有理数乘法运算律(公开课)
- 格式:ppt
- 大小:1.32 MB
- 文档页数:12
1.4.1 有理数的乘法第2课时有理数乘法的运算律及运用教学目标:使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便.教学重难点:熟练运用运算律进行计算.教与学互动设计:(一)创设情境,导入新课想一想上一节课大家一起学习了有理数的乘法运算法则,掌握得较好.那在学习过程中,大家有没有思考多个有理数相乘该如何来计算?做一做(出示胶片)下列题目你能运算吗?(1)2×3×4×(-5);(2)2×3×(-4)×(-5);(3)2×(-3)×(-4)×(-5);(4)(-2)×(-3)×(-4)×(-5);(5)-1×302×(-2004)×0.由此我们可总结得到什么?(二)合作交流,解读探究交流讨论不难得到结论:几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负,并把绝对值相乘.几个数相乘,如果其中有因数为0,积等于0.(三)应用迁移,巩固提高【例1】计算(-3)××(-)×(-)×(-8)×(-1).【例2】计算(-1999)×(-2000)×(-2001)×(-2002)×2003×(-2004)×0.导入运算律(1)通过计算:①5×(-6),②(-6)×5,比较结果得出5×(-6)=(-6)×5;(2)用文字语言归纳乘法交换律:两个数相乘,交换因数的位置,积相等;(3)用公式的形式表示为:ab=ba;(4)分组计算,比较[3×(-4)]×(-5)与3×[(-4)×(-5)]的结果,讨论、归纳出乘法结合律;(5)全班交流,规范结合律的两种表达形式:文字语言、公式形式;(6)分组计算、比较:5×[3+(-7)]与5×3+5×(-7)的结果,讨论归纳出乘法分配律;(7)全班交流、规范分配律的两种表达形式:文字语言、公式形式.【例3】用简便方法计算:(1)(-5)×89.2×(-2);(2)(-8)×(-7.2)×(-2.5)×.【例4】用两种方法计算(+-)×12.(四)总结反思,拓展升华本节课我们的成果是探究出有理数的乘法运算律并进行了应用.可见,运算律的运用十分灵活,各种运算律常常是混合应用的.这就要求我们要有较好的掌握运算律进行计算的能力,要寻找最佳解题途径,不断总结经验,使自己的能力得到提高.(五)课堂跟踪反馈夯实基础1.计算题:(1)(-)××(-)×(-2);(2)6.878×(-15)+6.878×(-12)-6.878×(-37);(3)×(-16)×(-)×(-1)×8×(-0.25);(4)(-99)×36.提升能力2.若a、b、c为有理数,且│a+1│+│b+2│+│c+3│=0.求(a-1)(b+2)(c-3)的值.第八章 8.2.2消元——解二元一次方程组(一)知识点1:加减消元法两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法.知识点2:列二元一次方程组解实际应用题的步骤列二元一次方程组解应用题与列一元一次方程解应用题的思路基本相似,也是审题、设元、列方程、检验、作答几个步骤.其中与列一元一次方程解应用题不同的是,列一元一次方程解应用题的时候,我们需要考虑设哪个未知量为x,运用哪个相等关系来列方程,而列二元一次方程组解应用题时,如果题目有两个未知量,两个相等关系,我们直接将未知量设为x和y,两个相等关系都用来列方程.考点1:先化简再求方程组的解【例1】解方程组解:原方程组可化为②×5-①,得26y=104,解得y=4.把y=4代入②,得x+20=28,解得x=8.所以原方程组的解为点拨∶对于比较复杂的二元一次方程组,首先将两个方程化简成ax+by=c的形式,然后再使用代入消元法或加减消元法求解.考点2:换元法解方程组【例2】解方程组解:设a=,b=,则原方程组可变形为解得∴解得点拨:仔细观察方程组,我们不难发现两个方程中均出现和,我们可将和分别看作两个未知数a,b,这个复杂的方程组就可以转化成一个简单的方程组来解决了,这种方法叫做换元法.考点3:轮对称的二元一次方程组的求解策略【例3】解方程组解:①+②,得27x+27y=81,化简得x+y=3.③①-②,得-x+y=-1.④③+④,得2y=2,解得y=1.③-④,得2x=4,解得x=2.∴原方程组的解是点拨:呈现形式的方程组称为轮对称方程组.考点4:一个二元一次方程组与一个二元一次方程同解的问题【例4】若关于x,y的方程组的解也是方程3x+2y=17的解,求m的值.解法一:①-②,得3y=-6m,即y=-2m.把y=-2m代入①,得x-4m=3m,解得x=7m.把x=7m,y=-2m代入3x+2y=17,得21m-4m=17,解得m=1.解法二:①×3-②,得2x+7y=0.根据题意可得:解这个方程组,得把代入①,得7-4=3m,解得m=1.点拨:解法一:把m看作已知数,用含m的代数式表示x,y,然后把x,y的值代入3x+2y=17中,得到一个关于m的一元一次方程,解这个一元一次方程即可求出m的值.解法二:由原方程组消去m,得到一个关于x,y的二元一次方程,这个二元一次方程和3x+2y=17组成一个方程组,解出x,y的值,然后代入原方程组中任意一个方程求出m的值.3.2 解一元一次方程(一)——合并同类项与移项第1课时用合并同类项的方法解一元一次方程教学目标:1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.3.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程.教学重点:建立方程解决实际问题,会解“ax+bx=c”类型的一元一次方程.教学难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程.教学过程:一、设置情境,提出问题(出示背景资料)约公元820年,中亚细亚的数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.出示课本P86问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?二、探索分析,解决问题引导学生回忆:实际问题一元一次方程设问1:如何列方程?分哪些步骤?师生讨论分析:(1)设未知数:前年这个学校购买计算机x台;(2)找相等关系:前年购买量+去年购买量+今年购买量=140台.(3)列方程:x+2x+4x=140.设问2:怎样解这个方程?如何将这个方程转化为“x=a”的形式?学生观察、思考:根据分配律,可以把含x的项合并,即x+2x+4x=(1+2+4)x=7x老师板演解方程过程:略.为帮助有困难的学生理解,可以在上述过程中标上箭头和框图.设问3:在以上解方程的过程中“合并”起了什么作用?每一步的根据是什么?学生讨论回答,师生共同整理:“合并”是一种恒等变形,它使方程变得简单,更接近“x=a”的形式.三、拓广探索,比较分析学生思考回答:若设去年购买计算机x台,得方程+x+2x=140.若设今年购买计算机x台,得方程++x=140.课本P87例2.问题:①每相邻两个数之间有什么关系?②用x表示其中任意一个数,那么与x相邻的两个数怎样表示?③根据题意列方程解答.四、综合应用,巩固提高1.课本P88练习第1,2题.2.一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?(学生思考、讨论出多种解法,师生共同讲评.)3.有一列数按一定规律排成-1,2,-4,8,-16,32,……,其中某三个相邻数的和是-960.求这三个数.五、课时小结1.你今天学习的解方程有哪些步骤,每一步的依据是什么?2.今天讨论的问题中的相等关系有何共同特点?学生思考后回答、整理:解方程的步骤及依据分别是:合并和系数化为1;总量=各部分量的和.。
课题:有理数的乘法运算律【学习目标】1.通过计算、观察,理解多个有理数相乘的符号确定法则.2.会运用符号确定法则和乘法运算律,熟练进行多个有理数相乘的计算.3.初步培养学生的化归意识和观察、比较、概括等思维能力.【学习重点】有理数的乘法运算律.【学习难点】多个有理数的乘法.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.一般步骤:1.先看题目中是否含有因数0,若其中有一个因数为0,那么积等于0;2.如果因数都不为0,则先根据负因数的个数确定积的符号,除确定符号外,如果因数中有带分数或小数,还要把带分数化成假分数,把小数全部化成分数.方法指导:利用有理数的乘法运算律进行计算时,关键是根据算式的特点,选择合适的方法,这样才能保证计算做到又快又对.情景导入生成问题旧知回顾:1.两数相乘,同号得正,异号得负,并把绝对值相乘.2.任何数与0相乘都得0.自学互研生成能力知识模块一多个有理数的乘法【自主学习】阅读教材P31,完成下面的内容:观察P31“思考”的式子,想一想:几个不是0的数相乘,积的符号与负因数的个数有什么关系?归纳:1.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.2.几个数相乘,如果其中有一个因数为0,那么积等于0.【合作探究】计算:(1)(-5)×8×(-7)×(-0.25);解:原式=-5×8×7×0.25=-70;(2)(-1)×⎝ ⎛⎭⎪⎫-54×815×32×⎝ ⎛⎭⎪⎫-23×0×1. 解:原式=0.知识模块二 有理数的乘法运算律【自主学习】阅读教材P 32~P 33,完成下面的内容:1.探究有理数的乘法运算律:(1)计算:5×(-7)=-35,(-7)×5=-35,则5×(-7)=(-7)×5.再换几个例子试一试看有什么样的结果? 归纳:有理数乘法的交换律:两个数相乘,交换因数的位置,积相等.用式子表示为a ×b =b×a.(2)计算:[8×(-5)]×4=-160,8×[(-5)×4]=-160, 则[8×(-5)]×4=8×[(-5)×4].再换几个例子试一试看有什么样的结果? 归纳:有理数乘法的结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.用式子表示为(ab)c =a(bc).(3)计算:4×[(-8)+3]=-20,4×(-8)+4×3=-20,则4×[(-8)+3]=4×(-8)+4×3.再换几个例子试一试看有什么样的结果?行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.归纳:有理数乘法的分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.用式子表示为a(b +c)=ab +ac ;2.有理数的乘法运算律的运用.【合作探究】(1)(-85)×(-25)×(-4); (2)⎝ ⎛⎭⎪⎫-65×⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫-65×⎝ ⎛⎭⎪⎫+173. 解:原式=-85×(25×4) 解:原式=-65×⎝ ⎛⎭⎪⎫-23+173 =-85×100=-8500; =-65×153=-6.交流展示 生成新知 【交流预展】1.将阅读教材时“生成的问题”和通过“自主学习、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一 多个有理数的乘法知识模块二 有理数的乘法运算律检测反馈 达成目标【当堂检测】1.填空:(1)-2×(-3)-(-1)×3=9;(2)⎝⎛⎭⎪⎫-114×⎝ ⎛⎭⎪⎫-45=1; (3)已知abc>0,a>c ,ac<0,则a>0,b<0,c<0.2.计算:(1)⎝⎛⎭⎪⎫-213×⎝ ⎛⎭⎪⎫+237×(-0.2); 解:原式=73×177×15=1715; (2)⎝ ⎛⎭⎪⎫-56+34-13-1×(-12). 解:原式=56×12+34×(-12)+13×12+1×12 =10-9+4+12=17.【课后检测】见学生用书课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
1.4有理数的乘除法(第2课时)一、内容和内容解析1.内容利用有理数乘法法则进行运算,有理数的运算律.2.内容解析本节课的内容有两项:一是有理数乘法法则的应用,总结一些规律,主要是乘积的符号,由此可把有理数相乘转化为正数相乘或含有因数0的积等,并由此给出一般的运算步骤,以提高运算技能;二是有理数乘法的运算律,这些运算律(特别是分配律)是整个代数学的基础.本节课的内容主要用于简化运算,运算律是本章中的核心内容之一.本课的教学重点:有理数的乘法运算律;几个有理数相乘的运算步骤.二、教材解析教科书以“思考”栏目,提出几个不是0的数相乘其积的符号有什么规律的问题,并安排了一组具体数字相乘的题目,让学生采用从特殊到一般的方法,归纳出符号规律.然后安排例题,让学生通过计算,总结出“先定符号,再算绝对值”的运算步骤.再通过“思考”栏目,提出直接得出含有因数0时多个数相乘的结果的任务,实际上,这里强调了“先观察,后计算”的运算习惯问题.对于运算律,教科书采取“直接告知”的方法,指出“像前面那样规定有理数乘法法则后,就可以使交换律、结合律与分配律在有理数乘法中仍然成立”,然后采用具体例子验证的方法,给出有理数乘法运算律的文字表述和符号表示.最后用例子说明了运算律在简化运算中的作用.三、目标和目标解析1.教学目标(1)掌握多个有理数相乘时的运算步骤;(2)掌握有理数乘法运算律,会利用有理数的乘法运算律进行计算.2.目标解析(1)学生知道多个有理数相乘的运算步骤:第一步,观察算式,如果含有因数0,直接得出结果;第二步,确定符号;第三步,利用运算律进行运算.(2)能用文字语言、符号语言表达运算律;能根据算式的特点选用适当的运算律简化运算.四、教学问题诊断分析数系的运算律是整个代数学的基础,也就是说,无论是数的运算还是式(包括整式、分式、根式、指数式等)的运算以及解方程和解不等式,都要以运算律为基础.因此,运算能力的培养,其关键也在于运算律的灵活运用,学生的运算能力往往与此相关.例如:(1)在两个有理数的乘法运算中,确定符号常常与加法法则中的符号规律相混淆;(2)利用分配律计算时,常常漏乘其中的某一个数或弄错符号;(3)把带分数中的整数部分与分数部分看成相乘的关系;(4)忽略了符号;等等.本课的教学难点:多个有理数相乘时,算式特点的观察;运算律的选择和运用.五、教学过程设计1.复习回顾问题1前面我们学习了有理数的乘法法则,你能叙述出法则吗?用法则进行运算时,可以按照怎样的步骤完成?师生活动:学生回答,教师可以强调“先确定符号,再算绝对值”.【设计意图】为多个有理数相乘的步骤做准备.2.引入新课问题2观察下列各式,它们的积是正的还是负的?2×3×4×(-5),2×3×(-4)×(-5),2×(-3)×(-4)×(-5),(-2)×(-3)×(-4)×(-5).师生活动:学生独立完成,学生代表发言.教师通过问“为什么”,引导学生用运算法则说明理由.追问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?在学生归纳的基础上,教师让学生填空:归纳:几个不是0的数相乘,负因数的个数是_______时,积是正数;负因数的个数是_________时,积是负数.【设计意图】让学生用乘法法则说明理由,起到巩固法则的作用;观察多个有理数相乘的算式,归纳积的符号和负因数个数的奇偶数的关系,既培养观察、归纳的能力,又为提高运算技能打基础.问题3你能看出下式的结果吗?你是怎么得到的?7.8×(8.1)×0×(-19.6).学生思考回答.教师引导学生根据已有的知识进行解答,得出几个数相乘,其中有一个因数为0时的特殊规律.学生填空:几个数相乘,如果其中有因数为0,积等于_______.【设计意图】这一规律比较容易,只要提出问题,学生可以顺利作答.3.归纳运算步骤问题4 计算:(1)0.3×(-10)×(-25)×4×0;(2)(-3)×65×⎪⎭⎫ ⎝⎛-59×⎪⎭⎫ ⎝⎛-41; (3)(-5)×6×⎪⎭⎫ ⎝⎛-54×41. 师生活动:学生独立完成,并核对结果.追问:你能总结一下多个有理数相乘时的运算步骤吗?师生活动:学生归纳,教师总结,要得出:第一步,先观察,如果含因数0,直接得0;第二步,确定结果的符号;第三步,算出绝对值.【设计意图】巩固有理数的乘法运算,归纳多个有理数相乘的运算步骤,培养良好的运算习惯.4.探索有理数乘法的运算律问题5 在小学我们已经知道,乘法有交换律、结合律和分配律等运算律,它们可以帮 助我们简化运算.在有理数范围内,这些运算律还成立吗?请大家自己举出一些例子,通过计算验证.师生活动:学生分组,先独立举例计算,再小组交流,再派代表汇报.在学生举例的过程中,教师可以提醒学生注意例子的代表性,即要考虑含有负数的乘法算式.要让学生用自己的语言表述结论.(1)两个数相乘,交换因数的位置,积相等.乘法交换律:ab =ba .(2)三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律:(ab )c =a (bc ).教师说明:a ×b 也可以写为a ·b 或ab .当用字母表示乘数时,“×”号可以写为“·”,或省略.(3)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 分配律:a (b +c )=ab +ac .【设计意图】运算律的得出并不困难,所以在提出问题后,让学生自己通过具体例证探索获得.安排学生自主活动,可以活跃课堂气氛,培养学生的语言表达能力.5.练习巩固练习 用两种方法计算⎪⎭⎫ ⎝⎛21-61+41×12. 解法1:⎪⎭⎫ ⎝⎛21-61+41×12 =⎪⎭⎫ ⎝⎛126-122+123×12 =-121×12 =-1.解法2:⎪⎭⎫ ⎝⎛21-61+41×12 =41×12+61×12-21×12 =3+2-6=-1.思考:比较上面两种解法,它们在运算上有什么区别?解法2用了什么运算律?哪种解法运算量小?师生活动:学生分析,独立完成,选两名学生板书.完成后,教师与学生一起归纳运算律的作用.【设计意图】通过多种方法让学生感受运用运算律可以简化计算.6.小结(1)请你总结有理数乘法运算的基本步骤;(2)有理数乘法有哪些运算律?它们有哪些作用?7.作业习题1.4,第7题(1)(2)(3),第8题(4),第14题.。