新华师大版七年级数学上册教案:2.9.2.有理数乘法的运算律
- 格式:doc
- 大小:256.28 KB
- 文档页数:5
华师大版数学七年级上册《有理数的乘法法则》教学设计3一. 教材分析华师大版数学七年级上册《有理数的乘法法则》是学生在掌握了有理数的基本概念和加减法运算的基础上,进一步学习有理数的乘除法运算。
这一章节通过引入乘法法则,使学生能够熟练掌握有理数的乘法运算,并为后续的更大数值运算打下基础。
二. 学情分析学生在学习这一章节时,已经具备了基本的数学运算能力,对于有理数的基本概念和加减法运算也有一定的了解。
但学生在学习乘法法则时,可能会对负数的乘法运算和分数的乘法运算产生困惑。
因此,在教学过程中,需要针对这些难点进行详细的解释和示范。
三. 教学目标通过本节课的学习,学生能够掌握有理数的乘法法则,能够熟练进行有理数的乘法运算,并理解乘法运算的运算律。
四. 教学重难点1.重难点:有理数的乘法法则的掌握和运用。
2.难点:负数的乘法运算和分数的乘法运算。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过提出问题,引导学生思考和探索;通过案例教学,让学生直观地理解和掌握乘法法则;通过小组合作,促进学生之间的交流和合作。
六. 教学准备1.教学PPT:制作详细的PPT,包括乘法法则的定义、示例和练习题。
2.教学案例:准备一些典型的负数和分数的乘法案例,用于讲解和示范。
3.练习题:准备一些有理数乘法的练习题,用于巩固和检验学生的学习效果。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考和探索有理数的乘法运算。
例如:“你们已经学习了有理数的加减法运算,那么有理数的乘法是如何进行的呢?”2.呈现(10分钟)通过PPT呈现乘法法则的定义和示例,让学生直观地理解和掌握乘法法则。
同时,用案例教学法讲解负数和分数的乘法运算。
3.操练(10分钟)让学生进行有理数乘法的练习,巩固和检验学生的学习效果。
可以使用PPT中的练习题或者自己准备的练习题。
4.巩固(10分钟)通过小组合作,让学生相互讨论和解答练习题。
教师巡回指导,解答学生的问题,并给予反馈。
课时课题:有理数的乘方教学目标:1.进一步理解有理数乘方的意义并能解决一些相关的数学问题;经历有理数乘方的符号法则的探究过程,通过实际计算发现底数为10的幂的特点.2.通过实例感受有理数的乘方运算在具体情境中体会当指数增加时底数为2的幂的增长速度是很快的,通过对解决过程的反思获得解决问题的经验.3.参与操作折纸活动让学生在探索问题的过程中体验学习数学的乐趣,增强自主学习,合作学习意识与习惯.教学重点与难点:重点:进一步理解有理数乘方的意义并能正确进行有理数乘方运算,同时体会当指数不断增加时底数为2的幂的增长速度是很快的.难点:理解乘方的概念,并会用乘方运算解决生活中的问题.课前准备:制作PPT课件.教学过程:一、温故知新,导入新课1.什么是有理数的乘方?什么叫幂?2.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋.为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求.大臣说:“就在这个棋盘上放些米粒吧.第一格放一粒米,第二格放两粒米,第三格放4粒米,然后是8粒米、16粒、32粒、…一直到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”你认为国王的国库里有这么多米吗?处理方式:第1题让学生回顾有理数乘方的意义,指出na 每个字母所代表的含义.也可以让一名学生举例,其他学生回答的方式进行.第2题目可以采用讲故事的形式来出示问题,然后让小组间交流讨论,让各个小组选一名代表来发表各组的看法,最后教师总结: 总共有的米可列式为:1+22+23+24+……+263 =(264-1)粒米,总共有18 446 744 073 709 551 615粒米,假设10000粒米为1斤,100斤为1袋,估计有多少袋?大约有1 844 674 407 370袋.全国的粮食加起来也不够.设计意图:首先回顾上一节的内容然后再通过讲趣味故事来吸引学生的注意力,激发学生的求知欲,并可以通过本节课的学习来解决这类问题并从中获得启示.二、探究学习,感悟新知 探究1:特例归纳,符号法则 例3 计算:(1)102,103,104,105; (2)()210-,()310-,()410-,()510-.解:(1)210= 100, 310= 1000,410=10000, 510=100000; (2)()210-= 100, ()310-= -1000, ()410-=10000, ()510-= -100000.处理方式:教师让两名学生板演,其他学生在练习本上完成.在学生完成后组织学生进行评价与纠错,规X 解题过程,把答案校对完之后让学生观察例3的结果,并且思考有什么规律,通过小组的交流合作来进一步的总结.或者从以上特例的计算结果中是否能发现乘方运算的符号有什么特点吗?什么时候是正,什么时候是负呢?观察以10为底数的幂,仔细观察结果你还有哪些发现?然后回答 .最后教师总结:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.还可以得到10的n 次幂的特点是1后面有n 个0.设计意图:对例3的讲解一方面引导学生不断地回顾幂的意义,熟练有理数的乘方运算;另一方面指出题目的特点,鼓励学生尽可能多地从运算结果中观察、发现正数幂的符号特点负数幂的符号特点并总结以10为底数的幂的特点,培养学生的观察能力及归纳能力.探究2:动手实践,探索发现师生共同参与折纸活动,一边折,一边思考以下问题:纸的厚度为,对折一次后,厚度为2×;对折两次后,厚度为多少毫米?三次呢?你是怎么计算的?对折20次后,厚度为多少毫米? 若每层楼高度为3米,这X纸对折20次后约有多少层楼高? 通过活动,你从中得到了什么启示?对折1次对折2次对折3次处理方式:通过小组合作的方式让学生一边折纸一边思考,然后通过计算得出对折两次后,厚度为;对折三次后,厚度为;对折两次是4层纸,对折三次是8层纸.所以厚度分别为和;对折20次后,纸的层数是20个2相乘,也就是220厚度为220×.由教师来计算220×0.1=1048576220×=.相当于约35层楼房的高度.教师引导学生回答:当指数不断增加时,底数为2的幂的增长速度相当快.设计意图:培养学生积极参与课堂教学的意识,提高动手能力,猜想能力,估算能力.通过“折纸活动”,加深对乘方意义的理解,也进一步体会了当指数不断增加时,底数为2的幂的增长速度相当快.通过折纸活动学生也积累了一定的数学经验.三、应用新知,分析问题问题:拉面师傅把一根粗面条拉长、两头捏合,再拉长、捏合,重复这样,就拉成许多根细面条了.据报道,在一次比赛中,某拉面师傅用1kg面粉拉出约209万根面条,可约209万根面条,是没法数的.你知道怎样得出这个结论的吗?…第一次第二次第三次处理方式:小组间继续合作交流讨论,由学生试着回答,然后教师引导学生参照上面两个问题的解决方法来分析:第一次2根面条;第二次22根面条;第三次23根面条;第n次2n根面条.因此,只要数出拉面师傅一共操作了几次就能算出共拉出了多少根面条,鼓励学生大胆地、有依据地估计、猜想n10=1024≈103,那么220≈106,即约为100万,所以221约为200万,即大约拉21次即可.设计意图:培养学生应用知识解决问题的能力. 进一步加深对乘方意义的理解,体会当指数不断增加时,底数为2的幂的增长速度相当快,积累应用数学知识解决实际生活问题的经验.四、巩固训练,提升能力 (A 层) 1.计算:(1)43-; (2)23()2--; (3)3(3)--; (4)243-; (5)232-2.判断下列程式结果的符号,你能发现什么规律? (1)4(5)-; (2)5(5)-; (3)6(5)-; (4)7(5)--. (B 层)3.面积为3.2平方米的长方形纸片,第一次截去一半,第二次截去剩下的一半,如此下去,第六次截后剩下的面积是多少?处理方式:第1题找5名学生板书过程,其余的学生在练习本上完成,然后由学生来批改黑板上的习题,第2题学生写出答案后小组间合作找规律,第3题让一些学有余力的学生来完成,大概利用5至6分钟的时间由来完成.设计意图:习题的设计要注意到学生的思维是一个循序渐进的过程,所以由易而难,使学生在练习的过程中能够逐步的提高能力,得到发展.通过练习进一步熟悉有理数乘方的运算及乘方的符号法则.五、课堂小结,升华认知请同学们谈一下本节课的收获和感想?1.正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数. 2.10的n 次幂等于1的后面有n 个0.3.当指数不断增加时,底数为2的幂的增长速度相当快. ……处理方式:教师一方面应积极鼓励学生参与特别是为学习有困难的学生创设发言机会以提高他们的兴趣和自信另一方面要把握课堂小结的准确性和全面性对学生的小节做出适当的补充和修正.设计意图:提高学生的课堂参与意识发展学生的课堂小节能力语言表达交流能力.为学生提供展示自我彰显个性的机会.六、达标检测,应用反馈 必做题:1.2(3)-的底数是,指数,结果为;23-的底数,指数结果. 2.计算:(1)21()2-;(2)33()2-;(3)3(6)-;(4)24()3-.3.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入 … 1 2 3 4 5 … 输出 ……当输入数据是8时,则输出的数据是 ________;当输入数据是n 时,则输出的数据是 ________.(选做)4.趣味数学【是真的吗?】珠穆朗玛峰是世界的最高峰,它的海拔高度是8844米.把一X 足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰,这是真的吗?处理方式:选做题利用上面的经验教师指导学生共同完成.教师板书:×230=×1073741824 =.8844.43 ×12=106133.16.所以如果把足够长的厚的纸折叠30次后有10万多米高,有12个珠穆朗玛峰高.这是真的设计意图:本环节的目的就是为了检测学生的达标情况和巩固练习,同时为学有余力的学生设置了有创新思维的问题,以满足不同层次的学生在数学发展方面的需要.七、布置作业,达成目标必做题:课本习题 2.14 第1题; 选做题:课本习题 2.14 第3题. 补充题:计算:(1)31()3-; (2)2332-⨯; (3)23(3)(2)-⨯-;(4)223-⨯; (5)2(23)-⨯; (6)4(2);--(7)20011()-; (8)322+3();-- (9)2223-⨯-()().处理方式:学生按照要求课下完成作业,对于选做题让学有余力的学生完成.对于补充题学生可以课下讨论完成.设计意图:复习巩固检测本节知识训练提高运算技能和解决问题的能力.选做题是为了让学有余力的学生由此感受到当底数小于1时乘方运算的结果减少的速度很快.让不同的学生得到不同的发展.板书设计:。
有理数乘法的运算律【教学目标】知识与技能掌握有理数乘法法则,能利用乘法的三个运算定律进行简化运算.过程与方法会确定多个因数相乘时积的符号,并会用法则进行多个因数的乘积运算.情感态度与价值观通过学生经历探究、猜测规律的发现过程,体会转化思想.【教学重难点】重点:会运用乘法运算律进行乘法运算及积的符号的确定.难点:灵活运用运算律进行乘法运算.【教学过程】活动1:创设情境,导入新课设计意图:通过对上节内容的复习,使学生回忆乘法法则,为进一步学习有理数的乘法做准备.师:乘法法则的内容是什么?学生举手回答.活动2:探究多个数连续相乘的运算方法设计意图:以游戏的形式,激起学生的探究欲望,使学生以饱满的热情投入到课堂中来.学生亲自动手,验证自己的想象, 得出结论,再经过交流、思考,升华认识.问题的提出让学生意识到只有学习了本节课的知识,才能解释其中的道理,激起他们的学习热情,课件演示翻牌游戏,桌上有9张反面向上的扑克牌,每次翻动其中的任意两张(包括已翻过的牌),使它们一面向上变为另一面向上,这样一直做下去,观察能否使所有的牌都正面向上?利用学生课前准备的纸牌,以小组的形式开展试验,并且在课件中用动画的形式不停地翻动其中的任意两张牌,让其中一个小组的代表发表试验后的结论:不论翻多少次,都不会使9张牌都正面朝上.提问:从这个结果,你能想到其中的数学道理吗?观察:下列各式的积是正的还是负的?2×3×4×(-5);2×3×(-4)×(-5);2×(+3)×(+4)×(-5);(-2)×(-3)×(-4)×(-5).思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,鼓励学生通过观察实例,用自己的语言表述自己所发现的规律.利用所得到的规律,引导学生探讨翻牌游戏中的数学道理.师生共同归纳:几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数的个数为偶数个时,积为正.教师出示教材例3,师生共同合作完成.练习,教材第49页练习第1题.活动3:探究运算律设计意图:通过学生的自主探究,感受运算律的应用,培养学生的观察、归纳、总结能力,小学中我们已经学过乘法的交换律和乘法的结合律、分配律,它们是不是在有理数范围内仍然适用呢?请举例说明.学生自主探究,讨论,交流.提示:可以举几个具体的例子试一试.师生共同归纳乘法的交换律和乘法的结合律、分配律的内容,并用数学表达式表示.教师出示例4.要求学生按以下两种方法独立完成:(1)先算括号里面的(即先求和,再求积);(2)运用乘法分配律.比较上面的两种解法,你有什么体会?活动4:课堂小结设计意图:通过课堂小结,使学生对本节课的知识有一个系统的回顾和认识,加深对乘法运算律的理解与掌握.小结:谈谈本节课你有什么收获?活动5:课后作业1.下列说法错误的是( )A.一个数同1相乘,仍得原数B.互为相反数的两个数的积为1C.运用乘法交换律后所求得的两个数的积不变D.一个数同-1相乘,得原数的相反数【答案】B2.计算:(-20)×××15.【答案】原式=(-20)×××15……(交换律)=[(-20)×]×(×15)……(结合律)=-10×5=-50.3.计算:(1)(-1)×(-)××0×(-1);(2)(-)××(-)×4.【答案】(1)0. (2).4.计算:(1)40×(+;(2)×+××.【答案】(1)原式=40×+40×-40×=8+15-16=7. (2)原式=×2×+×4××=×[-2×+4×]=×【板书设计】活动1:创设情境,导入新课活动2:探究多个数连续相乘的运算方法活动3:探究运算律活动4:课堂小结活动5:课后作业。
最新初中数学精品资料设计有理数乘法运算律一、学习目标确定的依据1、课程标准理解有理数的运算律,能运用运算律简化运算;2、教材分析本节课的教学内容是有理数的乘法的运算律,是本单元教学的重点,是小学乘法的运算律的扩充,是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。
3、中招考点用有理数乘法的运算的进行计算也是中招考查的重点题型有填空题和填空题居多。
4、学情分析学生在小学已学过乘法交换律、结合律,因此对理解有理数的乘法仍满足乘法交换律、结合律相对比较容易。
但运用的时候比较出错,特别要注意符号的处理。
二、学习目标1.能用乘法交换律、结合律简化计算2.能说出多个有理数相乘的乘法法则,并会运用法则计算。
三、评价任务1. 能说出多个有理数相乘的乘法法则并能利用它进行相关计算。
2、向同桌说出有理数乘法运算律,结合律的概念并能用乘法运算律简化计算。
四、教学过程最新初中数学精品资料设计学习 目标教学活动评价要点 两类结构学习目标1: 掌握并能利用乘法运算律简化计算 学习目标2: 能说出多个有理数相乘的乘法法则。
并会运用法则计算。
自学指导(一):1.内容:P46-47例2上2.时间:3分钟3.方法:独学+对学4.要求:(1)能利用乘法的交换律和结合律简化计算。
自学检测:(一)1.乘法的交换律,结合律是什么?字母表达式是什么?2.计算(1) (-4) ×(-7)×(-25)(2)(-0.5) ×(-1) ×0.75×(-8)(3)(-62) ×(-4) ×(-25)自学指导(二):1.内容:P47例2上--482.时间:3分钟3.方法:独学+对学4.要求:理解并能说出多个有理数相乘的乘法法则自学检测:(二)1. 填空(1) (2)(3) = (4) =观察从上题的解答过程中,你能得到什么启迪?2.思考:三个数相乘,如果积为负,其中可能有几个因数为负数?四个因数相乘,如果积为正,其中可能有几个因数为负数?全班90%的学生能准确说出有理数乘法的运算律会用字母表示,能用有理数乘法交换律、结合律进行计算。
华师大版数学七年级上册《有理数乘法的运算律》教学设计2一. 教材分析《有理数乘法的运算律》是华师大版数学七年级上册的教学内容,这部分内容主要让学生掌握有理数乘法的运算律,并能够灵活运用。
教材通过引入日常生活中的实例,引导学生探究有理数乘法的运算规律,从而让学生理解并掌握有理数乘法的运算律。
二. 学情分析学生在学习这部分内容前,已经掌握了有理数的基本概念和加减乘除的运算方法,但对有理数乘法的运算律理解不够深入。
因此,在教学过程中,需要结合学生的实际情况,引导学生从生活实例中发现问题,探究问题,解决问题,从而加深对有理数乘法运算律的理解。
三. 教学目标1.让学生理解有理数乘法的运算律,并能够熟练运用。
2.培养学生的观察能力、思考能力和解决问题的能力。
3.提高学生的数学思维,使学生能够从生活中发现数学问题,运用数学知识解决问题。
四. 教学重难点1.教学重点:让学生理解并掌握有理数乘法的运算律。
2.教学难点:让学生能够灵活运用有理数乘法的运算律解决实际问题。
五. 教学方法1.情境教学法:通过引入生活实例,让学生在实际情境中感受数学问题,激发学生的学习兴趣。
2.问题驱动法:引导学生主动发现问题,探究问题,培养学生的问题解决能力。
3.合作学习法:学生进行小组讨论,让学生在讨论中相互学习,共同进步。
六. 教学准备1.教学课件:制作精美的课件,辅助教学。
2.实例材料:收集与有理数乘法相关的日常生活实例。
3.练习题:准备适量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示几个与有理数乘法相关的日常生活实例,引导学生关注生活中的数学问题。
2.呈现(10分钟)展示收集到的实例材料,让学生观察并思考其中的数学问题。
引导学生发现有理数乘法的运算律,并总结出规律。
3.操练(10分钟)让学生进行小组讨论,尝试运用所学的运算律解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示适量的练习题,让学生独立完成。
新华师大版七年级数学上册教案:2.9.2.有理数乘法的运算律
【基本目标】
1.使学生掌握有理数乘法的运算律,并利用运算律简化乘法运算;
2.使学生掌握多个有理数相乘的积的符号法则;
3.培养学生观察、归纳、概括及运算能力.
【教学重点】
乘法的符号法则和乘法的运算律.
【教学难点】
使用乘法的运算律进行简便运算.
一、情境导入,激发思考
1.小学里我们学习了哪些乘法的运算律?
乘法的交换律,乘法的结合律和乘法的分配律.
2.计算4×8×25,说出你的所有的运算方法,你认为哪种方法最好?
4×8×25=(4×25)×8=100×8=800
说明了合理运用乘法的运算律进行计算,可以使我们的计算变得简便.
3.那么乘法的运算律在有理数范围内也是成立的吗?
【教学说明】让学生回顾所学的乘法运算律,再通过一个实例运用,使学生初步感知合理使用乘法的运算律,可以使计算变得简便.
二、合作探究,探索新知
1.(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算结果:□×○和○×□,有什么发现?(让学生尝试计算,得出结论)
(投影显示)有理数乘法的交换律:ab=ba.
(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算结果:(□×○)×◇和□×(○×◇),又有什么发现?(让学生尝试计算,得出结论)
(投影显示)有理数乘法的结合律:(ab)c=a(bc).
【教学说明】让学生自主探究,得出结论:乘法的运算律在有理数范围内也是成立的.为后面使用运算律奠定基础.
2.计算:(-10)×13
×0.1×6. 解:原式=[(-10)×0.1]×
13×6 =(-1)×2
=-2
【教学说明】让学生自主完成,对不同的方法进行对比,然后让学生进行总结.
3.从上面解答过程中,你能得到什么启发?你能直接写出下列各式的结果吗?
(-10)×(-
13)×0.1×6= ; (-10)×(-
13)×(-0.1)×6= ; (-10)×(-13
)×(-0.1)×(-6)= . 观察以上各式,能发现几个正数与负数相乘时积的符号与各因数的符号之间的关系吗?(学生讨论,教师点拨总结)
(投影显示)几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.
【教学说明】学生自主完成探究,总结规律,教师及时进行补充和完善,形成运算规律.
4.想一想:三个数相乘,积为负,那么其中可能有几个因数为负数?四个数相乘,积为正,那么其中是否可能有负数?
【教学说明】学生通过“想一想”,能更深的体会和加深这一结论,激发学习兴趣.
5.试一试:
(-5)×(-2
1)×3×(-2)×2=?
(-5)×(-8.1)×3.14
×0=? 通过以上计算,你能得到什么结论?
(投影显示)几个数相乘,有一个因数为0,积就为0.
【教学说明】将两个式子的计算结果进行对比,学生很容易得出结论,教师及时予以强调.
6.计算下列各题:
(1)8+(-0.5)×(-8)×
34; (2)(-3)×65×(-5
9)×(-0.25). 解:(1)原式=8+21×8×34
=8+3=11; (2)原式=-3×65×59×14=-8
9. 【教学说明】教师提醒学生先要进行观察,确定计算的方法,再让学生尝试解答,以使学生在解题的过程中熟练掌握解题方法.
三、示例讲解,掌握新知
例1 计算:
(1)30×21-23
+25; (2)4.98×(-5).
解:(1)原式= 30×12-30×23
+30×52 =15
-20+12=7; (2)原式=(5-0.02)×(-5)=-25+0.1=-24.9
(第(2)题需要把算式变形,才能用乘法分配律)
【教学说明】学生可以尝试完成(1),教师要强调注意符号,对于(2),教师可先进行点拨,适当变形,可以使计算简便,然后教师可以示范讲解.
例2 计算:
(1)34×(8-113-15
14); (2)8×(-
52)-(-4)×(-92)+(-8)×53.
小结:由上面的例子可以看出,适当应用运算律可使运算简便. 也有时需要先把算式变形,才能用分配律,还有时需反向运用分配律.
【教学说明】学生独立完成(1),教师示范讲解(2),使学生理解怎样反向运用乘法的分配律,然后及时进行总结,形成方法.
四、练习反馈,巩固提高
【教学说明】学生独立完成练习,教师强调学生一定要注意符号,强调如何合理利用乘法的分配律进行计算,学生通过练习,进一步熟悉新的计算方法,提高计算能力.
【答案】1.(1)1 (2)7 (3)-1 (4)-17034
2.(1)25 (2)91918×15=(10-191)×15=150-1915=14919
4 五、师生互动,课堂小结
1.有理数的乘法运算律有:
乘法的交换律、乘法的结合律和乘法的分配律.
2.合理使用乘法的运算律进行计算,可以使计算更简便.但是要注意先观察式子的特点,适当变形,选取适当的运算律进行计算.
【教学说明】教师对本节课内容进行总结,对简便运算过程中出现的问题进行强调,使学生形成一定的思维方法和计算能力.
完成本课时对应的练习.
本节课主要探索乘法的运算律在有理数乘法中的应用,先通过具体的探索了解乘法的运算律在有理数范围内仍然成立,然后通过不同的实例,让学生逐步认识到合理使用乘法的运算律可以使计算变得简便.在教学的过程当中,尽量让学生去尝试,以便于学生形成对比,加深印象,要及时进行总结,以便于学生掌握方法.。