有理数的乘法运算律
- 格式:ppt
- 大小:316.00 KB
- 文档页数:20
一、有理数的运算顺序:有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法。
有括号时、先算小括号里面的运算,再算中括号,然后算大括号。
在遇到相同类型的运算时,应从左往右运算二、有理数的运算:1)有理数加减法:1、同号相加和取相同的符号,并把绝对值相加例如:+2+3=5 (-2)+(-3)=-52、异号相加和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值例如:+2+(-3)=-1 (-2)+3=1一个数与零相加仍得这个数,两个互为相反数相加和为零3、减去一个数等于加上这个数的相反数例如:+2-(+3)=2+(-3)=-1 (-2)-(-3)=-2+3=14、异号相减可理解为同号相加例如:+2-(-3)=2+3=5 (-2)-(+3)=-2-3=-5 补充:去括号与添括号:去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;+(4+5+6)=4+5+6 +(4-5+6)=4-5+6括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
-(4+5+6)=-4-5-6 -(4-5+6)=-4+5-6添括号法则:在“+”号后边添括号,括到括号内的各项都不变;4+5+6=4+(5+6) 4-5+6-7=(4-5+6)-7=(4-5)+6-7在“-”号后边添括号,括到括号内的各项都要变号。
4-5+6=4-(5-6) 4-5+6-7=4-(5-6+7)2)有理数乘法法则:1、两数相乘,同号得正,异号得负,并把绝对值相乘例如:(+2)×(+3)=6 (-2)×(-3)=6 (+2)×(-3)=-6 (-2)×(+3)=-62、任何数与零相乘都得零3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;4、几个有理数相乘,若其中有一个为零,积就为零。
七年级有理数乘法运算律计算题
一、有理数乘法运算律概述
有理数乘法运算律,又称乘法交换律和结合律,是指两个或多个数相乘,它们的顺序和性质不变,即:
a ×
b = b × a
(a × b) × c = a × (b × c)
二、有理数乘法运算律的应用
1.相同符号数的乘法
当两个数同号时,它们的乘积为正。
例如:
3 ×
4 = 4 × 3 = 12
2.异号数的乘法
当两个数异号时,它们的乘积为负。
例如:
-3 × 4 = 4 × (-3) = -12
3.绝对值不等式的乘法
当两个数的绝对值不等时,它们的乘积与绝对值较大的数的符号相同。
例如:
|2| × |3| = 2 × 3 = 6
三、典型例题解析
1.求解以下乘法运算:
5 × 3 × 2 = ?
解答:根据乘法交换律,可以改变运算顺序:
3 × 5 × 2 = 30
2.求解以下乘法运算:
-2 × 4 × (-3) = ?
解答:根据乘法运算律,先计算负数乘以负数的结果为正,再进行乘法运算:
4 × (-2) × (-3) = 24
四、总结与拓展
有理数乘法运算律在实际计算中具有广泛的应用,熟练掌握乘法运算律可以简化计算过程,提高计算效率。
有理数的乘法运算律有理数的乘法运算律是数学中的基本概念之一,它规定了如何进行有理数的乘法运算。
本文将详细介绍有理数的乘法运算律,并通过实例加深理解。
一、有理数的乘法运算律有理数的乘法运算律分为两个部分:乘法结合律和乘法分配律。
1. 乘法结合律乘法结合律规定,当有三个有理数a、b、c相乘时,无论运算顺序如何,最终的结果都是一样的。
即:(a * b) * c = a * (b * c)例如,我们取有理数a=2,b=3,c=4,根据乘法结合律,可以得到(2 * 3) * 4 = 2 * (3 * 4)。
两边都等于24,因此乘法结合律成立。
2. 乘法分配律乘法分配律规定,当有三个有理数a、b、c相乘时,先将前两个数相乘,然后再将结果与第三个数相乘,或者先将后两个数相乘,再将结果与第一个数相乘,最终的结果都是一样的。
即:a * (b + c) = a * b + a * c例如,我们取有理数a=2,b=3,c=4,根据乘法分配律,可以得到2 * (3 + 4) = 2 * 3 + 2 * 4。
左边等于14,右边也等于14,因此乘法分配律成立。
二、乘法运算律的应用有理数的乘法运算律在实际问题中有广泛的应用。
下面以两个实际问题为例,说明乘法运算律的应用。
1. 长方形面积计算假设有一个长方形,它的长为a,宽为b。
根据乘法运算律,长方形的面积可以表示为a * b。
这个公式可以简化计算,只需要将长和宽相乘即可得到面积。
例如,有一个长方形,长为5米,宽为3米,根据乘法运算律,可以计算出面积为5米* 3米= 15平方米。
因此,乘法运算律在计算长方形面积时非常有用。
2. 购物计算假设某个商品的价格为p,购买数量为n。
根据乘法运算律,购买该商品的总价格可以表示为p * n。
这个公式可以简化计算,只需要将商品的价格和购买数量相乘即可得到总价格。
例如,某商品的价格为10元,购买数量为3个,根据乘法运算律,可以计算出总价格为10元 * 3个 = 30元。
七年级有理数乘法运算律计算题摘要:1.有理数乘法运算律简介2.小学阶段乘法运算律在初中的适用性3.有理数乘法简便运算方法4.实例分析与应用正文:在七年级的数学学习中,有理数乘法运算律是一个重要的知识点。
有理数乘法运算律主要包括以下内容:1.乘法交换律:两个数相乘,交换因数的位置,积不变。
例如,a × b = b × a。
2.乘法结合律:三个数相乘,先乘前两个数,再乘第三个数,积不变。
例如,(a × b) × c = a × (b × c)。
3.乘法分配律:一个数乘以一个括号内的和,等于这个数分别乘以括号内的每个数,然后求和。
例如,a × (b + c) = a × b + a × c。
这些运算律在小学阶段的学习中已经涉及,而在初中阶段,它们同样适用,并能帮助我们简化有理数乘法运算。
为了更好地理解和运用有理数乘法运算律,我们可以通过一些简便运算方法来进行实际操作。
例如:1.利用乘法交换律和结合律,可以改变乘法的顺序,使计算更简便。
2.利用乘法分配律,可以将一个复杂的乘法式子分解为两个简单的乘法式子,然后再相加。
接下来,我们通过一些实例来分析与应用这些方法:【例1】计算:100 × 3 × 2 × 5。
根据乘法交换律和结合律,我们可以改变乘法的顺序:(100 × 5)×(3 × 2)= 500 × 6 = 3000。
【例2】计算:-4 × -5 × 0.25。
根据乘法交换律,我们可以将负数移到乘号前面:4 × 5 × 0.25 = 20 × 0.25 = 5。
【例3】计算:100 ×(-3)×(-5)× 0.01。
根据乘法分配律,我们可以将乘法式子分解为两个简单的乘法式子:100 ×(-3)× 0.01 + 100 ×(-5)× 0.01 = -300 × 0.01 - 500 × 0.01 = -3 - 5 = -8。
有理数乘法知识点及计算题一、有理数乘法1·有理数乘法的法则:第一定号;第二用绝对值计算。
两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0. 2·积的符号与负因数的关系:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.特别注意:第一个因数是负数时,可省略括号.3、乘法的运算律:乘法交换律:几个因数相乘,交换因数的位置,积相等。
abc=cab=bca乘法结合律:多个因数相乘,先把前几个相乘或先把后几个相乘或先把中间几个相乘,积相等。
a(bc)d=a(bcd)=……分配律:一般地,一个数同多个数的和相乘,等于这个数分别同多个数相乘,再把积相加。
a(b+c+d+…+m)=ab+ac+ad+…+am特别提醒:有理数乘法与有理数加法运算步骤一样,第一步先确定积的符号,第二步确定积的绝对值,由于积的绝对值总是正数和零,因此,绝对值相乘就是算术乘法,由此可见,有理数乘法,实质上就是通过乘法法则转化为算术乘法来完成的。
二.同步练习:1.(1)5×(-4)= ___;(2)(-6)×4= ___;(3)(-7)×(-1)= ___;(4)(-5)×0 =___; (5)=-⨯)23(94___;(6)=-⨯-)32()61( ___; (7)(-3)×=-)31(2、计算:(1))32()109(45)2(-⨯-⨯⨯-; (2)(-6)×5×72)67(⨯-;(3)(-4)×7×(-1)×(-0.25); (4)41)23(158)245(⨯-⨯⨯-3、计算:(1))5(252449-⨯; (2)125)5.2()2.7()8(⨯-⨯-⨯-;(3)6.190)1.8(8.7-⨯⨯-⨯-; (4))251(4)5(25.0-⨯⨯-⨯--。
1.有理数的乘法(1)有理数的乘法法则:两个数相乘,同号得__________,异号得__________,并把__________相乘;任何数与0相乘,都得__________;(2)倒数的定义:乘积为__________的两个数互为倒数.注意:①__________没有倒数;②求假分数或真分数的倒数,只要把这个分数的分子、分母__________即可;求带分数的倒数时,先把带分数化为__________,再把分子、分母颠倒位置;③正数的倒数是__________,负数的倒数是__________;(即求一个数的倒数,不改变这个数的__________)④倒数等于它本身的数有__________个,分别是__________,注意不包括0.(3)有理数乘法的运算律:乘法交换律:两个数相乘,交换__________,积相等,即__________.乘法结合律:三个数__________,先把前两个数__________,或者先把后两个数__________,积相等,即(ab)c=__________.分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数__________,再把积__________,即a(b+c)=__________.(4)几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.(5)几个数相乘,有一个因数为0,积就为0.(6)任何数同1相乘仍得原数,任何数同–1相乘得原数的相反数.2.有理数的除法(1)有理数除法法则:除以一个__________的数,等于乘这个数的__________.即a b÷= __________.(2)从有理数除法法则,容易得出:两个数相除,同号得__________,异号得__________,并把__________相除.0除以任何一个__________的数,都得__________.3.有理数的乘除混合运算(1)因为乘法与除法是同一级运算,应按__________的顺序运算.(2)结果的符号由算式中__________的个数决定,负因数的个数是__________时结果为正,负因数个数是__________时结果为负.(3)化成乘法后,应先约分再相乘.(4)有理数的乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果. K 知识参考答案:1.(1)正,负,绝对值,0(2)1,0,颠倒位置,假分数,正数,负数,符号,两,1和–1(3)因数的位置,ab =ba ,相乘,相乘,相乘,a (bc ),相乘,相加,ab +bc2.(1)不等于0,倒数,1a b(b ≠0)(2)正,负,绝对值,不等于0,0 3.(1)从左到右(2)负因数,偶数,奇数一、有理数的乘法【例1】计算3×(–1)×(–31)=__________. 【答案】1【解析】3×(–1)×(–31)=3×1×31=1.【名师点睛】先根据有理数乘法的符号法则判断符号,再把绝对值相乘即可得到结果. 二、有理数的乘法运算律乘法交换律:有理数乘法中,两个数相乘,交换因数的位置,积相等.表达式:ab=ba .乘法结合律:三个数相乘,先把其中的两个数相乘,积相等.表达式:(ab )c=a(bc ).乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.表达式:a(b+c)=ab+ac.【例2】(–0.25)×(–79)×4×(–18).【答案】–14【解析】原式=–(14×79×4×18)=–(14×4×79×18)=–14.【名师点睛】①几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;几个数相乘,如果其中有因数为0,那么积等于0.②通过灵活运用乘法的运算律,可以使计算过程简单化.三、有理数的除法1.除以一个数等于乘以这个数的倒数.2.两数相除,同号得正,异号得负,并把绝对值相除.3.0除以任何一个不等于0的数,都得0.【例3】两个有理数的商是正数,那么这两个数一定A.都是负数B.都是正数C.至少一个是正数D.两数同号【答案】D【解析】根据有理数的除法法则,可得,两个有理数的商是正数,那么这两个数一定同号,故选D.【名师点睛】在进行除法运算时,若能整除,则根据“两数相除,同号得正,异号得负,并把绝对值相除”进行计算;若不能整除,则根据“除以一个不等于0的数,等于乘以这个数的倒数”进行计算;除法算式中的小数常化成分数,带分数常化成假分数,以利于转化为乘法时约分;0不能作除数(即分母).四、有理数的加减乘除四则运算有理数的加减乘除四则运算:在运算时要注意按照“先乘除,后加减”的顺序进行,如有括号,应先算括号里面的.在同级别运算中,要按从左到右的顺序来计算,并能合理运用运算律,简化运算.【例4】下面是某同学计算(−)÷(−+−)的过程:解:(−)÷(−+−)=(−)÷+(−)÷(−)+(−)÷+(−)÷(−)=(−)×+×10−×6+×=(−)+−+=.细心的你能否看出上述解法错在哪里吗?请给出正确解法.【答案】见解析.【名师点睛】此题是有理数的混合运算,运算过程中要正确理解和使用运算律.。
有理数乘法的运算律有理数乘法是数学中的基本运算之一,它有着一些重要的运算律。
本文将以有理数乘法的运算律为标题,详细介绍这些运算律的概念和应用。
一、乘法的交换律有理数乘法满足交换律,即对于任意的有理数a和b,都有a乘以b等于b乘以a。
这意味着,在进行有理数的乘法运算时,交换操作不会改变最终的结果。
例如,对于有理数3和4来说,3乘以4等于4乘以3,结果都是12。
这表明乘法运算可以进行顺序的调换,不影响结果。
二、乘法的结合律有理数乘法满足结合律,即对于任意的有理数a、b和c,都有(a乘以b)乘以c等于a乘以(b乘以c)。
这意味着,在进行有理数的连续乘法运算时,可以任意选择先后顺序,结果都是相同的。
例如,对于有理数2、3和4来说,(2乘以3)乘以4等于2乘以(3乘以4),结果都是24。
这表明连续乘法运算可以进行任意的括号调换,不影响结果。
三、乘法的分配律有理数乘法满足分配律,即对于任意的有理数a、b和c,都有a乘以(b加上c)等于a乘以b加上a乘以c。
这意味着,在进行有理数的乘法和加法运算时,可以将乘法分配到加法上。
例如,对于有理数2、3和4来说,2乘以(3加上4)等于2乘以3加上2乘以4,结果都是14。
这表明乘法可以在加法运算中进行分配,不影响结果。
四、乘法的零元有理数乘法有一个特殊的元素,即0。
对于任意的有理数a,都有a 乘以0等于0。
这意味着任何数与0相乘的结果都是0。
例如,对于有理数5来说,5乘以0等于0。
这表明任何数与0相乘都会得到0的结果。
五、乘法的倒数有理数乘法还有一个重要的性质,即每个非零有理数都有一个倒数。
对于任意的非零有理数a,都存在一个有理数b,使得a乘以b等于1。
这意味着除以一个非零有理数等于乘以其倒数。
例如,对于有理数2来说,它的倒数是1/2。
2乘以1/2等于1。
这表明除以一个非零有理数等于乘以其倒数。
通过以上五个运算律,我们可以灵活运用有理数乘法进行计算。
这些运算律在代数运算中有着广泛的应用。