 ▲ .三.解答题:本大题共6小题,共70分,解答应写出文字说明,演算步骤或证明过程。
17.(本小题满分10分)已知(,1)a x =r ,(1,2)b =r. (Ⅰ)若向量 a 与b 共线,求x 的值;(Ⅱ)求+a b 的最小值.18.(本小题满分12分)已知点(cos ,sin )θθP 在直线2y x =-上,求1sin 2cos 21sin 2cos 2θθθθ+-++的值.19.(本小题满分12分)设{}n a 是等差数列,且510a =,1020a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n S 为数列{}n a 的前n 项和,求数列{}n S n的前n 项和n T .AD CB20.(本小题满分12分)已知函数113()2sincos()4462π=++f x x x . (Ⅰ)求()f x 的最小正周期;(Ⅱ)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且满足2cos cos b c Ca A-=,求()f B 的值域.21.(本小题满分12分)如图,我国南海某处的一个圆形海域上有四个小岛,小岛B 与小岛A 、小岛C 相距都为5 n mile ,与小岛D 相距为 n mile .小岛A 对小岛B 与D 的视角为钝角,且3sin 5A =. (Ⅰ)求小岛A 与小岛D 之间的距离和四个小 岛所形成的四边形的面积;(Ⅱ)记小岛D 对小岛B 与C 的视角为α,小 岛B 对小岛C 与D 的视角为β,求sin(2)αβ+的值.22. (本小题满分12分)设函数()(01)且-=->≠xxf x ka a a a 是定义域为R 上的奇函数.(Ⅰ)若(1)0>f ,求不等式2(2)(4)0++->f x x f x 的解集;(Ⅱ)若3(1)2=f ,且22()4()-=+-x xg x a a f x ,求()g x 在[1,)+∞上的最小值. 双流中学2014-2015学年下期半期考试高一文科数学参考答案及评分标准一.选择题(每小题5分,共60分).1.B .提示: {04}=≤≤B x x ,{}0,2,4A B = .所以选B. 2.A .提示:cos 0α<.3. A 归纳分析即可4.B .提示:58cos6020⋅=⨯⨯=BC CA .所以选B.(必修4第108页习题A 组第2题) 5.D .提示:由正弦定理得2sin sin cos sin 0sin()sin =+=+=A B C Cc sB B C A ,∴sin 1=A ,∴选D ,也可用余弦定理解得。
6.A .提示:02log 31<=a ,0,0>>c b ,排除B ,C ,D .所以选A.7.C .提示:法一,由题,110,20==-<a d ,∴10(1)(2)21206=+-⋅-=-+≥⇒≤n a n n n ,∴当5n =或6n =时n S 最大;法二,21()(10212)1122+==-+=-+n n a a n nS n n n 211121()24=--+n , ∵n N *∈,∴当5n =或6n =时n S 最大.(改编自必修5第45页例4和第45页习题A 组第2(3)题)8.B.提示:先由正弦定理得35b a =,75c a =,,再由余弦定理得1cos 2C =-,9.A 提示:由题意知2A =,即2CD =.由133324BDC S CD BD BD T ππ∆==⋅⇒==4T π⇒=,又212T πωω=⇒=,∴()2sin()2x f x ϕ=+,(,0)3C π-代入得6πϕ=.所以选A.10.D .提示:()f x 的定义域是{}0x x ¹,且是偶函数,排除C ;当0x >时,分母为恒为正值,分子符号不定,即0x >时,()f x 不可能恒为正值,排除B ;当x ??时,分子cos 1x £,分母ln(1)x +??,∴()0f x ®,排除A .∴选D . 11.C. 提示:原式2sin()4cos 2cos()42sin ()4πααπαπα+⋅+=+cos 22sin()cos()44αππαα=++cos 2sin(2)2απα=+ cos 21cos 2αα==.12.D .提示:如图,兼顾()h x 的定义域可知,{}n a 为函数()y f x =和y x =图象交点的横坐标构成的有穷数列:-1,0,1,2,3,4,5,6,7.又()(6)h x h x +-=22(log )8x x x ++-28(6log )2x x x -+-++6=,223(3)3log 383h +=+=-,∴9(1)(0)(1)(2)(3)(4)(5)(6)(7)S h h h h h h h h h =-++++++++ ((1)(7))((0)(6))((1)(5))((2)(4))(3)64327h h h h h h h h h =-++++++++=⨯+=.∴选D .二.填空题:(每小题5分,共20分).13提示:2222cos 15sin 15cos 15sin 15cos30-=-==o o o o o(改编自必修4第135页第三章第1. 3节练习5第(2)小题)14.27 提示:由等差数列的对称性知,b 是3,15的等差中项且315a c +=+,∴315315272a b c +++=++=.((改编《创新方案》必修5第27页第5题). 15.833x <?,由91000a a ì£ïïíï>ïî得出. 16.2433x #提示:由题1231x x x +=-①,2221231x x x ++=②,①式两边平方减去②式再整理得:21233x x x x =-③.由①③知12,x x 是方程22333(1)()0x x x x x +-+-=的两实数根.∴22233333(1)4()03210x x x x x D =---侈-++?3113x ?#.又12x x x 吵,1231x x x ++=,∴3333113x x x x ++^?.∴31133x -#.12111()33x x ??+?122433x x 蓿+?.三.解答题:(共6小题,其中除17题10分外,18----22题每小题12分,共70分) 17.解(Ⅰ)由条件知:210-=x ,∴12=x …………………5分 (Ⅱ)由条件知:(1,3)+=+ a b x ,∴+ a b∴+a b 的最小值为3…………………10分18.解:由题意得sin 2cos αα=-,∴sin tan 2cos ααα==-.…………………4分∴222222221sin 2cos 2sin cos 2sin cos (cos sin )1sin 2cos 2sin cos 2sin cos (cos sin )θθθθθθθθθθθθθθθθ+-++--=+++++- 222sin 2sin cos 2cos 2sin cos θθθθθθ+=+2tan tan 1tan θθθ+=+tan θ=………10分2=-.…………………12分(改编自必修4第143页第三章习题3.2第1题第(8)小题)19.解:(Ⅰ)设数列{}n a 的公差为d ,依题意得a d a d +=⎧⎨+=⎩11410920,解得a d =⎧⎨=⎩122. ∴1(1)2()n a a n d n n N *=+-=∈. …………………………………………… 6分 (Ⅱ)由(Ⅰ)知:2()*=∈n a n n N ∴(22)(1)2+==+n n n n n S ∴1=+nn nS. …………………………………………… 9分∵1(11)(1)11n n n n n nSS +-=++-+=+(定值), ∴数列n n S ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是公差为1的等差数列. ∴2(21)3222++==+n n n n n T ……………………… 12分20.解:(Ⅰ)1113()2sin(cos cos sin sin )446462ππ=-+ f x x x x21113cos sin 2222=-+x x x11cos 132222-=-+x x 1sin()126π=++x . ………………………………………………5分又()f x 的最小正周期2412ππ==T . …………………………………6分(Ⅱ) 由2cos cos b c Ca A-=及正弦定理可得 2sin cos sin cos sin cos sin()B A A C C A A C =+=+.又A B C π++=,2sin cos sin B A B ∴=.1sin 0cos 2 B A ≠∴=,又(0,)3 A A ππ∈∴=. ……………………………9分 由(Ⅰ)1()sin()1()sin()12626B f x x f B ππ=++∴=++ ,又203B A ππ<<-=6262B πππ∴<+< . 3sin()12226B π∴<++<. ()f B ∴ 的值域是3(,2)2. ……………………………………………………12分21.解:(Ⅰ)∵3sin 5A =,且角A为钝角,∴4cos 5A ==-.…………1分 在ABD ∆中,由余弦定理得:2222cos AD AB AD AB A BD +-⋅⋅=.∴2224525()5AD AD +-⋅⋅-=28200AD AD ⇒+-=.解得2AD =或10AD =-(舍). ………………3分 ∴小岛A 与小岛D 之间的距离为2 n mile .∵,,,A B C D 四点共圆,∴角A 与角C 互补. ∴3sin 5C =,4cos cos(180)cos 5C A A =-=-=. 在BDC ∆中,由余弦定理得:2222cos CD CB CD CB C BD +-⋅⋅=.∴22245255CD CD +-⋅⋅=28200CD CD ⇒--=.解得2CD =-(舍)或10CD =.………………4分 ∴ABC BCD ABCDS S S ∆∆=+四形边11sin sin 22AB AD A CB CD C =⋅⋅+⋅⋅ 1313525102525=⨯⨯⨯+⨯⨯⨯ 31518=+=.∴四个小岛所形成的四边形的面积为18平方n mile . ………………6分(Ⅱ)在BDC ∆中,由正弦定理得:sin sin BC BD C α=53sin 5α⇒=sin 5α⇒=.∵222DC DB BC +>,∴α为锐角,∴cos 5α=.………………8分 又∵3sin()sin(180)sin 5C C αβ+=-==, 4cos()cos(180)cos 5C C αβ+=-=-=- .∴[]sin(2)sin ()αβααβ+=++sin cos()cos sin()ααβααβ=+++ sin cos()cos sin()ααβααβ=+++43()55=-=.………………12分 22.解:∵()f x 是定义域为R 上的奇函数,∴(0)0=f ∴10,-=k ∴1,()故-==-xxk f x aa …………………… 3分∵(1)0,>f ∴10->a a,又(1)0,>f (Ⅰ) f(1)>0, ∴1a a->0,又01且>≠a a ∴1>a ;而当1>a 时,易知()f x 是R x 在R 上为增函数,∴f(x)原不等式化为: 2(2)(4)+>-f x x f x , ∴224+>-x x x ,即2340+->x x ,∴14或><-x x ,所以不等式的解集为{|14}x x x ><-或.…………… 6分(Ⅱ) ∵3(1)2=f ,∴132-=a a ,即22320--=a a ∴122或==-a a (舍去) …… 8分222()224(22)(22)4(22)2----=+--=---+x x x x x x x x g x 令22(1)-=-≥x x t x ,∴则()[1,)在=+∞t h x 上为增函数, 即3()(1),2≥=h x h ∴22()42(2)2=-+=--g t t t t ,∴min 222,log (1时,g(x)此时==-=+t x故当x=log 2时,g(x)有最小值2-…… 12分。