精品-2020中考数学题型的综合练习技巧
- 格式:docx
- 大小:37.81 KB
- 文档页数:3
2020中考数学答题得分技巧今天小编为同学们整理分享的是关于2020中考数学答题得分技巧以及中考数学提分思想策略,希望这可以帮助到有需要的同学们,中考快到了,同学们要好好复习哦。
2020中考数学答题得分技巧1、迅速摸清“题情”。
刚拿到试卷的时候心情一定会比较紧张,在这种紧张的状态下不要匆匆作答。
首先要从头到尾、正面反面浏览全卷,尽可能从卷面上获取最多的信息。
摸清“题情”的原则是:轻松解答那些一眼就可以看出结论来的简单选择题或者填空题;对不能立即作答的题目可以从心里分为比较熟悉和比较陌生两大类。
对这些信息的掌握,可以确保不出现“前面难题做不出,后面易题没时间做”的尴尬局面。
2、答卷顺序“三先三后”。
在浏览了试卷并做了简单题的第一遍解答之后,我们的情绪就应该稳定了很多,现在对自己也会信心十足。
我们要明白一点,对于数学学科而言,能够拿到绝大部分分数就已经实属不易,所以要允许自己丢掉一些分数。
在做题的时候我们要遵循“三先三后”的原则。
首先是“先易后难”。
这点很容易理解,就是我们要先做简单题,然后再做复杂题。
当全部题目做完之后,如果还有时间,就再回来研究那些难题。
当然,在这里也不是说在做题的时候,稍微遇到一点难题就跳过去,这样自己给自己遗留下的问题就太多了。
也就违背了我们的原意。
其次是“先高后低”。
这里主要是指的倘若在时间不够用的情况下,我们应该遵守先做分数高的题目再做分数低的题目的顺序。
这样能够拿到更多的总得分。
并且,高分题目一般是分段得分,第一个或者第二个问题一般来说不会特别难,所以要尽可能地把这两问做出来,从总体上说,这样就会比拿出相应时间来做一道分数低的题目“合算”。
最后是“先同后异”。
这里说的“先同后异”其实指的是,在大顺序不变的情况下,可以把难题按照题目的大类进行区分,将同类型的题目放在一起考虑,因为这些题目所用到的知识点比较集中,在思考的时候就容易提高单位时间效益。
3、做题原则“一快一慢”。
2020中考数学:各题型精准的答题技巧中考数学是一门很关键的科目,因而考生不能让这门科目分数太低,给自己拖后腿。
那中考数学题型答题的技巧是什么,考生如何做才能让自己答题答的精准,接近标准答案了。
下面就跟随小编一起看来看一下各题答题的技巧吧!一、选择题答题的突破口做选择题,考生首先要清楚做选择题的方法有哪些?选择题的方法是多样的,有图解法、验证法、特殊值法、排除法、假设法、反证法等等多种方法。
知道了做题的方法,考生就要看题了。
做题考生首先要判断命题正确的数量,或者选项是否为多选,思考完这一点。
考生就要检验命题是否正确,考生可以通过原式的变形和特殊值等多种方法来检验答案是否正确。
当然要注意的一点是,题意和选项一定要看清楚,有些选项或许就是一个字的差别,导致全句的意思都不一样了。
二、如何解答填空题?对于填空题考生可能会觉得比选择题难一点,事实也确是如此。
但总体来说还是很简单的,考生无需太担心。
考生在解这类题的时候,就要注意四点。
第一点就是要注意题目中隐含的条件。
第二点就是要注意是否需要带单位,为了避免不必要的丢分。
第三点就是要注意,如果有求角、线段的长的题型,考生可以采用度量法或者是猜测,或许又会意想不到的效果。
第四点就是要注意,不要一条道走到黑,一种方法解不开题就换另一种方法。
三、简单题精准的答题技巧简答题答题考生要注意两点,第一点相信考生也都知道,就是计算要准确,第二点就是要规范答题,保证每一步都不落下。
毕竟简答题是按步骤给分的。
而在计算的过程当中,考生要先简化后求值,代入求值时分母不为零。
另外,在解答具体的题型,例如解直角三角形的题型时,考生要明确写出辅助线的作法,以及一些解题的步骤。
过程中还要关注直角和特殊角,这样会让解题的思路更加清晰。
以上,就是中考数学各题型精准的答题技巧。
希望考生无论面对选择题、填空题、简答题都能找到最简单直接的方法,迅速解题,也希望考生们能朝着自己的梦想,不断的前进。
重难点05 几何综合题【命题趋势】几何综合题是中考数学中的重点题型,也是难点所在.几何综合题的难度都比较大,所占分值也比较重,题目数量一般有两题左右,其中一题一般为三角型、四边形综合;另一题通常为圆的综合;它们在试卷中的位置一般都在试卷偏后的位置.只所以几何综合题难度大,学生一般都感觉难做,主要是因为这种类型问题的综合性较强,涉及的知识点或者说考点较多,再加上现在比较热门的动点问题、函数问题,这就导致了几何综合题的难度再次升级,因此这种题的区分度较大.所以我们一定要重视平时多培养自己的综合运用知识的能力,从不同的角度,运用不同的知识去解决同一个问题.【满分技巧】一.熟练掌握平面几何知识﹕要想解决好有关几何综合题,首先就是要熟练掌握关于平面几何的所有知识,尤其是要重点把握三角形、特殊四边形、圆及函数、三角函数相关知识.几何综合题重点考查的是关于三角形、特殊四边形(平行四边形、矩形、菱形、正方形)、圆等相关知识.二.掌握分析问题的基本方法﹕分析法、综合法、“两头堵”法﹕1.分析法是我们最常用的解决问题的方法,也就是从问题出发,执果索因,去寻找解决问题所需要的条件,依次向前推,直至已知条件;例如,我们要证明某两个三角形全等,先看看要证明全等,需要哪些条件,哪些条件已知了,还缺少哪些条件,然后再思考要证缺少的条件,又需要哪些条件,依次向前推,直到所有的条件都已知为止即可.2.综合法﹕即从已知条件出发经过推理得出结论,适合比较简单的问题;3.“两头堵”法﹕当我们用分析法分析到某个地方,不知道如何向下分析时,可以从已知条件出发看看能得到什么结论,把分析法与综合法结合起来运用是我们解决综合题最常用的办策略.三.注意运用数学思想方法﹕对于几何综合题的解决,我们还要注意运用数学思想方法,这样会大大帮助我们解决问题,或者简化我们解决问题的过程,加快我们解决问题的速度,毕竟考场上时间是非常宝贵的.常用数学思想方法﹕转化、类比、归纳等等.【限时检测】(建议用时:60分钟)1. (2019 湖南省郴州市)如图1,矩形ABCD中,点E为AB边上的动点(不与A,B重合),把△ADE沿DE 翻折,点A的对应点为A1,延长EA1交直线DC于点F,再把△BEF折叠,使点B的对应点B1落在EF上,折痕EH交直线BC于点H.(1)求证:△A1DE△△B1EH;(2)如图2,直线MN是矩形ABCD的对称轴,若点A1恰好落在直线MN上,试判断△DEF的形状,并说明理由;(3)如图3,在(2)的条件下,点G为△DEF内一点,且△DGF=150°,试探究DG,EG,FG的数量关系.【解析】(1)证明:由折叠的性质可知:△DAE=△DA1E=90°,△EBH=△EB1H=90°,△AED=△A1ED,△BEH =△B1EH,△△DEA1+△HEB1=90°.又△△HEB1+△EHB1=90°,△△DEA1=△EHB1,△△A1DE△△B1EH;(2)结论:△DEF是等边三角形;理由如下:△直线MN是矩形ABCD的对称轴,△点A1是EF的中点,即A1E=A1F,在△A1DE和△A1DF中△△A1DE△△A1DF(SAS),△DE=DF,△FDA1=△EDA1,又△△ADE△△A1DE,△ADF=90°.△△ADE=△EDA1=△FDA1=30°,△△EDF=60°,△△DEF是等边三角形;(3)DG,EG,FG的数量关系是DG2+GF2=GE2,理由如下:由(2)可知△DEF是等边三角形;将△DGE逆时针旋转60°到△DG'F位置,如解图(1),△G'F=GE,DG'=DG,△GDG'=60°,△△DGG'是等边三角形,△GG'=DG,△DGG'=60°,△△DGF=150°,△△G'GF=90°,△G'G2+GF2=G'F2,△DG2+GF2=GE2,2. (2019 江西省)在图1,2,3中,已知△ABCD,△ABC=120°,点E为线段BC上的动点,连接AE,以AE 为边向上作菱形AEFG,且△EAG=120°.(1)如图1,当点E与点B重合时,△CEF=°;(2)如图2,连接AF.△填空:△F AD△EAB(填“>”,“<“,“=”);△求证:点F在△ABC的平分线上;(3)如图3,连接EG,DG,并延长DG交BA的延长线于点H,当四边形AEGH是平行四边形时,求的值.【解析】(1)△四边形AEFG是菱形,△△AEF=180°﹣△EAG=60°,△△CEF=△AEC﹣△AEF=60°,故答案为:60°;(2)△△四边形ABCD是平行四边形,△△DAB=180°﹣△ABC=60°,△四边形AEFG是菱形,△EAG=120°,△△F AE=60°,△△F AD=△EAB,故答案为:=;△作FM△BC于M,FN△BA交BA的延长线于N,则△FNB=△FMB=90°,△△NFM=60°,又△AFE=60°,△△AFN=△EFM,△EF=EA,△F AE=60°,△△AEF为等边三角形,△F A=FE,在△AFN和△EFM中,,△△AFN△△EFM(AAS)△FN=FM,又FM△BC,FN△BA,△点F在△ABC的平分线上;(3)△四边形AEFG是菱形,△EAG=120°,△△AGF=60°,△△FGE=△AGE=30°,△四边形AEGH为平行四边形,△GE△AH,△△GAH=△AGE=30°,△H=△FGE=30°,△△GAN=90°,又△AGE=30°,△GN=2AN,△△DAB=60°,△H=30°,△△ADH=30°,△AD=AH=GE,△四边形ABCD为平行四边形,△BC=AD,△BC=GE,△四边形ABEH为平行四边形,△HAE=△EAB=30°,△平行四边形ABEN为菱形,△AB=AN=NE,△GE=3AB,△=3.3. (2019 浙江省宁波市)如图1,△O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF△EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设=x,tan△DAE=y.△求y关于x的函数表达式;△如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.【解析】证明:(1)△△ABC是等边三角形,△△BAC=△C=60°,△△DEB=△BAC=60°,△D=△C=60°,△△DEB=△D,△BD=BE;(2)如图1,过点A作AG△BC于点G,△△ABC是等边三角形,AC=6,△BG=,△在Rt△ABG中,AG=BG=3,△BF△EC,△BF△AG,△,△AF:EF=3:2,△BE=BG=2,△EG=BE+BG=3+2=5,在Rt△AEG中,AE=;(3)△如图1,过点E作EH△AD于点H,△△EBD=△ABC=60°,△在Rt△BEH中,,△EH=,BH=,△,△BG=xBE,△AB=BC=2BG=2xBE,△AH=AB+BH=2xBE+BE=(2x+)BE,△在Rt△AHE中,tan△EAD=,△y=;△如图2,过点O作OM△BC于点M,设BE=a,△,△CG=BG=xBE=ax,△EC=CG+BG+BE=a+2ax,△EM=EC=a+ax,△BM=EM﹣BE=ax﹣a,△BF△AG,△△EBF△△EGA,△,△AG=,△BF=,△△OFB的面积=,△△AEC 的面积=,△△AEC 的面积是△OFB 的面积的10倍,△,△2x 2﹣7x +6=0,解得:, △,探究问题4. (2019 辽宁省沈阳市)思维启迪:(1)如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC 的中点P (点P 可以直接到达A 点),利用工具过点C 作//CD AB 交AP 的延长线于点D ,此时测得200CD =米,那么A ,B 间的距离是 米.思维探索:(2)在ABC ∆和ADE ∆中,AC BC =,AE DE =,且AE AC <,90ACB AED ∠=∠=︒,将ADE ∆绕点A 顺时针方向旋转,把点E 在AC 边上时ADE ∆的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点P 是线段BD 的中点,连接PC ,PE .△如图2,当ADE ∆在起始位置时,猜想:PC 与PE 的数量关系和位置关系分别是 ; △如图3,当90α=︒时,点D 落在AB 边上,请判断PC 与PE 的数量关系和位置关系,并证明你的结论; △当150α=︒时,若3BC =,DE l =,请直接写出2PC 的值.【解析】(1)解://CD AB Q ,C B ∴∠=∠, 在ABP ∆和DCP ∆中,BP CPAPB DPC B C =⎧⎪∠=∠⎨⎪∠=∠⎩,()ABP DCP SAS ∴∆≅∆,DC AB ∴=. 200AB =Q 米. 200CD ∴=米,故答案为:200.(2)△PC 与PE 的数量关系和位置关系分别是PC PE =,PC PE ⊥. 理由如下:如解图1,延长EP 交BC 于F , 同(1)理,可知()FBP EDP SAS ∴∆≅∆,PF PE ∴=,BF DE =,又AC BC =Q ,AE DE =,FC EC ∴=,又90ACB ∠=︒Q ,EFC ∴∆是等腰直角三角形,EP FP =Q ,PC PE ∴=,PC PE ⊥.△PC 与PE 的数量关系和位置关系分别是PC PE =,PC PE ⊥.理由如下:如解图2,作//BF DE ,交EP 延长线于点F ,连接CE 、CF , 同△理,可知()FBP EDP SAS ∆≅∆, BF DE ∴=,12PE PF EF ==,DE AE =Q , BF AE ∴=,Q 当90α=︒时,90EAC ∠=︒,//ED AC ∴,//EA BC //FB AC Q ,90FBC ∠=, CBF CAE ∴∠=∠,在FBC ∆和EAC ∆中,BF AE CBE CAE BC AC =⎧⎪∠=∠⎨⎪=⎩,()FBC EAC SAS ∴∆≅∆,CF CE ∴=,FCB ECA ∠=∠, 90ACB ∠=︒Q , 90FCE ∴∠=︒,FCE ∴∆是等腰直角三角形, EP FP =Q ,CP EP ∴⊥,12CP EP EF ==.△如解图2,作//BF DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH AC ⊥交CA 延长线于H 点, 当150α=︒时,由旋转旋转可知,150CAE ∠=︒,DE 与BC 所成夹角的锐角为30︒,150FBC EAC α∴∠=∠==︒,同△可得()FBP EDP SAS ∆≅∆,同△FCE ∆是等腰直角三角形,CP EP ⊥,CP EP ==, 在Rt AHE ∆中,30EAH ∠=︒,1AE DE ==,12HE ∴=,AH =,又3AC AB ==Q ,3AH ∴=,22210EC AH HE ∴=+=+2212PC EC ∴==.动点问题5. (2019 湖南省衡阳市)如图,在等边△ABC 中,AB =6cm ,动点P 从点A 出发以lcm /s 的速度沿AB 匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE△AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在△ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.【解析】(1)△△ABC是等边三角形,△△B=60°,△当BQ=2BP时,△BPQ=90°,△6+t=2(6﹣t),△t=3,△t=3时,△BPQ是直角三角形.(2)存在.理由:如图1中,连接BF交AC于M.△BF平分△ABC,BA=BC,△BF△AC,AM=CM=3cm,△EF△BQ,△△EFM=△FBC=△ABC=30°,△EF=2EM,△t=2•(3﹣t),解得t=3.(3)如图2中,作PK△BC交AC于K.△△ABC是等边三角形,△△B=△A=60°,△PK△BC,△△APK=△B=60°,△△A=△APK=△AKP=60°,△△APK是等边三角形,△P A=PK,△PE△AK,△AE=EK,△AP=CQ=PK,△PKD=△DCQ,△PDK=△QDC,△△PKD△△QCD(AAS),△DK=DC,△DE=EK+DK=(AK+CK)=AC=3(cm).(4)如图3中,连接AM,AB′△BM=CM=3,AB=AC,△AM△BC,△AM==3,△AB′≥AM﹣MB′,△AB′≥3﹣3,△AB′的最小值为3﹣3.6. (2019 江苏省扬州市)如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,△G=90°.点M在线段AB上,且AM=a,点P沿折线AD﹣DG运动,点Q沿折线BC﹣CG运动(与点G不重合),在运动过程中始终保持线段PQ△AB.设PQ与AB之间的距离为x.(1)若a=12.△如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为;△在运动过程中,求四边形AMQP的最大面积;(2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.【解析】(1)解:△P在线段AD上,PQ=AB=20,AP=x,AM=12,四边形AMQP的面积=(12+20)x=48,解得:x=3;故答案为:3;△当P,在AD上运动时,P到D点时四边形AMQP面积最大,为直角梯形,△0<x≤10时,四边形AMQP面积的最大值=(12+20)10=160,当P在DG上运动,10<x≤20,四边形AMQP为不规则梯形,作PH△AB于M,交CD于N,作GE△CD于E,交AB于F,如图2所示:则PM=x,PN=x﹣10,EF=BC=10,△△GDC是等腰直角三角形,△DE=CE,GE=CD=10,△GF=GE+EF=20,△GH=20﹣x,由题意得:PQ△CD,△△GPQ△△GDC,△=,即=,解得:PQ=40﹣2x,△梯形AMQP的面积=(12+40﹣2x)×x=﹣x2+26x=﹣(x﹣13)2+169,△当x=13时,四边形AMQP的面积最大=169;(2)解:P在DG上,则10≤x≤20,AM=a,PQ=40﹣2x,梯形AMQP的面积S=(a+40﹣2x)×x=﹣x2+x,对称轴为:x=10+,△0≤x≤20,△10≤10+≤15,对称轴在10和15之间,△10≤x≤20,二次函数图象开口向下,△当x=20时,S最小,△﹣202+×20≥50,△a≥5;综上所述,a的取值范围为5≤a≤20.7. (2019 山东省济宁市)如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且△DMN=△DAM,设AM=x,DN =y.△写出y关于x的函数解析式,并求出y的最小值;△是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.【解析】(1)如图1中,△四边形ABCD是矩形,△AD=BC=10,AB=CD=8,△△B=△BCD=90°,由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ABF中,BF==6,△CF=BC﹣BF=10﹣6=4,在Rt△EFC中,则有:(8﹣x)2=x2+42,△x=3,△EC=3.(2)△如图2中,△AD△CG,△=,△=,△CG=6,△BG=BC+CG=16,在Rt△ABG中,AG==8,在Rt△DCG中,DG==10,△AD=DG=10,△△DAG=△AGD,△△DMG=△DMN+△NMG=△DAM+△ADM,△DMN=△DAM,△△ADM=△NMG,△△ADM△△GMN,△=,△=,△y=x2﹣x+10.当x=4时,y有最小值,最小值=2.△存在.有两种情形:如图3﹣1中,当MN=MD时,△△MDN=△GMD,△DMN=△DGM,△△DMN△△DGM,△=,△MN=DM,△DG=GM=10,△x=AM=8﹣10.如图3﹣2中,当MN=DN时,作MH△DG于H.△MN=DN,△△MDN=△DMN,△△DMN=△DGM,△△MDG=△MGD,△MD=MG,△BH△DG,△DH=GH=5,由△GHM△△GBA,可得=,△=,△MG=,△x=AM=8﹣=.综上所述,满足条件的x的值为8﹣10或.8. (2019 山东省青岛市)已知:如图,在四边形ABCD中,AB△CD,△ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE△AB,交BC于点E,过点Q作QF△AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在△BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE△OQ?若存在,求出t的值;若不存在,请说明理由.【解析】(1)在Rt△ABC中,△△ACB=90°,AB=10cm,BC=8cm,△AC==6(cm),△OD垂直平分线段AC,△OC=OA=3(cm),△DOC=90°,△CD△AB,△△BAC=△DCO,△△DOC=△ACB,△△DOC△△BCA,△==,△==,△CD=5(cm),OD=4(cm),△PB=t,PE△AB,易知:PE=t,BE=t,当点E在△BAC的平分线上时,△EP△AB,EC△AC,△PE=EC,△t=8﹣t,△t=4.△当t为4秒时,点E在△BAC的平分线上.(2)如图,连接OE,PC.S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)=•(4﹣t)•3+[•3•(8﹣t)+•(8﹣t)•t﹣•3•(8﹣t)=﹣t2+t+16(0<t<5).(3)存在.△S=﹣(t﹣)2+(0<t<5),△t=时,四边形OPEG的面积最大,最大值为.(4)存在.如图,连接OQ.△OE△OQ,△△EOC+△QOC=90°,△△QOC+△QOG=90°,△△EOC=△QOG,△tan△EOC=tan△QOG,△=,△=,整理得:5t2﹣66t+160=0,解得t=或10(舍弃)△当t=秒时,OE△OQ.9. (2019 四川省绵阳市) 如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.【解析】(1)证明:∵四边形ABCD是正方形,∴∠DAC=∠CAB=45°,∴∠FDE=∠CAB,∠DFE=∠DAC,∴∠FDE=∠DFE=45°,∴∠DEF=90°,∴△DEF是等腰直角三角形;(2)设OE=t,连接OD,∴∠DOE=∠DAF=90°,∵∠OED=∠DFA,∴△DOE∽△DAF,∴OEAF=ODAD=22,∴AF=2t ,又∵∠AEF=∠ADG,∠EAF=∠DAG,∴△AEF∽△ADG,∴AEAD= AF AG,∴AG · AE=AD · AF=42t ,又∵AE=OA+OE=2 2 +t,∴AG=42t22+t,∴EG=AE-AG=t2+822+t,当点H恰好落在线段BC上∠DFH=∠DFE+∠HFE=45°+45°=90°,∴△ADF∽△BFH,∴FHFD=FBAD=4-2t4,∵AF∥CD,∴FGDF=2t4+2t,∴4-2t4=2t4+2t,解得:t1=10 - 2 ,t2=10 + 2 (舍去),∴EG=EH=t2+822+t =(10-2)2+822+10-2= 310 - 5 2 ;(3)过点F作FK⊥AC于点K,由(2)得EG=t2+822+t,∵DE=EF,∠DEF=90°,∴∠DEO=∠EFK,∴△DOE≌△EKF(AAS),∴FK=OE=t,∴S△EFG=12EG · FK =t3+8t42+2t.10. (2019 四川省资阳市)在矩形ABCD中,连结AC,点E从点B出发,以每秒1个单位的速度沿着B→A→C 的路径运动,运动时间为t(秒).过点E作EF△BC于点F,在矩形ABCD的内部作正方形EFGH.(1)如图,当AB=BC=8时,△若点H在△ABC的内部,连结AH、CH,求证:AH=CH;△当0<t≤8时,设正方形EFGH与△ABC的重叠部分面积为S,求S与t的函数关系式;(2)当AB=6,BC=8时,若直线AH将矩形ABCD的面积分成1:3两部分,求t的值.【解析】(1)△如图1中,△四边形EFGH是正方形,AB=BC,△BE=BG,AE=CG,△BHE=△BGH=90°,△△AEH=△CGH=90°,△EH=HG,△△AEH△△CGH(SAS),△AH=CH.△如图1中,当0<t≤4时,重叠部分是正方形EFGH,S=t2.如图2中,当4<t≤8时,重叠部分是五边形EFGMN,S=S△ABC﹣S△AEN﹣S△CGM=×8×8﹣2×(8﹣t)2=﹣t2+32t﹣32.综上所述,S=.(2)如图3﹣1中,延长AH交BC于M,当BM=CM=4时,直线AH将矩形ABCD的面积分成1:3两部分.△EH△BM,△=,△=,△t=.如图3﹣2中,延长AH交CD于M交BC的延长线于K,当CM=DM=3时,直线AH将矩形ABCD的面积分成1:3两部分,易证AD=CK=8,△EH△BK,△=,△=,△t=.如图3﹣3中,当点E在线段AC上时,延长AH交CD于M,交BC的延长线于N.当CM=DM时,直线AH将矩形ABCD的面积分成1:3两部分,易证AD=CN=8.在Rt△ABC中,AC==10,△EF△AB,△=,△=,△EF=(16﹣t),△EH△CN,△=,△=,解得t=.综上所述,满足条件的t的值为s或s或s.11. (2019 天津市)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,△ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(△)如图△,求点E的坐标;(△)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.△如图△,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;△当≤S≤5时,求t的取值范围(直接写出结果即可).【解析】(△)△点A(6,0),△OA=6,△OD=2,△AD=OA﹣OD=6﹣2=4,△四边形CODE是矩形,△DE△OC,△△AED=△ABO=30°,在Rt△AED中,AE=2AD=8,ED===4,△OD=2,△点E的坐标为(2,4);(△)△由平移的性质得:O′D′=2,E′D′=4,ME′=OO′=t,D′E′△O′C′△OB,△△E′FM=△ABO=30°,△在Rt△MFE′中,MF=2ME′=2t,FE′===t,△S△MFE′=ME′•FE′=×t×t=,△S矩形C′O′D′E′=O′D′•E′D′=2×4=8,△S=S矩形C′O′D′E′﹣S△MFE′=8﹣,△S=﹣t2+8,其中t的取值范围是:0<t<2;△当S=时,如图△所示:O'A=OA﹣OO'=6﹣t,△△AO'F=90°,△AFO'=△ABO=30°,△O'F=O'A=(6﹣t)△S=(6﹣t)×(6﹣t)=,解得:t=6﹣,或t=6+(舍去),△t=6﹣;当S=5时,如图△所示:O'A=6﹣t,D'A=6﹣t﹣2=4﹣t,△O'G=(6﹣t),D'F=(4﹣t),△S=[(6﹣t)+(4﹣t)]×2=5,解得:t=,△当≤S≤5时,t的取值范围为≤t≤6﹣.12. (2019 四川省南充市)如图,在正方形ABCD 中,点E 是AB 边上的一点,以DE 为边作正方形DEFG ,DF 与BC 交于点M ,延长EM 交GF 于点H ,EF 与GB 交于点N ,连接CG.(1)求证:CD△CG ;(2)若tan△MEN=31,求EMMN 的值;(3)已知正方形ABCD 的边长为1,点E 在运动过程中,EM 的长能否为21?请说明理由.【解析】(1)证明:在正方形ABCD ,DEFG 中,DA=DC ,DE=DG ,△ADC=△EDG=△A=90°(1分)△△ADC -△EDC=△EDG -△EDC ,即△ADE=△CDG ,△△ADE△△CDG (SAS )(2分)△△DCG=△A=90°,△CD△CG (3分)(2)解:△CD△CG ,DC△BC ,△G 、C 、M 三点共线△四边形DEFG 是正方形,△DG=DE ,△EDM=△GDM=45°,又△DM=DM△△EDM△△GDM ,△△DME=△DMG (4分)又△DMG=△NMF ,△△DME=△NMF ,又△△EDM=△NFM=45°△△DME△△FMN ,△DMFM ME MN =(5分) 又△DE△HF ,△DM FM ED HF =,又△ED=EF ,△EFHF ME MN =(6分) 在Rt△EFH 中,tan△HEF=31=EF HF ,△31=ME MN (7分) (3)设AE=x ,则BE=1-x ,CG=x ,设CM=y ,则BM=1-y ,EM=GM=x+y (8分)在Rt△BEM 中,222EM BM BE =+,△222)()1()1(y x y x +=-+-, 解得11+-=x x y (9分) △112++=+=x x y x EM ,若21=EM ,则21112=++x x , 化简得:0122=+-x x ,△=-7<0,△方程无解,故EM 长不可能为21. 13. (2019 浙江省台州市)如图,正方形ABCD 的边长为2,E 为AB 的中点,P 是BA 延长线上的一点,连接PC 交AD 于点F ,AP =FD .(1)求的值;(2)如图1,连接EC ,在线段EC 上取一点M ,使EM =EB ,连接MF ,求证:MF =PF ;(3)如图2,过点E 作EN △CD 于点N ,在线段EN 上取一点Q ,使AQ =AP ,连接BQ ,BN .将△AQB 绕点A 旋转,使点Q 旋转后的对应点Q '落在边AD 上.请判断点B 旋转后的对应点B '是否落在线段BN 上,并说明理由.【解析】(1)设AP =FD =a ,△AF =2﹣a ,△四边形ABCD 是正方形,△AB △CD ,△△AFP △△DFC ,△,即,△AP=FD=﹣1,△AF=AD﹣DF=3﹣△=(2)在CD上截取DH=AF△AF=DH,△P AF=△D=90°,AP=FD,△△P AF△△HDF(SAS),△PF=FH,△AD=CD,AF=DH,△FD=CH=AP=﹣1,△点E是AB中点,△BE=AE=1=EM,△PE=P A+AE=,△EC2=BE2+BC2=1+4=5,△EC=,△EC=PE,CM=﹣1,△AP△CD,△△P=△PCD,△△ECP=△PCD,且CM=CH=﹣1,CF=CF,△△FCM△△FCH(S AS),△FM=FH,△FM=PF.(3)若点B'在BN上,如图,以A原点,AB为y轴,AD为x轴建立平面直角坐标系,△EN△AB,AE=BE△AQ=BQ=AP=﹣1由旋转的性质可得AQ=AQ'=﹣1,AB=AB'=2,Q'B'=QB=﹣1,△点B(0,﹣2),点N(2,﹣1)△直线BN解析式为:y=x﹣2设点B'(x,x﹣2)△AB'==2△x=△点B'(,﹣)△点Q'(﹣1,0)△B'Q'=≠﹣1△点B旋转后的对应点B'不落在线段BN上.。
中考数学压轴题解题技巧(中考高分必备)数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。
函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
关键是掌握几种常用的数学思想方法。
一是运用函数与方程思想。
以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。
二是运用分类讨论的思想。
对问题的条件或结论的多变性进行考察和探究。
三是运用转化的数学的思想。
由已知向未知,由复杂向简单的转换。
2020中考数学:各题型拿分方法选择题1、排除法。
排除法是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。
排除法是解选择题的间接方法,也是选择题的常用方法。
2、特殊值法。
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
此类问题通常具有一个共性:题干中给出一些一般性的条件,而要求得出某些特定的结论或数值。
在解决时可将问题提供的条件特殊化。
使之成为具有一般性的特殊图形或问题,而这些特殊图形或问题的答案往往就是原题的答案。
利用特殊值法解答问题,不仅可以选用特别的数值代入原题,使原题得以解决而且可以作出符合条件的特殊图形来进行计算或推理。
3、通过猜想、测量的方法,直接观察或得出结果。
这类方法在近年来的中考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
填空题1、直接法:根据题干所给条件,直接经过计算、推理或证明,得出正确答案。
2、图解法:根据题干提供信息,绘出图形,从而得出正确的答案。
首先,应按题干的要求填空,如有时填空题对结论有一些附加条件,如用具体数字作答,精确到……等,有些考生对此不加注意,而出现失误,这是很可惜的。
其次,若题干没有附加条件,则按具体情况与常规解答。
应认真分析题目的隐含条件。
总之,填空题与选择题一样,因为它不要求写出解题过程,直接写出最后结果。
打好基础,强化训练,提高解题能力,才能既准又快解题。
另一方面,加强对填空题的分析研究,掌握其特点及解题方法,减少失误。
填空题主要题型:一是定量型填空题,二是定性型填空题,前者主要考查计算能力的计算题,同时也考查考生对题目中所涉及到数学公式掌握的熟练程度,后者考查考生对重要的数学概念、定理和性质等数学基础知识的理解和熟练程度。
2020中考数学总复习 第十一章 专题解析专题六 综合性问题的解答策略专题扫描综合性问题往往把几何、三角等空间与图形和函数、方程等数与代数的核心知识有机地结合在一起,具有题型新颖、灵活性强、区分度高等特点,因此倍受各地中考命题者的青睐,这类问题常常以压轴题的形式广泛出现在各地的中考数学试卷中.要完整地解答这类问题,需要我们灵活选择数形结合、分类讨论、函数思想、方程思想等重要数学思想方法去发现问题、分析问题和解决问题.值得我们高度重视,深入探究.例题解析例1. 如图1,直线2+=x y 与抛物线)0(62≠++=a bx ax y 相交于点A (21,25) 和点B (4,m ),点P 是线段AB 上异于A 、B 的动点, 点P 作PC ⊥x 轴于点D ,交抛物线于点C . (1)求抛物线的解析式;(2)是否存在这样的P 点,使线段PC 的长有最大值? 若存在,求出这个最大值;若不存在,请说明理由; (3)求△PAC 为直角三角形时点P 的坐标.解析:(1)∵B (4,m )在直线y=x+2上,∴m=4+2=6, ∴B (4,6)∵A )25,21(、B (4,6)在抛物线y=ax 2+bx+6上,⎪⎩⎪⎨⎧++=++=∴64166621)21(252b a b a ⎩⎨⎧-==82b a 解得 ∴抛物线的解析式为y=2x 2﹣8x+6(2)设动点P 的坐标为(n ,n+2),则C 点的坐标为(n ,2n 2﹣8n+6) ∴PC=(n+2)﹣(2n 2﹣8n+6)=﹣2n 2+9n ﹣4=﹣2(n ﹣49)2+849,∵PC >0,∴当n=49时,线段PC 最大且为849.(3)∵△PAC 为直角三角形, ①若点P 为直角顶点,则∠APC =90°由题意易知,PC ∥y 轴,∠APC =45°,因此这种情形不存在.图1②若点A 为直角顶点,则∠PAC =90°.如图1﹣1,过点A 5(,)22作AN ⊥x 轴于点N , 则ON =12,AN =52.过点A 作AM ⊥直线AB ,交x 轴于点M , 则由题意易知,△AMN 为等腰直角三角 形, ∴MN =AN =52,∴OM =ON +MN =1522+=3,∴M (3,0).设直线AM 的解析式为:y=kx+b ,⎪⎩⎪⎨⎧=+=+032521b k b k 则,⎩⎨⎧=-=31b k 解得,. ∴直线AM 的解析式为:y=﹣x+3 ① 又抛物线的解析式为:y=2x 2﹣8x+6 ② 联立①②式,解得:x=3或x=12(与点A 重合,舍去)∴C (3,0),即点C 、M 点重合. 当x=3时,y=x+2=5, ∴P 1(3,5)③若点C 为直角顶点,则∠ACP =90°.∵y=2x 2﹣8x+6=2(x ﹣2)2﹣2,∴抛物线的对称轴为直线x=2.如图1﹣2,作点A 15(,)22关于对称轴x=2的对称点C ,则点C 在抛物线上,且C 75(,)22当x=72时,y=x+2=112.∴P 2711(,)22图1—1图1—2综上所述,△PAC 为直角三角形时,点P 的坐标为(3,5)或711(,)22例2.如图2,抛物线)0(42≠++=a bx ax y 与y 轴交于点与x 轴交于点A (-2,0)和点B ,抛物线的对称轴x =1与抛物线交于点D ,与直线BC 交于点E . (1)求抛物线的解析式;(2)若点F 是直线BC 上方抛物线上一动点,问是否存在 点F ,使得四边形ABFC 的面积为17?若存在,请求出点F的坐标;若不存在,请说明理由.(3)平行于DE 的一条动直线l 与直线BC 交于点P ,与抛 物线交于点Q ,若以D 、E 、P 、Q 为顶点的四边形是平行四 边形,试求点P 的坐标.解:(1)因为抛物线42++=bx ax y 的对称轴为直线1=x ,且与x 轴交于点)0,2(-A ,则它与x 轴的另一交点B 的坐标为(4,0) 将A 、B 两点的坐标代入42++=bx ax y 中,得⎩⎨⎧=++=+-044160424b a b a ,解得⎪⎩⎪⎨⎧=-=121b a∴所求抛物线的解析式为.4212++-=x x y(2)设直线BC 上方抛物线上存在点F 使得.17=ABFC S 四边形 如图2—1,过点F 作H x FH 轴于⊥ 设)40)(421,(2<<++-x x x x F 则由17=++∆∆FHB COHF AOC S S S 梯形 得21)(4(21)4421(21422122++--++++-+⨯⨯x x x x x x 化简,得0542=+-x x ,04514)4(2<-=⨯⨯--=∆Θ,∴此方程无解故直线BC 上方的抛物线上不存在满足条件的点F(3)当以D 、E 、P 、Q 为顶点的四边形是平行四边形时,有PQ =DE易知直线BC 的解析式为4+-=x y ,显然)29,1(D ,)3,1(E ,.23=∴DE设)4,(+-m m P ,则)421,(2++-m m m Q ,m m m m m PQ 221)4()421(22-=+--++-=∴于是23221(2=-m m 整理,得.342±=-m m由.342=-m m 得721+=m ,722-=m ;由.342-=-m m 得33=m ,14=m (舍去)当72+=m 时,724-=+-m ; 当72-=m 时,724+=+-m ; 当3=m 时,14=+-m ;故所求满足条件的点P 的坐标为)72,72(-+或)72,72(+-或(3,1).例3. 如图3(1),在平面直角坐标系中,抛物线y=ax 2+bx+c (a ≠0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为(﹣1,0),且OC =OB ,tan ∠OAC =4. (1)求抛物线的解析式;(2)若点D 和点C 关于抛物线的对称轴对称,直线AD 下方的抛物线上有一点P ,过点P 作PH ⊥AD 于点H ,作PM 平行于y 轴交直线AD 于点M ,交x 轴于点E ,求△PHM 的周长的最大值.(3)在(2)的条件下,如图3(2),在直线EP 的右侧、x 轴下方的抛物线上是否存在点N ,过点N 作NG ⊥x 轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与△AOC 相似?如果存在,请直接写出点G 的坐标:如果不存在,请说明理由.图3(1) 图3(2)解析:(1)∵点A的坐标为(﹣1,0),∴OA=1.又∵tan∠OAC=4,∴OC=4,∴C(0,﹣4).∵OC=OB,∴OB=4,∴B(4,0).设抛物线的解析式为y=a(x+1)(x﹣4)∵将x=0,y=﹣4代入得:﹣4a=﹣4,解得a=1,∴抛物线的解析式为y=x2﹣3x﹣4.(2)∵抛物线的对称轴为x=﹣=,C(0,﹣4),∵点D和点C关于抛物线的对称轴对称,∴D(3,﹣4)设直线AD的解析式为y=kx+b.∵将A(﹣1,0)、D(3,﹣4)代入得:,解得k=﹣1,b=﹣1,∴直线AD的解析式y=﹣x﹣1.∵直线AD的一次项系数k=﹣1,∴∠BAD=45°.∵PM平行于y轴,∴∠AEP=90°,∴∠PMH=∠AME=45°.∴△MPH的周长=PM+MH+PH=PM+MP+PM=(1+)PM.设P(a,a2﹣3a﹣4),则M(a,﹣a﹣1),则PM═﹣a﹣1﹣(a2﹣3a﹣4)=﹣a2+2a+3=﹣(a﹣1)2+4.∴当a=1时,PM有最大值,最大值为4.∴△MPH的周长的最大值=4×(1+)=4+4;(3)存在点G 的坐标为(,0)或(,0).设点G的坐标为(a,0),则N(a,a2﹣3a﹣4)①如图3(4),若=时,△AOC∽△EGN.则=,整理得:a2+a﹣8=0.得:a =(负值舍去)∴点G 为(,0)②如图3(5),若=时,△AOC∽△NGE.则=4,整理得:4a2﹣11a﹣17=0.得:a=(负值舍去)∴点G为(,0).综上所述,点G的坐标为(,0)或(,0).跟踪训练图3(4)图3(5)1.已知直线y=x+2分别交x 轴、y 轴于A 、B 两点,抛物线y=x 2+mx ﹣2经过点A ,和x 轴的另一个交点为C . (1)求抛物线的解析式;(2)如图4(1),点D 是抛物线上的动点,且在第三象限,求△ABD 面积的最大值; (3)如图4(2),经过点M (﹣4,1)的直线交抛物线于点P 、Q ,连接CP 、CQ 分别交y 轴于点E 、F ,求OE •O F 的值.解:(1)把y=0代入y=x+2得:0=x+2,解得:x=﹣4, ∴A (﹣4,0).把点A 的坐标代入y=x 2+mx ﹣2得:m=, ∴抛物线的解析式为y=x 2+x ﹣2.(2)如图4(3)过点D 作DH ∥y 轴,交AB 于点H , 设D (n , n 2+n ﹣2),H (n , n+2).∴DH =(n+2)﹣(n 2+n ﹣2)=﹣(n+1)2+. ∴当n=﹣1时,DH 最大,最大值为, 此时△ABD 面积最大,最大值为××4=9.(3)把y=0代入 y=x 2+x ﹣2,得:x 2+3x ﹣4=0,解得:x=1或x=﹣4, ∴C (1,0).设直线CQ 的解析式为y ax a =-,CP 的解析式为y=bx ﹣b . ∴,解得:x=1或x=2a ﹣4.图4(1)图4(2)图4(3)∴x Q=2a﹣4.同理:x P=2b﹣4.设直线PQ的解析式为y=kx+b,把M(﹣4,1)代入得:y=kx+4k+1.∴.∴x2+(3﹣2k)x﹣8k﹣6=0,∴x Q+x P=2a﹣4+2b﹣4=2k﹣3, x Q•x P=(2a﹣4)(2b﹣4)=﹣8k﹣6,解得:ab=﹣.又∵OE=﹣b,OF=a,∴OE•OF=﹣ab=.2.如图5(1),在平面直角坐标系中,抛物线y=﹣x2﹣2a x与x轴相交于O、A两点,OA=4,点D为抛物线的顶点,并且直线y=kx+b与该抛物线相交于A、B两点,与y轴相交于点C,B点的横坐标是﹣1.(1)求k,a,b的值;(2)如图5(2),若P是直线AB上方抛物线上的一点,设P点的横坐标是t,△PAB的面积是S,求S关于t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,如图5(3),当PB∥CD时,点Q是直线AB上一点,若∠BPQ+∠CBO=180°,求Q点坐标.解:(1)∵OA=4∴A(﹣4,0)∴﹣16+8a=0∴a=2,∴y=﹣x2﹣4x,当x=﹣1时,y=﹣1+4=3,图5(1)图5(2)图5(3)∴B(﹣1,3),解:(1)将A(﹣4,0)B(﹣1,3)代入函数解析式,得,解得直线AB的解析式为y=x+4,∴k=1、a=2、b=4;(2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN如图1,由(1)知直线AB是y=x+4,抛物线是y=﹣x2﹣4x,∴当x=t时,y P=﹣t2﹣4t,y N=t+4PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,S△PAB=PN(AM+BH)=(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=(﹣t2﹣5t﹣4)×3,化简,得s=﹣t2﹣t﹣6,自变量t的取值范围是﹣4<t<﹣1;∴﹣4<t<﹣1(3)y=﹣x2﹣4x,当x=﹣2时,y=4即D(﹣2,4),当x=0时,y=x+4=4,即C(0,4),∴CD∥OA∵B(﹣1,3).当y=3时,x=﹣3,∴P(﹣3,3),如图2,连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA于T,如图2,可证R在DT上∴PN=ON=3∴∠PON=∠OPN=45°∴∠BPR=∠PON=45°,∵OA=OC,∠AOC=90°∴∠PBR=∠BAO=45°,∴PO⊥AC∵∠BPQ+∠CBO=180,∴∠BPQ =∠BCO +∠BOC 过点Q 作QS ⊥PN ,垂足是S , ∴∠SPQ =∠BOR ∴tan ∠SPQ=tan ∠BOR , 可求BR =,OR =2,设Q 点的横坐标是m , 当x=m 时y=m+4, ∴SQ =m+3,PS =﹣m ﹣1 ∴=,解得m=﹣.当x=﹣时,y=,Q (﹣,).3.如图6,在平面直角坐标系中,抛物线322--=x x y 交x 轴于A ,B 两点(点A 在点B 的左侧),将该抛物线位于x 轴上方的曲线记作M ,将该抛物线位于x 轴下方的部分沿x 轴翻折,翻折后所得曲线记作N ,曲线N 交y 轴于点C ,连接AC ,BC .(1)求曲线N 所在抛物线的函数表达式; (2)求△ABC 外接圆的面积;(3)点P 为曲线M 或曲线N 上的动点,点Q 为x 轴上的一个动点,若以点B ,C ,P ,Q 为顶点的四边形是平行四边形,请直接写出点Q 的坐标;(4)在直线BC 上方的曲线M 上确定两个点,,21D D 使得.21ABC BC D BC D S S S ∆∆∆==并求出点21D D ,的坐标;在曲线M 或N 上是否存在五个点54321T T T T T ,,,,,使得这五个点分别与点C B ,围成的三角形的面积为827?若存在,直接写出这五个点54321T T T T T ,,,,的坐标;若不存在,请说明理由.解:(1)解法一:如图①,设抛物线322--=x x y y 交轴于点/C ,图6令0322=--=x x y ,解得,3,121=-=x x令.3,0-==y x 得 ).3,0(),0,3(),0,1(/--∴C B A).3,0()3,0(/C x C C ∴-轴对称,关于与点Θ设曲线N 的函数表达式为c bx ax y ++=2, ⎪⎩⎪⎨⎧==++=+--30390)3,0()0,3()0,1(c c b a c b a C B A 代入,得,,将,解得⎪⎩⎪⎨⎧==-=321c b a .).31(322≤≤-++-=∴x x x y N 的函数表达式为曲线解法二:如图①,在抛物线322--=x x y 位于x 轴下方的部分任取一点E , 过点E 作EF //y 轴交曲线N 于点F ,则点E ,F 关于x 轴对称. ,设)32,(2--x x x E ).32,(2++-x x x F 则).31(323222≤≤-++-=--=x x x y N x x y x E 的函数表达式为曲线上的任意位置可知,轴下方抛物线在位于由点(2)如图②,设曲线M 和N 的对称轴1=x 交x 轴于点H ,则△ABC 的外接圆圆心G 必在直线x =1上,过点G 作.,GC GB GA I y GI ,,连接轴于点⊥设点G 的坐标为),,1(m 则有 .2,3,1==-==HB m GH m IC GI ,,222222HB GH IC GI GB GC +=+=即由22222)31+=-+m m (得:,,解得1=m ),11(,的坐标为点G ∴,的外接圆半径5212222=+=+=∆∴HB GH GB ABC其面积为.5)5(2ππ=(3)如图③,321P N P P M x C 于另一点,交曲线,于点轴的平行线交曲线作过点 令7171,332212+=-==--=x x x x y ,得, .20,33232===++-=x x x x y (舍去),得令.27117).3,2()371()371(321321=+=-=+-∴CP CP CP P P P ,,从而,,,,当BC 是☐)321(或或=i Q BCP i i 的边时,过点i P 作i i i Q x BC Q P 轴于点交//,;,,,,可知且由)05()074()0,74(//321Q Q Q CP BQ CP BQ i i i i +-= 当BC 是☐CPBQ 的对角线时,仍由BQ CP BQ CP =,且// 得).0,1()072()0,72(654Q Q Q ,,,-+综上所述,满足条件的点Q 的坐标为:).074()05()072(0,74)0,1()072(,或,或,)或或(或,++--3+-=x y BC 的函数解析式为易知直线,如图④,.621,3,4=⋅=∴==∆OC AB S OC AB ABC Θ 过点A 作BC AA //1交y 轴于点1A ,则点1A 的坐标为(0,-1),将直线BC 沿y 轴向上平移4个单位长,交y 轴于点)7,0(2A ,交曲线M 于21D D ,两点, 的距离相等,直线到的距离与点到直线,点BC A BC D D 21Θ .621===∴∆∆∆ABC BC D BC D S S S .721+-=x y D D 的函数解析式为易知直线⎩⎨⎧--=+-=3272x x y x y 解方程组,⎪⎪⎩⎪⎪⎨⎧-=+=⎪⎪⎩⎪⎪⎨⎧+=-=241152411241152411y x y x 或得).241152411()241152411(21-++-∴,,,D D如图⑤,)42632233()41523(21+--,,,上存在点在曲线T T N ,,,上存在点在曲线)4342192341(3+-T M)4342192341()4923(54-+-,和,T T.82754321=====∆∆∆∆∆BC T BC T BC T BC T BC T S S S S S 使得。
初中数学所有题型的考试技巧全奉上!收藏起来慢慢看!一、选择题的解法1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
二、常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
2020年中考数学必考经典题讲练案【苏科版】专题12四边形的几何综合问题【方法指导】1.平行四边形的判定与性质的作用平行四边形对应边相等,对应角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.2.菱形的性质与判定:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.菱形的四条边都相等,菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.3.矩形的性质与判定:关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.在处理许多几何问题中,若能灵活运用矩形的这些性质,则可以简捷地解决与角、线段等有关的问题.4.正方形:①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.【题型剖析】【类型1】平行四边形的计算与证明【例1】(2019•宿豫区模拟)如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线分别交BC、AD于点E、F,G、H分别是OB、OD的中点.求证:(1)OE=OF;(2)四边形GEHF是平行四边形.【变式1-1】(2019•亭湖区二模)已知点E、F分别是▱ABCD的边BC、AD的中点.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,求▱AECF的周长.【变式1-2】(2019•海门市一模)如图,▱ABCD中,点E是BC边的一点,延长AD至点F,使∠DFC=∠DEC.求证:四边形DECF是平行四边形.【变式1-3】(2019•建邺区一模)如图,四边形ABCD是平行四边形,分别以AB,CD为边向外作等边△ABE 和△CDF,连接AF,CE.求证:四边形AECF为平行四边形.【类型2】菱形的计算与证明【例2】(2019•海门市二模)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,过C作CF∥AB交DE延长线于点F,连接AF、DC.求证:(1)DE=FE;(2)四边形ADCF是菱形.【变式2-1】(2019•兴化市二模)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.【变式2-2】(2019•江都区二模)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=5,AC=12,求EF的长.【变式2-3】(2019•宿迁模拟)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC.BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.连接OE.(1)求证:四边形ABCD是菱形;(2)若AB.OE=2,求线段CE的长.【类型3】矩形的计算与证明【例3】(2019•丹阳市一模)已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE ∥BD.(1)求证:四边形AODE是矩形;(2)若AB=2,∠BCD=120°,求四边形AODE的面积.【变式3-1】(2019•建湖县二模)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD 交于点O,AO=BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.【变式3-2】(2019•延边州二模)如图,在平行四边形ABCD中,过点D做DE⊥AB于E,点F在边CD上,DF=BE,连接AF、BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BE=5,AF平分∠DAB,求平行四边形ABCD的面积.【类型4】四边形综合问题【例4】.(2019•桓台县二模)已知,正方形ABCD,∠EAF=45°,(1)如图1,当点E,F分别在边BC,CD上,连接EF,求证:EF=BE+DF;(2)如图2,点M,N分别在边AB,CD上,且BN=DM,当点E,F分别在BM,DN上,连接EF,请探究线段EF,BE,DF之间满足的数量关系,并加以证明;(3)如图3,当点E,F分别在对角线BD,边CD上,若FC=2,则BE的长为.【变式4-1】(2019•灌南县二模)正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°(1)当OM经过点A时,①请直接填空:ON(可能,不可能)过D点:(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形;③如图2,将②中的已知与结论互换,即在ON上取点E(E点在正方形ABCD外部),过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,若四边形EFCH为正方形,那么OE与OA是否相等?请说明理由;(2)当点O在射线BC上且OM不过点A时,设OM交边BA的延长线于G,且OG=2.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO S△OBG,连接GP,则当BO为何值时,四边形PKBG的面积最大?最大面积为多少?【达标检测】1.(2019•无锡)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直2.(2019•连云港)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC 与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.18m2C.24m2D.m23.(2019•苏州)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C 的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6 B.8 C.10 D.124.(2019•淮安)若一个多边形的内角和是540°,则该多边形的边数是.5.(2019•南通)如图,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB PD 的最小值等于.6.(2019•徐州)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=.7.(2019•徐州)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为.8.(2019•常州)如图,在矩形ABCD中,AD=3AB=3,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则MN=.9.(2019•无锡)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为.10.(2019•扬州)如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=.11.(2019•淮安)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.12.(2019•宿迁)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF.(1)求证:四边形AECF是菱形;(2)求线段EF的长.13.(2019•扬州)如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.(1)求证:∠BEC=90°;(2)求cos∠DAE.14.(2019•连云港)如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.15.(2019•泰州)如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.16.(2019•连云港)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P落在点P'处,若正方形ABCD的边长为4,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD 沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG,请直接写出FH的长.17.(2019•无锡)如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2.①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”是否总是成立?请说明理由.。
2020中考数学压轴题:9种题型+5种策略数学压轴题不会做,没思路,怎么破?中高考的设立是为了高一级学校选拔优秀人才提供依据,其中中高考压轴题更是为了考查学生综合运用知识的能力而设计的题型,具有知识点多、覆盖面广、条件隐蔽、关系复杂、思路难觅、解法灵活等特点。
因此,如何解中高考数学压轴题成了很多同学关心话题。
下面介绍几种常用的压轴题的九种形式和解题策略,供大家参考学习!九种题型1线段、角的计算与证明问题中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
2图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
3动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
4一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
2020中考数学:题型的综合练习技巧
中考备考的方法有哪些?下面由出国留学网小编为你精心准备了“2020中考数学:题型的综合练习技巧”,持续关注本站将可以持续获取更多的考试资讯!
一、必须熟悉各种基本题型并掌握其解法
课本上的每一道练习题,都是针对一个知识点出的,是最基本的题目,必须熟练掌握;课外的习题,也有许多基本题型,其运用方法较多,针对性也强,应该能够迅速做出。
许多综合题只是若干个基本题的有机结合,基本题掌握了,不愁解不了它们。
二、在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势
数学是思维的世界,有着众多思维的技巧,所以每道题在命题、解题过程中,都会反映出一定的思维方法,如果我们有意识地注重这些思维方法,时间长了头脑中便形成了对每一类题型的“通用”解法,即正确的思维定势,这时在解这一类的题目时就易如反掌了;同时,掌
握了更多的思维方法,为做综合题奠定了一定的基础。
三、多做综合题
综合题,由于用到的知识点较多,颇受命题人青睐。
做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。
一、看例题学总结
细心的朋友会发现,我们老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大
忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:
二、不能只看皮毛,不看内涵
我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易
了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。
三、要把想和看结合起来。