沪教版(五四制)七年级数学上同步练习:9.6同底数幂的除法及单项式除以单项式
- 格式:docx
- 大小:109.59 KB
- 文档页数:6
9.19 多项式除以单项式一、课本巩固练习1、(1)()()xy xy y x xy 223222÷+-(2)()()ab ab b a b a 33129223-÷++-(3)()b a b a b a b a 2342325.0612125.0-÷⎪⎭⎫ ⎝⎛---2、计算(1)()()43322362462x y x y x y y -÷-÷(2)()()()4422a b a b a b -÷+÷+3、计算:()()()()()()[]()x x x x x x x 472323122323-÷-++-----4、先化简,在求值()()ab b a ab b a b a 484)(223÷-+-+,期中1,2==b a5、已知求的值二、基础过关一、选择题1、若()110=-a ,下列结论正确的是( )(A) 0≠a (B )1≠a (C )1-≠a (D )1±≠a1. 计算()[]236x x x -÷÷结果是( ) (A )1 (B ) 5x (C )5x - (D)x 2. 设M 是一个多项式,且x y x y x M 23235422+-=÷,那么M 等于 ( ) 3、345410956y x y x +- (B) xy y 25563+-(C) y x y x 35425310+- (D)y x y x 35425310- 4、下列计算中,错误的是( )(A)()()14228223+-=-÷-xy xx y x (B)()()14228223+-=-÷-xy x x y x (C) ()12212-=÷-+x x x xn n n (D)()2323223+=÷+a a a a二、填空题:1、222()()____________n n n x x x +÷=2、2(5)(5)____________n n n n x x -+÷+=3、已知-5x 与一个整式的积是234251520x x y x +-,则这个整式=_________________。
9.5 合并同类项一、课本巩固练习1、合并同类项:(1)22226345xy x x y yx x ---+; (2)22375x x x x ----; (3)534852a x a x ax x -++--.2、合并下列各式中的同类项(1)3()5()()a b a b a b +-+++;(2)222(2)4(2)(2)3(2)x y x y x y x y ---+---.3、、求下列各式的值.(1)222223210242x y xy xy xy x y x y xy ----++,其中13,134x y =-=; (2)23231110.20.250.50.51245x x x x x x x -++--+-,其中1213x =.4、、如果184n x y -与13247m y x +-是同类项,求mn 的值.二、基础过关一、判断下列合并同类项是否正确,正确的用“√”表示,错误的用“×”表示: (1)23325534m n m n m n +=; ( ) (2)222853xy y x xy -+=-; ( ) (3)1110.502n nn n x y y x ---=; ( ) 二、合并下列各式中的同类项:(1)22244ab a b ab +-=____________________________; (2)5959m n m n ---+=____________________________; (3)22643532x x x x ++---=____________________________。
三、解答题 1、 如果32nx y 与534m x y -是同类项,求代数式223443n m n m +---的值2、当1,1x y ==-时,250ax by +-=,那么当1,1x y =-=时,求代数式21ax by +-的值。
3、 先合并同类项,再求代数式的值:(1)2222113123.522223xy y x y y x y xy --++--,其中3,2x y ==-。
9.17,9.18 同底数幂的除法及单项式除以单项式一、课本巩固练习例1:利用同底数幂的除法法则填空: (1)510÷58= 5( )-( )= 5( )=( ) (2)(2a )10÷(2a )3 = (2a )( )-( )= (2a )( )= ( )(3)(-a )6÷(-a )2 = (-a )( )-( )= (-a )( )= ( )(4)( a + b )4÷( a + b )2 = ( a + b )( )-( )= ( a + b )( )= ( )例2:计算(1)()()121533-÷-(2)583232⎪⎭⎫⎝⎛÷⎪⎭⎫ ⎝⎛(3)67a a ÷- (4)10010077÷ 3、填空: (1)a 8÷a 3= a ( )-( )= a ( )(2)x 6÷x 2= x( )-( ) = x( )(3)(-y )6÷(-y )3 = (-y )( )-( )= (-y )( )= ( )(4)108÷102= 10( )-( )= 10( )4、计算:(1)3533÷ (2)()()101222-÷-(3)505055÷ (4)5644÷-(5)710a a ÷ (6)102102x x ÷-(7)464343⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛5、计算0)14.3(-π6、若1)2(0=-x ,求x 的取值范围7、计算(1)[]23323432)()()()(a a a a ÷÷-(2)233432)10()10()10(⨯÷8、 计算[]23323433)()()()(a a a a ÷÷-•9、 先化简,后求值322532)()()(x x x x x ÷-•--÷,其中1=x9、:计算:(1)36363ab b a ÷ (2)()2224217y x y x -÷- (3)⎪⎭⎫⎝⎛-÷ax bxa 4374(4)429636y x z y x ÷- (5)3539a a ÷ (6)254624y x y x ÷-(7)426342b a b a ÷ (8)()22315b ab -÷(9) (10)(11)10、计算: (1) (21-a 4x 4) ÷(61-a 3x 2) (2) 27x 8÷3x 4 (3) -12x 3y 3÷4x 2y 3(4) (-a )6÷(-a ) 2(5) (a 2)3÷a 4 (6) 510÷254二、基础过关1.请把计算正确的找出来:①824a a a ÷=; ②55x x x ÷=; ③77()()1a a -÷-=; ④2nn n yy y ÷=; ⑤1010990÷=; ⑥660()()()1(0)ab ab ab ab ÷==≠.2.计算下列各式:① 76(2)(2)-÷-; ② 852a a a ÷÷;③ 844()a a a ÷÷; ④ a a a a ÷-⋅53;⑤ 336a a a ⋅÷; ⑥ 73()()()()ab ab ab ab ÷÷÷; ⑦ 42()()nn y y -÷-; ⑧832()()()a b a b a b -÷-÷-;⑨ 2511x x x ⋅÷; ⑩ 11()()n n x y x y +-+÷+.3.计算:3483()()[()()]x y y x x y y x --÷-÷-4.已知2,6m m na a +==,m 、n 为正整数,求n a 的值.5.已知4,8m na a ==,求m n a +、2m n a -的值. 6.已知2274m nm n x y x y +-=,求()m n m n -+的值.7.解方程:021(1)x x -=-8.已知32132n n n n x x x x -+-+÷=g ,试求出n 的值.9.单项式除以单项式:(1)84273x x ÷; (2)443211()()26a x a x -÷-;(3) 3323124x y x y -÷; (4) 62()()a a -÷-;(5)234()a a ÷10.地球与太阳的距离约为81051⨯.㎞,光的速度是5103⨯㎞/s ,太阳光射到地球上约需要多长时间?初中数学试卷。
沪教版初一数学上册知识点梳理重点题型(常考知识点)巩固练习整式的除法(基础)【学习目标】1. 会用同底数幂的除法性质进行计算.2. 会进行单项式除以单项式的计算.3. 会进行多项式除以单项式的计算.【要点梳理】【399108 整式的除法 知识要点】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即m n m n a a a -÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式.(3)当三个或三个以上同底数幂相除时,也具有这一性质.(4)底数可以是一个数,也可以是单项式或多项式.要点二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.要点三、单项式除以单项式法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只有被除式里含有的字母,则连同它的指数作为商的一个因式.要点诠释:(1)法则包括三个方面:①系数相除;②同底数幂相除;③只在被除式里出现的字母,连同它的指数作为商的一个因式.(2)单项式除法的实质即有理数的除法(系数部分)和同底数幂的除法的组合,单项式除以单项式的结果仍为单项式.要点四、多项式除以单项式法则多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加.即()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点诠释:(1)由法则可知,多项式除以单项式转化为单项式除以单项式来解决,其实质是将它分解成多个单项式除以单项式.(2)利用法则计算时,多项式的各项要包括它前面的符号,要注意符号的变化.【典型例题】类型一、同底数幂的除法1、计算: (1)83x x ÷;(2)3()a a -÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭. 【思路点拨】利用同底数幂相除的法则计算.(2)、(4)两小题要注意符号.【答案与解析】解:(1)83835x x xx -÷==. (2)3312()a a aa --÷=-=-. (3)5252333(2)(2)(2)(2)8xy xy xy xy x y -÷===. (4)535321111133339-⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【总结升华】(1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号.类型二、单项式除以单项式2、计算:(1)342222(4)(2)x y x y ÷;(2)2137323m n m m n x y z x y x y z +⎛⎫÷÷- ⎪⎝⎭; (3)22[()()]()()x y x y x y x y +-÷+÷-;(4)2[12()()][4()()]a b b c a b b c ++÷++.【思路点拨】:(1)先乘方,再进行除法计算.(2)、(3)三个单项式连除按顺序计算.(3)、(4)中多项式因式当做一个整体参与计算.【答案与解析】解:(1)342222684424(4)(2)1644x y x y x y x y x y ÷=÷=.(2)2137323m n m m n x y z x y x y z +⎛⎫÷÷- ⎪⎝⎭ 21373211()()()3m m m n n x x x y y y z z +⎡⎤⎛⎫=÷÷-÷÷÷÷÷ ⎪⎢⎥⎝⎭⎣⎦21432n xy z -=-. (3)22[()()]()()x y x y x y x y +-÷+÷- 222()()()()x y x y x y x y =+-÷+÷-2()()x y x y x y =-÷-=-.(4)2[12()()][4()()]a b b c a b b c ++÷++ 2(124)[()()][()()]a b a b b c b c =÷+÷++÷+3()33a b a b =+=+.【总结升华】(1)单项式的除法的顺序为:①系数相除;②相同字母相除;③被除式中单独有的字母,连同它的指数作为商的一个因式.(2)注意书写规范:系数不能用带分数表示,必须写成假分数.举一反三:【变式】计算:(1)3153a b ab ÷; (2)532253x y z x y -÷; (3)2221126a b c ab ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (4)63(1010)(210)⨯÷⨯. 【答案】 解:(1)33202153(153)()()55a b ab a a b b a b a ÷=÷÷÷==.(2)532252323553(53)()()3x y z x y x x y y z x yz -÷=-÷÷÷=-. (3)22222201111()()332626a b c ab a a b b c ab c ac ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-÷-÷÷== ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. (4)63633(1010)(210)(102)(1010)510⨯÷⨯=÷÷=⨯.3、夏天是多雷雨的季节,大家都知道,雷雨时往往是先看到闪电,后听到雷声,这是因为光的传播速度比声音的传播速度快的缘故.已知光在空气中的传播速度约为8310⨯米/秒,而声音在空气中的传播速度约为23.410⨯米/秒.(1)光的速度大约是声音速度的多少倍?(结果保留两个有效数字)(2)如果你看到闪电8秒后,才听到了雷声,那么你能算出闪电离你大约有多远吗?(注:光传播到地球的时间忽略不计)【答案与解析】解:(1)82826(310)(3.410)(3 3.4)(1010)0.88210⨯÷⨯=÷⨯÷⨯≈58.810⨯≈. (2)233.4108 2.72102720⨯⨯=⨯=(米).【总结升华】在科学记数法表示的数10n a ⨯中,a 相当于单项式的系数,10n 相当于单项式中的幂.类型三、多项式除以单项式4、计算:(1)324(67)x y x y xy -÷;(2)42(342)(2)x x x x -+-÷-;(3)22222(1284)(4)x y xy y y -+÷-;(4)232432110.3(0.5)36a b a b a b a b ⎛⎫--÷- ⎪⎝⎭. 【答案与解析】解:(1)32432423(67)(6)(7)67x y x y xy x y xy x y xy x y x -÷=÷+-÷=-.(2)42(342)(2)x x x x -+-÷- 42[(3)(2)][4(2)][(2)(2)]x x x x x x =-÷-+÷-+-÷-33212x x =-+. (3)22222(1284)(4)x y xy y y -+÷-222222212(4)(8)(4)4(4)x y y xy y y y =÷-+-÷-+÷-2321x x =-+-(4)232432110.3(0.5)36a b a b a b a b ⎛⎫--÷- ⎪⎝⎭ 22322432110.3(0.5)(0.5)(0.5)36a b a b a b a b a b a b ⎛⎫⎛⎫=÷-+-÷-+-÷- ⎪ ⎪⎝⎭⎝⎭ 22321533ab a b =-++. 【总结升华】(1)多项式除以单项式是转化为单项式除以单项式来解决的.(2)利用法则计算时,不能漏项.特别是多项式中与除式相同的项,相除结果为1.(3)运算时要注意符号的变化.举一反三:【399108 整式的除法 例5】【变式】计算:(1)23233421(3)2(3)92xy x x xy y x y ⎡⎤--÷⎢⎥⎣⎦; (2)2[(2)(2)4()]6x y x y x y x +-+-÷.【答案】解: (1)原式223239421922792x y x x x y y x y ⎛⎫=-÷ ⎪⎝⎭ 52510428(927)93x y x y x y x xy =-÷=-.(2)原式2222[44(2)]6x y x xy y x =-+-+÷ 2222(4484)6x y x xy y x =-+-+÷2(58)6x xy x =-÷5463x y =-.。
9.19 多项式除以单项式一、课本巩固练习1、(1)()()xy xy y x xy 223222÷+- (2)()()ab ab b a b a 33129223-÷++- (3)()b a b a b a b a 2342325.0612125.0-÷⎪⎭⎫ ⎝⎛--- 2、计算(1)()()43322362462x y x y x y y -÷-÷(2)()()()4422a b a b a b -÷+÷+3、计算:()()()()()()[]()x x x x x x x 472323122323-÷-++-----4、先化简,在求值()()ab b a ab b a b a 484)(223÷-+-+,期中1,2==b a 5、已知求的值二、基础过关 一、选择题1、若()110=-a ,下列结论正确的是( )(A) 0≠a (B )1≠a (C )1-≠a (D )1±≠a1. 计算()[]236x x x -÷÷结果是( ) (A )1 (B ) 5x (C )5x - (D)x 2. 设M 是一个多项式,且x y x y x M 23235422+-=÷,那么M 等于 ( ) 3、345410956y x y x +-(B) xy y 25563+- (C) y x y x 35425310+-(D)y x y x 35425310- 4、下列计算中,错误的是( )(A)()()14228223+-=-÷-xy x x y x (B)()()14228223+-=-÷-xy x x y x (C) ()12212-=÷-+x x x x n n n (D)()2323223+=÷+a a a a二、填空题:1、222()()____________n n n x x x +÷=2、2(5)(5)____________n n n n x x -+÷+=3、已知-5x 与一个整式的积是234251520x x y x +-,则这个整式=_________________。
9.4 整式一、课本巩固练习1、下列代数式中,哪些是单项式,哪些是多项式,哪些是整式?322234123,,3,,,3,21,,321,53223a a b x a b x y abc b a x x x---+--+-+2、指出下列各单项式的系数和次数:342135,,,579xyz x y x a π-.3、多项式44322315352y x x y xy x y -+--是几次几项式?并按字母x 的降幂排列和字母y 的升幂排列.4、2x =时,多项式31ax bx -+的值等于17-,那么当1x =-时,多项式31235ax bx -+的值等于多少?为什么?5、若多项式2262n n xx +--+是三次三项式,求代数式221n n -+的值.6、把代数式222a b c 和32a b 的共同点填在下列横线上:如都是整式.(1)都是 式;(2)都是 式.二、基础过关1. 判断题:(正确的打“√”,错误的打“×”)(1)单项式a 的系数是1,次数是0; ( )(2)多项式2235x x --是由单项式22x 、3x 、5组成的; ( )(3)两个二次单项式的和组成多项式是四次多项式; ( )(4)整式不含除法运算。
( )2. 如果是2n x y -五次单项式,那么它的系数是_________,n = ___________。
3. 多项式23255292x x y xy -+-的最高次项是____________,他是_____次_____项式,常数项是___________。
4. 22324x y xy x y -+-是____次____项式,字母x 的最高次项是____________,字母y 的二次项是___________,字母x 的一次项系数是__________。
5. 多项式3223423a ab ab b -++是按_______的升幂排列的。
6. 多项式232313252x y xy x y -++-是_____次_____项式,按字母x 的升幂排列是________________________,按字母y 的升幂排列是_________________________。
主课题: 同底数幂的除法、单项式除以单项式 教学目标:1. 了解同底数幂除法的运算性质,并解决一些实际问题;2. 理解零指数幂和负指数幂的意义;3. 单项式除以单项式的运算法则及其应用;4. 在进一步体会幂的意义的过程中,发展推理能力和有条理的表达能力;提高学生观察、归纳、 类比、概括等能力;5. 在解决问题的过程中了解数学的价值,发展“用数学”的信心,提高数学素养。
教学重点:1. 掌握同底数幂的除法、单项式除以单项式的运算法则;2. 准确、熟练地运用法则进行计算。
教学难点:1. 同底数幂的除法、单项式除以单项式的推理过程;2. 掌握运算法则,并进行熟练运算。
教 学 内 容【要点归纳】 1. 同底数幂的除法法则同底数幂相除,底数不变,指数相减。
即ma ÷nm n a a-=(a ≠0,m ,n 都是正整数,并且m >n ).规定:任何不等于0的数的0次幂都等于1. 即a 0=1 (a ≠0).2. 单项式除以单项式法则两个单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
Ⅰ. 同底数幂的除法一、引入设计1. 温故知新同底数幂的乘法:mnm na a a+⋅=幂的乘方:()m n mn a a = (m 、n 都是正整数) 积的乘方:()n n n ab a b = (m 、n 都是正整数) 计算:(1) 32()()a a -⋅-= ;(2) 5()ab = ;(3) 3()m y = . 2. 情景引入一种液体每升含有1012 个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现 1 滴杀菌剂可以杀死109 个此种细菌。
要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?二、探索运算规律1. 计算下列各式:231010⨯=___________;57x x ⋅=__________;2422⨯=__________.2. 把上式改写成除法算式:如510÷210=310,… 3. 尝试下列计算:(1) 32÷22; (2) 3a ÷2a ; (3) m a ÷na .4. 通过以上计算你发现了什么?一般地,m a ÷n m na a -=能成立吗?怎么验证?5. 对于公式中的字母有什么条件的限制(m 、n 、a )?三、例题解析,变式提高1. 例1 计算(1) 9a ÷3a ; (2) 122÷72;(3) 4()x -÷()x -; (4) 118()()a b b a --.运用同底数幂的除法法则时,需注意:a . 底数相同,如(4)中被除式与除式的底数相差一个符号,变化符号后才能运用法则;b . 是指数想减,不是指数相除,如9393a a a ÷÷≠.c . 认真审题,不要与前面学过的法则(如合并同类项和同底数幂相乘的法则)相混淆。
沪教版数学七年级上册专题知识训练100题含答案(单选、多选、解答题)一、单选题 1.分式23x -有意义的条件是( ) A .x >3 B .x <3 C .x ≠0 D .x ≠32.计算()()222211aa a +++的结果为( )A .1B .2C .11a + D .21a +3.下列各组中的两项,不是同类项的是( ) A .2a -和2a B .3a bc 和3ba c C .23x 和33x D .2m n 和23m n -【答案】C【分析】根据同类项的定义,所含字母相同,相同字母的指数也分别相同判断即可得出答案.【详解】解:A. 2a -和2a ,是同类项,此选项不符合题意;B. 3a bc 和3ba c ,是同类项,此选项不符合题意;C. 23x 和33x ,所含字母指数不相同,不是同类项,此选项符合题意;D. 2m n 和23m n -,是同类项,此选项不符合题意; 故选:C .【点睛】本题考查的知识点是同类项,掌握同类项的定义是解此题的关键. 4.下列约分中,正确的是( ) A .222142xy x y =B .0x yx y+=- C .632x x x=D .21x y x xy x+=+5.计算3()a a ⋅-的结果是( ) A .3a B .3a - C .4a D .4a -【答案】D【分析】根据同底数幂的乘法运算法则,运算求解即可.【详解】解:根据同底数幂的乘法运算法则可得:334()a a a a a ⋅-=-=- 故选:D .【点睛】此题主要考查了同底数幂的乘法运算,解题的关键是熟练掌握相关运算法则.6.计算()32a a ⋅-的结果是( )A .6aB .6a -C .5aD .5a -【答案】D【分析】利用同底数幂的乘法的法则进行求解即可. 【详解】解:a 3•(-a 2)=-a 3+2 =-a 5. 故选:D .【点睛】本题主要考查同底数幂的乘法,解答的关键是对同底数幂的乘法的法则的掌握与运用.7.下列运算正确的是( ) A .a +2a =3a 2 B .a 2•a 3=a 5 C .(ab )3=ab 3 D .(﹣a 3)2=﹣a 6 【答案】B【分析】利用合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则进行计算即可.【详解】解:A.a +2a =3a ,因此选项A 不符合题意; B .a 2•a 3=a 2+3=a 5,因此选项B 符合题意; C.(ab )3=a 3b 3,因此选项C 不符合题意; D.(﹣a 3)2=a 6,因此选项D 不符合题意; 故选:B .【点睛】本题考查了合并同类项、幂的乘方、积的乘方以及同底数幂的乘法,正确的计算是解题的关键.8.用代数式表示“a 的3倍与b 的平方的差”正确的是( ) A .()23a b - B .()23a b -C .()23a b -D .23a b -【答案】D【分析】本题考查列代数式,主要要明确题中给出的文字语言包含的运算关系,先求倍数,然后求平方,最后求差,即:23a b -. 【详解】a 的3倍与b 的平方的差为23a b -. 故选:D .【点睛】列代数式的关键是正确理解题中给出的文字语言关键词,比如该题题中的“倍”、“平方的差”尤其要弄清“平方的差”和“差的平方”的区别. 9.若,23m n a a ==,则2m n a - 的值是( ) A .1 B .12C .34D .43【答案】D【详解】试题解析:2,3,m n a a ==10.下列各组整式中是同类项的是( ) A .3a 与3b B .22a b 与2a b - C .2ab c -与25b c - D .2x 与2x【答案】B【分析】根据同类项的概念逐项判断即可.【详解】解:A 、3a 与3b 所含字母不相同,不是同类项; B 、22a b 与2a b -是同类项;C 、2ab c -与25b c -所含字母不相同,不是同类项;D 、2x 与2x 相同字母的指数不相同,不是同类项; 故选:B .【点睛】本题考查的是同类项的概念,掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项是解题的关键. 11.计算m 3÷m 3结果是( ) A .m 6 B .m C .0 D .1【答案】D 【分析】根据同底数幂的除法运算法则计算即可. 【详解】333301m m m m -÷===故选:D 【点睛】本题考查同底数幂的除法运算及零指数幂,即同底数幂相除,底数不变,指数相减,熟练掌握运算法则是解题的关键.12.已知342n x y +和212m x y +-是同类项,则式子2019()m n +的值是( ) A .1 B .1-C .0D .20191-【答案】B【分析】先根据同类项的定义求出m 和n 的值,再把求得的m 和n 的值代入所给代数式计算即可.【详解】解:∵342n x y +和212m x y +-是同类项, ∵2m+1=3,n+4=2,∵m=1,n=-2,∵2019()m n +=20191(12)-=-. 故选B .【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程求解即可.13.设(2)(3)A x x =--,(1)(4)B x x =--,则A 、B 的关系为( ) A .A >B B .A <B C .A =B D .无法确定【答案】A【分析】利用作差法进行解答即可.【详解】解∵∵()()()()2314A B x x x x -=-----= x 2-5x +6-(x 2-5x +4)= x 2-5x +6-x 2+5x -4=2>0, ∵A >B . 故选:A .【点睛】本题考查了整式的混合运算,熟练运用作差法比较大小是解决问题的关键. 14.下列计算正确的是( ) A .527a a a ÷= B .428a a a ⋅= C .32a a a -=D .231a a a÷=15.小华利用计算器计算0.0000001295×0.0000001295时,发现计算器的显示屏上显示如下图的结果,对这个结果表示正确的解释应该是( ).A.1.677025×10—14B.1.677025×1014C.(1.677025×10)—14D.1.677025×10×(—14)【答案】A【详解】试题分析:0.0000001295×0.0000001295,=0.00000000000001677025,=1.677025×10-14.故选A.考点:计算器—有理数.16.下列计算正确的有几个()∵∵∵∵A.0个B.1个C.2个D.3个17.公园内有一段矩形步道,其地面使用灰色与白色两种全等的等腰直角三角形地砖铺列,如图所示,若其中灰色等腰直角三角形地砖排列总共有80个.则步道上总共使用白色等腰直角三角形地砖()A.40个B.80个C.84个D.164个【答案】C【分析】观察图形,左右各1个白色等腰直角三角形,第一行和第二行看成一个白色与一个灰色相间构成一个平行四边形,最后多一个白色,则总共白色比灰色多4个,据此求解即可【详解】解:∵观察图形可知:左右各1个白色等腰直角三角形,第一行和第二行看成一个白色与一个灰色相间构成一个平行四边形,最后多一个白色,∵若其中灰色等腰直角三角形地砖排列总共有80个,则步道上总共使用白色等腰直角三角形地砖为84个 故选C【点睛】本题考查了图形类规律,找到规律是解题的关键. 18.下列分解因式正确的是( ) A .222(1)x xy x x x y --=-- B .223(23)xy xy y y xy x -+-=--- C .2()()()x x y y x y x y ---=- D .23(1)3x x x x --=--【答案】C【分析】根据提取公因式法分解因式进而分别判断得出即可. 【详解】解:A 、2x 2-xy -x =x (2x -y -1),故此选项错误; B 、-x 2+2xy -3y=-y (xy -2x +3),故此选项错误; C 、x (x -y )-y (x -y )=(x -y )2,故此选项正确; D 、x 2-x -3无法因式分解,故此选项错误; 故选:C .【点睛】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键. 19.下列计算正确的是( ) A .236(3)27a a = B .325()a a = C .3412a a a ⋅= D .632a a a ÷=【答案】A【分析】根据同底数幂的除法的运算方法,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判断即可.【详解】解:∵236327a a ()=,∵选项A 符合题意;∵326a a ()=,∵选项B 不符合题意; ∵347a a a ⋅=, ∵选项C 不符合题意; ∵633a a a ÷=, ∵选项D 不符合题意. 故选:A .【点睛】此题主要考查了同底数幂的除法的运算方法,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,要熟练掌握. 20.多项式是一个完全平方式,则的值是______ A .1 B .-1C .D .【答案】C【详解】试题分析:由题意知,多项式是完全平方式,所以=,故选C考点:完全平方式点评:本题属于对完全平方式的基本知识的理解以及运用 21.下列运算正确的是( ) A .2233a a -= B .()110a a a -⋅=≠C .()222436-=-ab a bD .()222a b a b +=+【答案】B【分析】根据同底数幂的乘法的运算法则、完全平方公式、积的乘方的运算法则、合并同类项法则解答即可.【详解】解:A 、22232a a a -=,原计算错误,故此选项不符合题意. B 、11(0)-⋅=≠a a a ,原计算正确,故此选项符合题意; C 、2224(3)9ab a b -=,原计算错误,故此选项不符合题意; D 、222()2a b a ab b +=++,原计算错误,故此选项不符合题意; 故选:B .【点睛】此题考查了同底数幂的乘法的运算法则、完全平方公式、积的乘方的运算法则、合并同类项法则,熟练掌握同底数幂的乘法的运算法则、完全平方公式、积的乘方的运算法则、合并同类项法则是解本题的关键.22.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需( ) A .()a b +元 B .()32a b +元C .()5a b +元D .()23a b +元【答案】D【分析】用买2千克苹果的钱数加上3千克香蕉的钱数即可. 【详解】解:∵买2千克苹果需要2a 元,买3千克香蕉需要3b 元, ∵买2千克苹果和3千克香蕉共需(2a +3b )元. 故选D .【点睛】此题考查列代数式,理解题意,明确数量关系是解决问题的关键. 23.下列计算正确的是( ) A .235a a a += B .235a a a ⋅= C .623a a a ÷=D .()325a a =【答案】B【分析】根据合并同类项法则,同底数幂乘法和除法法则,幂的乘方运算法则逐项进行判断即可.【详解】解:A 、2a 与3a 不属于同类项,不能合并,故A 不符合题意; B 、235a a a ⋅=,故B 符合题意; C 、624a a a ÷=,故C 不符合题意;D 、236a a =(),故D 不符合题意.故选:B .【点睛】本题主要考查了整式的运算,解题的关键是熟练掌握合并同类项法则,同底数幂乘法和除法法则,幂的乘方运算法则. 24.若分式242x x -+的值为0,则x 的值为( )A .2B .2-C .2±D .4【答案】A【分析】根据分式的值为零的条件可以求出x 的值. 【详解】由题意得:240x -=,且2x +≠0, ∵x =2, 故选A .【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.25.已知a-b=5,ab=-2,则代数式a 2+b 2-1的值是( ) A .16 B .18C .20D .28【答案】C【分析】由于(a -b )2=a 2+b 2-2ab ,故a 2+b 2=(a -b )2+2ab ,从而求出原式的值 .【详解】∵(a -b )2=25,2ab =-4, ∵a 2+b 2=(a -b )2+2ab =25-4=21, ∵原式=21-1=20, 故答案选C .【点睛】本题主要考查了完全平方公式以及整体代入思想的利用,熟记公式结构是解题的关键.26.下列计算正确的是()A.(a+b)(a﹣2b)=a2﹣2b2B.(a﹣12)2=a2﹣14C.﹣2a(3a﹣1)=﹣6a2+a D.(a﹣2b)2=a2﹣4ab+4b227.下列图案中,不是中心对称图形的是()A.B.C.D.【答案】B【分析】利用中心对称图形的性质,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进而判断得出即可.【详解】A、是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项正确;C、是中心对称图形,故C选项不正确;D、是中心对称图形,故D选项错误;故选B.【点睛】此题主要考查了中心对称图形的定义,正确把握定义是解题关键.28.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A .俯视图B .主视图C .俯视图和左视图D .主视图和俯视图 【答案】A【详解】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.29.一块长方形土地的长为4×108 dm ,宽为3×103 dm ,则这块土地的面积为( )A .12×1024 dm2B .1.2×1012 dm2C .12×1012 dm2D .12×108 dm2【答案】B【详解】根据长方形的面积公式可得:这块土地的面积为4×108×3×103 =12×1011= 1.2×1012 dm 2.故选B.30.下列计算正确的是( ) A .43232105a b c a bc ab c ÷=B .()22a bc abc a ÷=C .()2296332x y xy xy x y -÷=-D .()()222565323a b a c a b c -÷-=--式除以单项式就是用多项式的每一项去除以单项式,熟练掌握多项式除以单项式的运算法则是解题的关键.二、多选题31.下列分式变形正确的是()A.2233y y-=-B.66y yx x-=-C.3344x xy y=--D.8833x xy y--=-32.下列变形不正确的是()A.a b a bc c-++=-B.a ab c b c-=---C.a b a ba b a b-++=---D.a b a ba b a b--+=-+-不等于零的整式,分式的值不变. 33.下列运算中,正确的是( ) A .2(93)B .(3)3-+=C .2(32)62x x +=+D .32a a a -=【答案】AD【分析】根据有理数的乘方,相反数以及整式的加减运算,对选项逐个判断即可. 【详解】解:A 、2(93),选项正确,符合题意;B 、(3)3-+=-,选项错误,不符合题意;C 、2(32)64x x +=+,选项错误,不符合题意;D 、32a a a -=,选项正确,符合题意; 故选AD【点睛】此题考查了有理数的乘方,相反数以及整式的加减运算,熟练掌握相关运算法则是解题的关键.34.下列各式从左到右的变形不正确的是( )A .1212x y x y -+ =22x y x y -+ B .0.220.22x b a ba b a b ++=++C .11x x x y x y+--=-- D .a b a ba b a b+-=-+35.下列两个多项式相乘,能用平方差公式的是( )A .(﹣2a +3b )(2a +3b )B .(﹣2a +3b )(﹣2a ﹣3b )C .(2a +3b )(﹣2a ﹣3b )D .(﹣2a ﹣3b )(2a ﹣3b )【答案】ABD【分析】根据平方差公式的结构对各选项分析判断后利用排除法求解.【详解】解:A 、(-2a +3b )(2a +3b )=9b 2-4a 2能用平方差公式,故本选项符合题意; B 、(-2a +3b )(-2a -3b )=4a 2-9b 2能用平方差公式,故本选项符合题意; C 、(2a +3b )(-2a -3b )不能用平方差公式,故本选项不符合题意; D 、(-2a -3b )(2a -3b )=9b 2-4a 2能用平方差公式,故本选项符合题意; 故选:ABD .【点睛】本题主要考查平方差公式:(1)两个两项式相乘;(2)有一项相同,另一项互为相反数,熟记公式结构是解题的关键. 36.在下列说法中,其中正确的是( ) A .a -表示负数; B .多项式22222a b a b ab -++-的是四次四项式;C .单项式12ab π的系数为12;D .若a a =-,则a 为非正数.37.若多项式23(2)36x m x --+能用完全平方公式进行因式分解,则m 的值为( ) A .2 B .2-C .6D .6-【答案】BC【分析】完全平方式:222a ab b ±+,根据完全平方式的特点建立方程即可得到答案. 【详解】解: 多项式23(2)36x m x --+能用完全平方公式进行因式分解,∴ 23(2)36x m x --+ 22266,x x =±⨯+()3212m ∴--=或()3212m --=-,2m ∴=-或6,m =故选:BC .【点睛】本题考查的是利用完全平方公式分解因式,完全平方式的特点,掌握完全平方式的特点是解题的关键.38.下列语句中正确的选项有( ) A .关于一条直线对称的两个图形一定重合; B .两个能重合的图形一定关于某条直线对称 C .一个轴对称图形不一定只有一条对称轴; D .两个轴对称图形的对应点一定在对称轴的两侧 【答案】AC【分析】认真阅读4个选项提供的已知条件,根据轴对称的性质,对题中条件进行一一分析,得到正确选项.【详解】解:A 、关于一条直线对称的两个图形一定能重合,正确; B 、两个能重合的图形全等,但不一定关于某条直线对称,错误; C 、一个轴对称图形不一定只有一条对称轴,正确;D 、两个轴对称图形的对应点不一定在对称轴的两侧,还可以在对称轴上,错误. 故选:AC .【点睛】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,找着每个问题的正误的具体原因是正确解答本题的关键.39.下列分式变形不正确的是( ) A .mn=22(1)(1)m x n x ++B .25y +=25xx y+ C .xx y --=+x x yD .xx y --=x x y--40.将下列多项式因式分解,结果中含有因式a +1的是( ) A .a 2﹣1 B .a 2+a C .a 2﹣a ﹣2 D .(a +2)2﹣2(a +2)+1 【答案】ABCD【分析】根据因式分解法把四个选项分解因式,即可求出答案. 【详解】解:A 、21(1)(1)a a a -=+-,故A 符合题意; B 、2(1)a a a a +=+,故B 符合题意; C 、22(1)(2)a a a a --=+-,故C 符合题意; D 、222(2)2(2)1(21)(1)a a a a +-++=+-=+,故D 符合题意;故选ABCD .【点睛】本题考查因式分解法,解题的关键是熟练运用因式分解法,本题属于基础题型.41.若228,82a b a b -=+=,则a b +的值为( ) A .10- B .20- C .20 D .10【答案】AD【分析】根据完全平方公式的变形先求得2ab 的值,进而求得()2a b +的值,即可求解. 【详解】228,82a b a b -=+=,()222282264a b a ab b ab ∴-=-+=-=,218ab ∴=,()22228218100a b a ab b ∴+=++=+=,10a b ∴+=±.故选AD .【点睛】本题考查了完全平方公式的变形,求得2ab 的值是解题的关键. 42.下列各式由等号左边变到右边变错的有( ) A .a ﹣(b ﹣c )=a ﹣b ﹣cB .(x 2+y )﹣2(x ﹣y 2)=x 2+y ﹣2x +y 2C .﹣(a +b )﹣(﹣x +y )=﹣a +b +x ﹣yD .﹣3(x ﹣y )+(a ﹣b )=﹣3x +3y +a ﹣b . 【答案】ABC【分析】根据整式的加减计算法则进行逐一判断即可得到答案. 【详解】解:A. a ﹣(b ﹣c )=a ﹣b +c ,故此选项符合题意; B. (x 2+y )﹣2(x ﹣y 2)=x 2+y ﹣2x +2y 2,故此选项符合题意; C. ﹣(a +b )﹣(﹣x +y )=﹣a -b +x ﹣y ,故此选项符合题意; D. ﹣3(x ﹣y )+(a ﹣b )=﹣3x +3y +a ﹣b ,故此选项不符合题意; 故选ABC .【点睛】本题主要考查了整式的加减运算,解题的关键在于能够熟练掌握相关计算法则.43.下列各式中,计算正确的是( )A .()22325xy x xy xy x --=-B .2334248a b ab a b ⋅=C .()2352105x x y x xy -=-D .2(4)(3)12x x x -+=-【答案】ABC【分析】先去括号,再合并同类项判断,A 把系数与同底数幂分别相乘判断,B 把单项式乘以多项式的每一项,再把所得的积相加判断,C 由多项式乘以多项式的法则判断,D 从而可得答案.【详解】解:()22232325,xy x xy xy x xy xy x --=-+=-故A 符合题意;2334248a b ab a b ⋅=,故B 符合题意;()2352105x x y x xy -=-,故C 符合题意;22(4)(3)341212x x x x x x x -+==-+---,故D 不符合题意;故选:.ABC【点睛】本题考查的是整式的加减运算,单项式乘以单项式,单项式乘以多项式,多项式乘以多项式,掌握以上运算的运算法则是解题的关键.44.下列计算错误的是( ) A .a 5÷a 2=a 7 B .﹣a 2•a =﹣a 3 C .(m 2n )3=mn 3 D .(﹣m 2)5=﹣m 10【答案】AC【分析】分别计算后判断即可.【详解】解:A. a 5÷a 2=a 3,该选项计算错误,符合题意; B. ﹣a 2•a =﹣a 3,该选项计算正确,不符合题意; C. (m 2n )3=m 6n 3,该选项计算错误,符合题意; D. (﹣m 2)5=﹣m 10,该选项计算正确,不符合题意; 故选:AC .【点睛】本题考查同底数幂的乘除法,幂的乘方和积的乘方.熟练掌握相关公式能分别计算是解题关键.45.下列式子是分式的有( ) A .6πB .25abC .+m nmD .5b ca-+46.若关于x 的多项式9x 2﹣kx +1是一个完全平方式,则k 的值是( ) A .3 B .-3 C .6 D .-6【答案】CD【分析】根据完全平方公式进行变形,注意乘积项是正负两个. 【详解】解:∵9x 2-kx +1是一个完全平方式, ∵9x 2-kx +1=()2229231131x x x ±⨯⨯+=± ∵6k =±故选CD.【点睛】本题考查的是完全平方公式的变形,关键是找到公式中的a、b所代表的数,易错点是乘积项系数k应有正负两个.47.在下列现象中,是平移现象的是()A.方向盘的转动B.电梯的上下移动C.保持一定姿势滑行D.钟摆的运动【答案】BC【分析】要根据平移的性质,判断是否是平移现象,平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形).【详解】解:A、方向盘的转动,是旋转,不是平移;B、电梯的上下移动是平移;C、保持一定姿势滑行是平移;D、钟摆的运动是旋转,不是平移.故选:BC.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.48.将从1开始的正整数按一定规律排列如下表:在形如阴影部分所示的方框中,三个数的和可能是()A.84B.3000C.2013D.2018【答案】AC【分析】设中间的数为x,则左边的数为x-1,右边的数为x+1,这三个数的和为3x,首先可判断所给的数是否为3的倍数,再判断这三个数是否在同一行,即可作出判断.【详解】设中间的数为x,则左边的数为x-1,右边的数为x+1,这三个数的和为3x;由于84、300、2013均是3的倍数,2018则不是3的倍数,故D不合题意;由3x=84,得x=28,则此三个数分别为27、28、29,显然符合题意,即方框中三个数的和可以是84;由3x=3000,得x=1000,则此三个数分别为999、1000、1001,因1000÷8=125,则方框中间的数1000出现在最左边,不合题意;由3x=2013,得x=671,则此三个数分别为670、671、672,因671=83×8+7,672=84×8,故此三个可在方框中,符合题意,即方框中三个数的和可以是2013;故选:AC.【点睛】本题是规律探索问题,根据三个数的特点得出其和的规律,考查了归纳能力.三、填空题49.代数式22 4x x +--在实数范围内有意义,则实数x的取值范围是________________.50.分式值为0的条件是分子________而分母________.【答案】等于0不等于0【详解】根据分式的值为0需满足两个条件一是分子等于0,二是分母不等于0即可得出答案.解:因为分式的值等于0,所以这个分式的分子等于0且分母不等于0.故答案为等于0;不等于0.51.若3x=4,9y=6,则3x-2y的值为______.52.计算:21 3.1431 3.14⨯-⨯=________.【答案】-31.4【分析】运用提公因式法计算即可【详解】解:()21 3.1431 3.14 3.14213131.4⨯-⨯=-=-故答案为:-31.4【点睛】本题考查了提公因式法进行简便运算,熟练掌握法则是解决此题的关键53.多项式2142x x ⎛⎫--+ ⎪⎝⎭去括号得______________. 【答案】2442x x -+-##2442x x --54.如果分式22m --的值大于0,那么m 的取值范围是__________.55.分式11x +有意义的条件是__________. 【答案】x≠﹣1【分析】根据分式有意义,分母不等于零,列不等式求解即可.【详解】解:由题意得:x +1≠0,解得:x≠﹣1,故答案为:x≠﹣1【点睛】本题考查分式有意义的条件,解题的关键是从以下三方面透彻理解分式的概念:分式无意义时,分母为零;分式有意义时,分母不为零;分式的值为零时,分子为零且分母不为零.56.单项式:表示数或字母的________的式子叫做单项式,特别地,单独的一个数或一个字母也是单项式. 【答案】积【详解】试题解析:表示数或字母的积的式子叫做单项式.故答案为积.57.某工厂有职工宿舍m 间,如果每6个人住一个房间,只有一间没住满,没住满的房间住4人,则该工厂有______名职工.(用含m 的式子表示) 【答案】()62m -【分析】用()1m -个住满的房间的人数加上没有住满的房间的人数,计算即可得解.【详解】解:该工厂职工共有:()()61462m m -+=-(名).故答案为:()62m -.【点睛】本题考查了列代数式,比较简单,要注意有一个房间的人数是4.58.单项式2332a b c -的系数是_______,次数是_______,多项式2321a b ab -+的次数是_____.59.若xm +n =18,xm =3,求xn 的值为_____.【答案】6【分析】同底数幂相乘,底数不变指数相加,根据同底数幂的乘法法则进行逆用进行求解.【详解】解:∵xm +n =xm •xn =18,xm =3,∵xn =18÷xm =18÷3=6.故答案为:6. 【点睛】本题主要考查同底数幂乘法法则,解决本题的关键是要熟练掌握同底数幂乘法法则.60.计算:11+a a a -=_____61.已知()23150x y -+-=,则5648x y x y +--=___________.62.在实数范围内分解因式:21x x +-=_________________________.解本题的关键.63.已知1113a b -=,则ab b a-的值是______.64.若24,8,m n a b ==则4612m n -+=___________65.计算:(-12)-2+(3.14-π)0=__________.则是解答此题的关键.66.若三角形的一边长为21a +,这边上的高为21a -,则此三角形的面积为____________67.若a 、b 互为相反数,c 、d 互为倒数,则()2a b 2cd +-=_______.【答案】-2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,则原式=0-2=-2.故答案为:-2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.68.观察下面给定的一列分式:3x y ,52x y -,73x y ,94x y -,……(其中0y ≠).根据你发现的规律,给定的这列分式中的第7个分式是_________.69.已知210x x --=,则3222021x x -++的值是______. 【答案】2022【分析】先根据已知式子得到230x x x --=即可推出3221x x -+=,然后整体代入所求式子即可.【详解】解:∵210x x --=,∵230x x x --=,∵32210x x -+-=,∵3221x x -+=,∵3222021120212022x x -++=+=,【点睛】本题主要考查了代数式求值,利用整体代入的思想求解是解题的关键.70.()()353.510410⨯⨯⨯的结果用科学记数法表示为_____________. 【答案】91.410⨯【分析】先计算()()353.510410⨯⨯⨯得到,再根据科学记数法的表示方法即可得到答案.【详解】()()353.510410⨯⨯⨯=81410⨯=91.410⨯.【点睛】本题考查科学记数法和指数幂的运算,解题的关键是掌握科学记数法和指数幂的运算.71.计算:32(1263)3a a a a -+÷______. 【答案】2421a a -+【分析】根据多项式除以单项式的法则计算即可.【详解】解:()32212633421a a a a a a -+÷=-+故答案为2421a a -+【点睛】本题考查多项式除单项式的运算, 多项式除单项式先用多项式的每一项除以单项式,再把所得的商相加.72.已知132n x y +与43x y 是同类项,则n 的值是_________.【答案】3【分析】根据同类项的定义列方程求解即可.【详解】解:由同类项的定义得:n +1=4,解得n =3,故答案为:3.【点睛】本题考查同类项的定义,掌握含有的字母相同且相同字母的指数也相同的项是同类项是解决问题的关键.73.多项式39x -,29x -与269x x -+的公因式为______.【答案】3x -【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【详解】解:因为3x ﹣9=3(x ﹣3),x 2﹣9=(x +3)(x ﹣3),x 2﹣6x +9=(x ﹣3)2, 所以多项式3x ﹣9,x 2﹣9与x 2﹣6x +9的公因式为(x ﹣3).【点睛】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.74.用同样大小的黑色棋子按如图所示的规律摆放,摆第1个图形需要7枚棋子,摆第2个图形需要12枚棋子,…,按照这样的规律摆下去,摆第n个图形需要_____枚棋子.【答案】5n+2.【详解】试题分析:由图形可看出后面的图形比它的前一个图形多5个棋子,而第n 个图形就比第一个图形多5×(n﹣1)个棋子,加上7整理即可得出结论.解:通过观察图形∵∵∵∵,发现后面的图形比它的前一个图形多5个棋子,而第一个图形有7个棋子,∵第n个图形中的棋子数为7+5+5+…+5=7+5×(n﹣1)=2+5+5n﹣5=5n+2.故答案为5n+2.考点:规律型:图形的变化类.5,3-,点A关于x轴的对称点为点B,则点B的坐标是______.75.点A的坐标为()5,3【答案】()【分析】根据关于x轴对称横坐标不变纵坐标互为相反数即可得解;5,3-,【详解】∵点A的坐标为()5,3;∵关于x轴的对称点为点B()5,3.故答案是()【点睛】本题主要考查了关于x轴对称点的坐标,准确计算是解题的关键.76.将正整数按如图所示的规律排列下去,若用有序数对(m,n)表示第m排,从右到左第n个数,如(3,2)表示整数5,则(10,4)表示整数是________.【答案】52.【详解】试题分析:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以(10,4)表示整数应该是从第10排从右到左由大到小,从55开始数,第4个应是52,所以(10,4)表示的数是52.考点:规律探究题.77.用大小相同的棋子按如下规律摆放图形,第2022个图形的棋子数为___________.【答案】6069【分析】先根据图形和对应的棋子个数找到规律,总结出一般特征,再代入求解. 【详解】解:第1个图形有6个棋子,第2个图形有9个棋子,第3个图形有12个棋子,第4个图形有15个棋子,……,依次增加3个棋子,所以第n 个图形有()33n +个棋子,2022n =时,3202236069⨯+=,即第2022个图形的棋子数为6069.故答案为:6069.【点睛】本题考查了图形的变化类,找图形的变化规律是解题的关键.78.观察下面一列有规律的数123456,,,,,,3815243548, 根据这个规律可知第n 个数是______(n 是正整数)考点:规律型:数字的变化类.四、解答题79.化简:223247a a a a -+- 【答案】279a a -【分析】合并同类项,即可求解.【详解】解:223247a a a a -+-()()223427a a a a =++--279a a =- .【点睛】本题主要考查了整式的加减混合运算,熟练掌握合并同类项法则是解题的关键.80.因式分解:(1)a 3﹣4a(2)m 3n ﹣2m 2n+mn 【答案】(1)a (a+2)(a ﹣2);(2)mn (m ﹣1)2【分析】(1)首先提取公因式a ,进而利用平方差公式分解因式即可;(2)首先提取公因式mn ,进而利用完全平方公式分解因式即可.【详解】解:(1)a 3﹣4a =a (a 2﹣4) =a (a +2)(a −2);(2)m 3n ﹣2m 2n +mn=mn (m 2﹣2m +1)=mn (m ﹣1)2.【点睛】本题考查了因式分解,熟练运用因式分解中的提公因式法和公式法是解题的关键.81.下列各式中,哪些是整式?哪些是分式?两者有什么区别?112,2,,,,3,522x y m x y a x y a a x---+.母,若含有字母则是分式,若不含有字母则是整式.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.82.因式分解:(1)()()22a m b m -+-(2)322a a a -+ 【答案】(1)(m -2)(a +b );(2)a (a -1)2【分析】(1)利用提公因式法分解因式;(2)综合利用提公因式法和公式法分解.(1)解:()()22a m b m -+-=(m -2)(a +b );(2)322a a a -+=a (a 2-2a +1)=a (a -1)2.【点睛】此题考查了因式分解,正确掌握因式分解的方法:提公因式法和公式法并熟练运用是解题的关键.83.求代数式的值:(1)222235372-++-x y xy xy x y xy ,其中x y 、满足()2210x y ++-=.(2)2225()()3()()6(4)a b a b a b a b a b +-+-+-+--,其中52a b a b +=-=-,.【答案】(1)221022--x y xy xy ,48(2)()()22560a b a b +--,【分析】(1)根据合并同类项化简代数式,根据非负数的性质求得,x y 的值,代入即84.先化简21111x xxx x⎛⎫--+÷⎪++⎝⎭,再从1-,0,1选取一个你最喜欢数作为x的值代入求值.85.计算(1)23211 a aa a-+-++(2)2211 12---÷+a aa a a()()(211a aa a++-21aa++21a-86.我们知道111122=-⨯,1112323=-⨯,1113434=-⨯,……那么178=⨯______.120212022=⨯______.用含有n的式子表示你发现的规律:______.并依此计算11112021 ++++2021++120212023+⋯+-87.课堂上老师给大家出了这样一道题:“当x =2019时,求代数式()322232x x y x y ---()3232x xy y -++()3233x x y y -++的值”。