江苏省初高中衔接教材(Word附答案)
- 格式:doc
- 大小:3.12 MB
- 文档页数:82
初升高暑假数学衔接教材第一部分,如何做好高、初中数学的衔接● 第一讲如何学好高中数学●初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。
但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。
在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。
相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。
渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。
造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。
下面就对造成这种现象的一些原因加以分析、总结。
希望同学们认真吸取前人的经验教训,搞好自己的数学学习。
一高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。
不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。
确实,初、高中的数学语言有着显着的区别。
初中的数学主要是以形象、通俗的语言方式进行表达。
而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。
2 思维方法向理性层次跃迁。
高中数学思维方法与初中阶段大不相同。
初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。
即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。
因此,初中学习中习惯于这种机械的、便于操作的定势方式。
高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。
当然,能力的发展是渐进的,不是一朝一夕的。
这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。
高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。
3 知识内容的整体数量剧增。
高中数学在知识内容的“量”上急剧增加了。
初高中数学衔接教材乘法公式我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.练习1.填空: (1)221111()9423a b b a -=+( );(2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).(4)若212x mx k ++是一个完全平方式,则k 等于 ( )(5)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数 (C )可以是零 (D )可以是正数也可以是负数第一讲 因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法. 1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x ________。
初高中数学衔接教材参考答案第一讲 数与式的运算例1. 解:原式=22]31)2([+-+x x例2. 解:原式=333322)(])()()][([b a b a b b a a b a -=-+=-+---+例3. 解:(1)原式=333644m m +=+例7. 解:(1) 原式6==-(2) 原式ab(3) 原式=-+=-例8. 解:(1) 原式=22(1()21a b a +--+=--+(2) 原式=+=+例9.解:77 14,123x y x y xy ===+=-⇒+==-原式=2222()()()[()3]14(143)2702x y x xy y x y x y xy +-+=++-=-=例10. 解法一:1.3.4.-5.例1. 解:(1) 333282(2)(42)x x x x x +=+=+-+(2) 333220.125270.5(3)(0.53)[0.50.53(3)]b b b b b -=-=-+⨯+例2. 解:(1) 3433223813(27)3(3)(39)a b b b a b b a b a ab b -=-=-++.(2) 76663333()()()a ab a a b a a b a b -=-=+-例3. 解:21052(5)(5)(5)(2)ax ay by bx a x y b x y x y a b -+-=---=--例4. 解:22222222()()ab c d a b cd abc abd a cd b cd ---=--+ 例5. 解:22()()()()()x y ax ay x y x y a x y x y x y a -++=+-++=+-+例6. 解:22222224282(24)x xy y z x xy y z ++-=++-例7. 解:(1)6(1)(6),(1)(6)7=-⨯--+-=-2 例8. (1) 24- 15(5)-=-例 例10. 例11. 练习1.(a +1(2645525216p -.2222()(),()(),n x x y y xy x x x y x xy y +-+-++3.(2)(1),(36)(1),(13)(2),(9)(3)x x x x x x x x --+++--+ 4.322(2)(8),(3)(2),(3)(1)(23),(3)(3)(2)n ax x x a a b a b x x x x x x x --+--+-+-++2(23)(31),(2)(415),(772)(1),(21)(35)(675)x x x y x y a b a b x x x x -+-++++-+--+5.2()(3),(21)(21),(3)(52),(256)(256)x y a y x x x x y a b a b -++--+---+第三讲 一元二次方程根与系数的关系例1. 解:(1)2 (3)42110∆=--⨯⨯=>,∴ 原方程有两个不相等的实数根.(2) 原方程可化为:241290y y -+=2 (12)4490∆=--⨯⨯=,∴ 原方程有两个相等的实数根. (3) 原方程可化为:256150x x -+=例2. 2(2)4=--例3. 例4. (4) 12||x x -====例5. 解:(1) ∵方程两实根的积为5∴ 222121[(1)]4(1)034,412154k k k k x x k ⎧∆=-+-+≥⎪⎪⇒≥=±⎨⎪=+=⎪⎩ 所以,当4k =时,方程两实根的积为5.(2) 由12||x x =得知: ①当10x ≥时,12x x =,所以方程有两相等实数根,故302k ∆=⇒=; ②当10x <时,12120101x x x x k k -=⇒+=⇒+=⇒=-,由于302k ∆>⇒>,故1k =-不合题意,舍去. 综上可得,3例6. ∴ 要使12212x x x x +-的值为整数的实数k 的整数值为2,3,5---.练习1. B 2. A 3.A 4. 3 5. 9或3-6.1或47.21(1)1650 (2)2m m ∆=+>=-8.3(1) (2)22k k ≥=第四讲 不 等 式例1. 解:原不等式可以化为:(3)(2)0x x +->,于是:3020x x +<⎧⎨-<⎩或3020x x +>⎧⎨->⎩333222x x x x x x <->-⎧⎧⇒⇒<->⎨⎨<>⎩⎩或或所以,原不等式的解是32x x <->或.例2.例3. 例4. 例5. 3(1)3k ⎪⎪-⋅=-⎪⎩例6. 解:(1) 解法(一) 原不等式可化为:解法(二) 原不等式可化为:3(23)(1)012x x x -+<⇒-<<. (2) ∵ 22131(024x x x -+=-+>原不等式可化为:303x x +≥⇒≥- 例7. 解:原不等式可化为:(35)(2)013535530002202223x x x x x x x x x x ++≥⎧--+-≤⇒≤⇒≥⇒⇒<-≥-⎨+≠+++⎩或例8. 解:原不等式可化为:(2)2m m x m ->-(1) 当202m m ->>即时,1mx >,不等式的解为1x m>; (2) 当202m m -<<即时,1mx <.无解.例9.1.(1)2.(1)x 3.5.(1)当2m >时,12m x m ->-;(2)当2m <时,12m x m -<-; (3) 当2m =时,x 取全体实数. 6.1k =- 7.1x ≠第五讲 二次函数的最值问题例1. 解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 例2. 解:作出函数的图象.当1x =时, 1max-=y,当2x =时, 5min-=y.由上述两例可以看到,二次函数在自变量x的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x的范围的图象形状各异.下面给出一些常见情况:例3. 解:作出函数2(2)2y x x x x=--=-在0x≥内的图象.可以看出:当1x=时,min 1y=-,无最大值.例例5.∴当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.练习1.4 , 14或2,322.2216lm3.(1) 有最小值3,无最大值;(2) 有最大值94,无最小值.4.当34x=时,min318y=;当2x=-时,max19y=. 5.5y≥-6.当56x =时,min 36y =-;当23x =或1时,max 3y =.7.当54t =-时,min 0y =. 第六讲 简单的二元二次方程组例1. 解:由(1)得:2y x = (3)22 例2.例3. 例4. ∴ 原方程组可化为两个二元一次方程组:22300,44x y x y xy y xy y -=+=⎧⎧⎨⎨+=+=⎩⎩. 用代入法解这两个方程组,得原方程组的解是:121233,11x x y y ==-⎧⎧⎨⎨==-⎩⎩. 例5. 解:(1) +(2)2⨯得:222236()3666x y xy x y x y x y ++=⇒+=⇒+=+=-或, (1)-(2)2⨯得:222216()1644x y xy x y x y x y +-=⇒-=⇒-=-=-或.解此四个方程组,得原方程组的解是: 例6. 解:(1) 3(2)⨯-得:313 1 (3)x y y x -=⇒=-代入(1)得:212(31)33311x x x x x x -+=⇒=⇒==-或. 分别代入(3)得:1224y y ==-或.∴ 原方程组的解是:1211x x ==-⎧⎧⎨⎨或. 练习1.(1)x y ⎧⎨⎩2. (1)⎧⎨⎩3.(1)⎧⎨⎩44x y ⎧⎨⎩4.(1) ⎧⎪⎪⎨⎪⎪⎩第七讲 分式方程和无理方程的解法例1. 解:原方程可化为:方程两边各项都乘以24x -:即2364x x -=-, 整理得:2320x x -+= 解得:1x =或2x =.检验:把1x =代入24x -,不等于0,所以1x =是原方程的解;把2x =代入24x -,等于0,所以2x =是增根.所以,原方程的解是1x =.例2. 解:设21x y x =-,则原方程可化为:2340y y --= 解得4y =或1y =-. (1)当4y =时,241x x =-,去分母,得224(1)4402x x x x x =-⇒-+=⇒=;例3. (1)(2) 例4. 移项,合并同类项得:260x x +-=解得:3x =-或2x =检验:把3x =-代入原方程,左边≠右边,所以3x =-是增根.把2x =代入原方程,左边 = 右边,所以2x =是原方程的根. 所以,原方程的解是2x =.例5. 解:3=-两边平方得:3293x x -=-+整理得:1427x x =-⇒=-两边平方得:29(3)4914x x x +=-+整理得:223220x x -+=,解得:1x =或22x =.检验:把1x =代入原方程,左边=右边,所以1x =是原方程的根. 把22x =代入原方程,左边≠右边,所以22x =是增根.所以,原方程的解是1x =.例6. 1.(1)x 2.x =3.(1)x 4.(1)5.(1)x 第八讲 直线、平面与常见立体图形例1. 解:正方体有6个面,12条棱,8个顶点,18对平行棱。
数学目录阅读材料:1)高中数学与初中数学的联系2)如何学好高中数学3)熟知高中数学特点是高一数学学习关键4)高中数学学习方法和特点5)怎样培养好对学习的良好的习惯?第一课: 绝对值第二课: 乘法公式第三课: 二次根式(1)第四课: 二次根式(2)第五课: 分式第六课: 分解因式(1)第七课: 分解因式(2)第八课:根的判别式第九课:根与系数的关系(韦达定理)(1)第十课:根与系数的关系(韦达定理)(2)第十一课:二次函数y=ax2+bx+c的图像和性质第十二课:二次函数的三种表示方式第十三课:二次函数的简单应用第十四课:分段函数第十五课: 二元二次方程组解法第十六课: 一元二次不等式解法(1)第十七课: 一元二次不等式解法(2)第十八课:国际数学大师陈省身第十九课: 中华民族是一个具有灿烂文化和悠久历史的民族第二十课: 方差在实际生活中的应用第二十一课: 平行线分线段成比例定理第二十二课:相似形第二十三课:三角形的四心第二十四课:几种特殊的三角形第二十五课:圆第二十六课:点的轨迹1.高中数学与初中数学的联系同学们,首先祝贺你们进入高中数学殿堂继续学习。
在经历了三年的初中数学学习后,大家对数学有了一定的了解,对数学思维有了一定的雏形,在对问题的分析方法和解决能力上得到了一定的训练。
这也是我们继续高中数学学习的基础。
良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。
高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想、分类讨论思想、等价转化思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。
高考题中与函数思想方法有关的习题占整个试题的60%以上。
1、有良好的学习兴趣两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。
”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。
初升高暑假数学衔接教材第一部分,如何做好高、初中数学的衔接● 第一讲如何学好高中数学●初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。
但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。
在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。
相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。
渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。
造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。
下面就对造成这种现象的一些原因加以分析、总结。
希望同学们认真吸取前人的经验教训,搞好自己的数学学习。
一高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。
不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。
确实,初、高中的数学语言有着显著的区别。
初中的数学主要是以形象、通俗的语言方式进行表达。
而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。
2 思维方法向理性层次跃迁。
高中数学思维方法与初中阶段大不相同。
初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。
即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。
因此,初中学习中习惯于这种机械的、便于操作的定势方式。
高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。
当然,能力的发展是渐进的,不是一朝一夕的。
这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。
高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。
3 知识内容的整体数量剧增。
高中数学在知识内容的“量”上急剧增加了。
《初高中数学衔接教材》序言童永奇高一新生,你们好,祝贺大家考入临潼区马额中学!进入我校,同学们必须努力学好《初高中数学衔接教材》,理由如下:一方面,由于我校是普通农村高中学校,生源质量相对较差;另一方面,由于高中数学是初中数学的延伸与拓展,初中我们学到的知识、方法在高中会经常使用。
既然学习《初高中数学衔接教材》如此重要,那么我们应该如何学习呢提几点建议:一、“信心”是源泉。
人缺乏信心,就丧失了驱动力,终将一事无成。
二、“恒心”是保障。
人缺乏恒心,将“三天打鱼,两天晒网”。
:三、“巧心”是支柱。
人无巧心,就缺乏灵气和创造力。
最后,衷心祝愿同学们在《初高中数学衔接教材》的学习中获得成功,请将那么成功的经验及时告诉我们,以便让更多的朋友分享你们成功的喜悦!}$临潼区马额中学高一数学校本教材童永奇结合我校学生的实际情况——基础知识较差,能力较差,没有掌握较好的学习方法,特设计适合我校高一学生使用的校本教材。
主要包括以下两个内容:一是《怎样学好数学》,二是《初高中数学衔接》。
怎样学好数学。
A.要学好数学,就应该了解数学本身具有的三大特点。
(一)抽象性:数学的抽象性是无条件的,它的概念一经产生和定义之后,就稳定下来并且被看作是已知的,它们与现实的比较不是数学本身,而是它的应用问题。
(二)严谨性:由于数学的严谨性,人们往往认为数学是一种“冷而严肃的美”。
罗素说:“数学,如果正确地看它,不但拥有真理,而且也是具有至高的美,正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。
”(三)应用的广泛性:在任何一个领域,只要能从数学的角度提出问题,数学就能给出与所提问题的精确度相符合的答案,数学的这种威力恰恰是来源于它的抽象性。
B.要学好数学,就应该重视数学思想方法的学习。
数学思想方法的学习是一个潜移默化的过程,是在多次领悟、反复应用的基础上形成的,所以一道题做完后,就应该进行反思,回味解题中所使用的思想方法。
2016-2017学年初高中衔接教材(苏教版)前言高中数学是初中数学的一个延伸与拓展,主要培养学生的运算能力.基础知识的应用能力.建模能力.推理及其逻辑思维能力.创新能力等.有许多知识点在初中教材中没有专门进行深层次的讲解,在高中教材中也没有专门列出来进行讲解,但在习题中常常运用到,故这些知识点作为初高中衔接内容在步入新高一前是很有必要去学习的,从而克服学生在初高中“断层”中走出来,快乐的享受高中数学带来的乐趣.1.绝对值型函数与方程,初中没有讲,高中在必修一第二章函数.第三章指数函数.对数函数.幂函数及第四章函数与方程.必修五第三章不等式中均有体现绝对值型函数与方程,及绝对值不等式主要考查数形结合和分类讨论思想.2.立方和与差的公式在初中已经删去不讲,而高中在必修一中第一章集合.必修五第三章不等式中均有体现;3.因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程.不等式等;4.二次根式中对分子.分母有理化初中不作要求,而分子.分母有理化是高中数学中函数.不等式常用的解题技巧;5.初中教材对二次函数的要求较低,学生处于了解水平。
而高中则是贯穿整个数学教材的始终的重要内容;配方.作简图.求值域(取值范围).解二次不等式.判断单调区间.求最大最小值.研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6.二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授;7.含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;另外,配方法、换元法、待定系数法、双十字相乘法分解因式等等初中大大淡化,甚至老师根本没有去延伸发掘,不利于高中数学的学习。
初高中数学衔接答案【篇一:初高中衔接教材含答案】学衔接教材第一部分如何做好初高中衔接 1-3页第二部分现有初高中数学知识存在的“脱节” 4页第三部分初中数学与高中数学衔接紧密的知识点 5-9页第四部分分章节讲解 10-66页第五部分衔接知识点的专题强化训练 67-100页第一部分,如何做好高、初中数学的衔接● 第一讲如何学好高中数学●初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。
但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。
在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。
相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。
渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。
造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。
下面就对造成这种现象的一些原因加以分析、总结。
希望同学们认真吸取前人的经验教训,搞好自己的数学学习。
一高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。
不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。
确实,初、高中的数学语言有着显著的区别。
初中的数学主要是以形象、通俗的语言方式进行表达。
而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。
2 思维方法向理性层次跃迁。
高中数学思维方法与初中阶段大不相同。
初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。
即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。
因此,初中学习中习惯于这种机械的、便于操作的定势方式。
高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。
初高中语文衔接教材参考答案一、初高中语文衔接之书写卷面(略)二、初高中语文衔接之语法基础知识(词语、短语)衔接练习:一、B二、判断划线词的词性:1、形容词2、动词3、名词4、形容词5、动词6、名词7、形容词8、动词9、形容词 10、动词三、请将下列虚词归类:A.副词:越发始终索性屡次何必却B.叹词:哦啊C.介词:除了依照沿着自从D.拟声词:砰四、指出下列句中划线词的词性:形容词连词(让步连词)形容词动词衔接练习(词类短语)(一)参考答案:1.C2.A3.B4.B5.B6.C7.④8.D9.C 10.D11、 1) 在汉江北岸,我遇到一个青年战士。
2) 他被一阵哭声惊醒了。
3) 我觉得我们的战士太伟大了。
4) 消息在乡下传得特别快。
5) 他们对这位来自基层的女干部和她乡人民坚持不懈的治沙精神所感动。
6) 我一直沉醉在世界的优美之中。
7) 理想中的女儿应该是个淑女。
这种魅力,就是使我终生能够在实验室里埋头工作的主要因素了。
9) 荔枝林深处,隐隐露出一角白屋。
10) 隔了几天,二妹从虹口舅舅家里回来。
12词类词语名词:校园北京积蓄中间战场夜晚政治动词:瞻仰驾驶起来希望形容词:繁忙豁亮诚实颓唐坚固数词:三万二分之一量词:斤朵代词:哪里那里自己大伙衔接练习(词类短语)(二)参考答案:1、(尽管)风吹雨打,我们(也)坚持到校学习。
2、(就算)成绩再好,你(也)不能自满呀!3、我(虽然)这么用功,(但是)成绩还是不如你4、有人口头上(虽然)讲得很好,(但是)行动却做得很少。
5、(即使)雨再大,路再滑,我们(也)要按时报到。
6、这种境界,(既)使人惊叹,(又)叫人舒服。
7、(不管)怎么拥挤,他(都)能挤过去。
8、四合院的房子与房子之间,(不是)相互连接,(就是)各自分开,有分有合。
9、雷锋(虽然)死了,(但是)他的精神永远在我们心中。
10、这个橡皮(不是)我的,(而是)李明的。
11、这样的住宅(虽然)有些拥挤、杂乱,(但是)非常适合人与人之间的交流。
数学目录阅读材料:1)高中数学与初中数学的联系2)如何学好高中数学3)熟知高中数学特点是高一数学学习关键4)高中数学学习方法和特点5)怎样培养好对学习的良好的习惯?第一课: 绝对值第二课: 乘法公式第三课: 二次根式(1)第四课: 二次根式(2)第五课: 分式第六课: 分解因式(1)第七课: 分解因式(2)第八课:根的判别式第九课:根与系数的关系(韦达定理)(1)第十课:根与系数的关系(韦达定理)(2)第十一课:二次函数y=ax2+bx+c的图像和性质第十二课:二次函数的三种表示方式第十三课:二次函数的简单应用第十四课:分段函数第十五课: 二元二次方程组解法第十六课: 一元二次不等式解法(1)第十七课: 一元二次不等式解法(2)第十八课:国际数学大师陈省身第十九课: 中华民族是一个具有灿烂文化和悠久历史的民族第二十课: 方差在实际生活中的应用第二十一课: 平行线分线段成比例定理第二十二课:相似形第二十三课:三角形的四心第二十四课:几种特殊的三角形第二十五课:圆第二十六课:点的轨迹1.高中数学与初中数学的联系同学们,首先祝贺你们进入高中数学殿堂继续学习。
在经历了三年的初中数学学习后,大家对数学有了一定的了解,对数学思维有了一定的雏形,在对问题的分析方法和解决能力上得到了一定的训练。
这也是我们继续高中数学学习的基础。
良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。
高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想、分类讨论思想、等价转化思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。
高考题中与函数思想方法有关的习题占整个试题的60%以上。
1、有良好的学习兴趣两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。
”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。
“好”和“乐”就是愿意学,喜欢学,这就是兴趣。
兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。
在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。
那么如何才能建立好的学习数学兴趣呢?(1)课前预习,对所学知识产生疑问,产生好奇心。
(2)听课中要配合老师讲课,满足感官的兴奋性。
听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
(3)思考问题注意归纳,挖掘你学习的潜力。
(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?(5)把概念回归自然。
所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生都是从实际生活中抽象出来的。
只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确。
2、建立良好的学习数学习惯。
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。
高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。
学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。
另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
3、有意识培养自己的各方面能力数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。
这些能力是在不同的数学学习环境中得到培养的。
在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。
平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。
其它能力的培养都必须学习、理解、训练、应用中得到发展。
特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。
2.如何学好高中数学有许多初中阶段数学成绩很好的学生,升入高中后,感觉数学学习困难,他们在做习题或课外练习时,常常感到茫然,不知从何下手,因而,一个阶段后,数学成绩出现了严重的滑坡现象。
出现这种现象的主要原因是什么呢?根据我多年的教学实践,主要是以下几个方面的原因:教材的原因:初中数学教材,多数知识点与学生日常生活实际贴近,且初中教材遵循从感性认识上升到理性认识的规律,叙述方法比较简单,语言通俗易懂,直观性、趣味性强,结论容易记忆,应试效果也比较理想。
因而,学生一般容易接受、理解和掌握。
相对而言,高中数学概念抽象,逻辑性强,教材叙述比较严谨、规范,知识难度加大,抽象思维和空间想象能力明显提高,且习题类型多,解题技巧灵活多变,计算相对复杂,体现了“起点高、难度大、容量多”的特点。
这一变化,不可避免地造成了部分学生不适应高中数学学习,进而影响成绩的提高。
教法的原因:初中数学内容少,知识难度不大,教学要求较低,因而教学进度较慢,对于某些重点、难点,教师可以有充裕的时间反复讲解、多次演练,来弥补不足。
但是进入高中后,数学教材内涵丰富,教学要求不断提高,教学进度相应加快,知识的重点和难点也不可能象初中那样通过反复强调来排难释疑,且高中教学往往通过设导、设问、设陷、设变,启发引导,开拓思路,然后由学生自己思考、去解答,比较注意知识的发生过程,倾重对学生思想方法的渗透和思维品质的培养。
这使得刚入高中的部分学生不适应教学方法,听课时存在思维障碍,跟不上教师的思维,从而产生学习障碍,影响数学的学习。
学法的原因:在初中,部分学生习惯于围着教师转,独立思考和对规律进行归纳总结的能力较差,满足于知识的接受,缺乏学习的主动性。
而到了高中,数学学习要求学生勤于思考,善于归纳总结规律,掌握数学思维方法,做到举一反三,触类旁通。
但是,刚入学的高一新生,往往沿用初中时的学法,致使学习出现困难,甚至完成当天作业都有困难,更谈不上复习、总结等自我消化、自我调整了。
其它原因:学生学习数学的情感、兴趣、性格、意志品质的优劣、学习目的和学习态度如何,在某种意义上也能影响高一学生数学学习。
针对以上影响数学学习的原因,同学们应当怎样弥补这些不足呢?下面从高中学生数学学习的几个常规步骤方面谈一谈:透彻领悟所学知识:高中数学的理论性、抽象性强,这就需要学生在知识的理解上下大功夫,不仅要弄清数学概念的实质,还要弄清概念的背景及其与其它概念的联系。
例如初三学生都会解一元二次方程,我曾在高一新生中做过这种调查:为什么一元二次方程在△≥0时有根?答对率不到15%,说明了什么?学生对一元二次方程这个概念理解不透彻,相关知识缺乏联系。
科学地对待预习:对于一部分数学基础不太理想的同学,我主张课前预习。
正确的方法是先不打开书,设想这节课的内容、结构,然后打开书;看到要对某个概念进行定义,马上盖上书,自己试着定义一下;看到一个定理的第一句叙述,再盖上书自己猜想他的结论;看到一个公式时,也是这样。
看到例题时,先不要看解法,自己先在纸上把它做一遍,再与书上的解法进行比较、思考……这样的预习,无论对知识的掌握,还是对思维的训练,都是有益的。
对于数学基础较好,思维反应敏锐的同学,我不主张课前预习。
因为通过预习已经知道了课上要讲的内容、结论、推导过程、例题解法等,那么,课堂上还谈何“超前思维、真正做课堂的主人、在思维运动中训练思维呢?”这白白浪费了课堂上发展自己智力素质的机会。
提高听课效率:高中学习期间,学生在课堂的时间占了一大部分。
因此听课效率如何,决定着学习的效果。
我认为,提高听课效率应注意以下几个方面:首先应做好课前的物质准备和精神准备,上课时不至于出现书、本等物丢三落四的现象;上课前也不应做过于激烈的体育运动,以免上课后还气喘嘘嘘,不能平静下来。
其次就是听课。
听课,重要的不是“听”,而是“想”。
听是前提,随之是积极地思维。
要全身心地投入课堂学习,做到耳到、眼到、心到、口到、手到。
耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发。
眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作,生动而深刻的接受老师所要表达的思想。
心到:就是用心思考,跟上老师的教学思路,分析老师是如何抓住重点,解决疑难的。
口到:就是在老师的指导下,主动回答问题或参加讨论。
手到:就是在听、看、想、说的基础上划出教材的重点,记下讲课的要点以及自己的感受或有创新思维的见解。
将听课中的要点、思维方法等作出简单扼要的记录,以便复习,消化,思考。
总之,“自己动手”的课堂听讲,是最科学的。
重视复习和总结:1、及时做好复习. 听完课的当天,必须做好当天的复习。
复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书、笔记合起来,回忆上课时老师讲的内容,分析问题的思路、方法等(也可边想边在草稿本上写一写),尽量想得完整些。
然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就能使当天上课内容巩固下来,同时也检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。
2、做好单元复习。
学习一个单元后应进行阶段复习,复习方法同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。
3、做好单元小结。
单元小结内容应包括以下部分:(1)本单元(章)的知识网络;(2)本章的基本思想与方法(应以典型例题形式将其表达出来);(3)自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
做适量的练习题:有不少同学把提高数学成绩的希望寄托在大量做题上,这是不妥当的。
事实上,要提高数学成绩,重要的不在做题多,而在于做题的效益要高。
做题的目的在于检查你学的知识,方法是否掌握得很好。
如果你掌握得不准,甚至有偏差,那么多做题的结果,反而加深了你的缺欠,因此,在准确地把握住基本知识和方法的基础上,做一定量的练习是必要的。
而对于中档题,尢其要讲究做题的效益,即做题后有多大收获,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过,把它们联系起来,你就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于你今后的学习。