力的合成
- 格式:doc
- 大小:31.00 KB
- 文档页数:3
F1F2 FOF1F2FO力的合成和分解解题技巧一.知识清单:1.力的合成1力的合成的本质就在于保证作用效果相同的前提下,用一个力的作用代替几个力的作用,这个力就是那几个力的“等效力”合力;力的平行四边形定则是运用“等效”观点,通过实验总结出来的共点力的合成法则,它给出了寻求这种“等效代换”所遵循的规律;2平行四边形定则可简化成三角形定则;由三角形定则还可以得到一个有用的推论:如果n个力首尾相接组成一个封闭多边形,则这n个力的合力为零;3共点的两个力合力的大小范围是|F1-F2| ≤F合≤F1+F 24共点的三个力合力的最大值为三个力的大小之和,最小值可能为零;2.力的分解1力的分解遵循平行四边形法则,力的分解相当于已知对角线求邻边;2两个力的合力惟一确定,一个力的两个分力在无附加条件时,从理论上讲可分解为无数组分力,但在具体问题中,应根据力实际产生的效果来分解;3几种有条件的力的分解①已知两个分力的方向,求两个分力的大小时,有唯一解;②已知一个分力的大小和方向,求另一个分力的大小和方向时,有唯一解;③已知两个分力的大小,求两个分力的方向时,其分解不惟一;④已知一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一;4用力的矢量三角形定则分析力最小值的规律:①当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2取最小值的条件是两分力垂直;如图所示,F2的最小值为:F2min=F sinα②当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2取最小值的条件是:所求分力F 2与合力F 垂直,如图所示,F 2的最小值为:F 2min =F 1sin α③当已知合力F 的大小及一个分力F 1的大小时,另一个分力F 2取最小值的条件是:已知大小的分力F 1与合力F 同方向,F 2的最小值为|F -F 1|5正交分解法:把一个力分解成两个互相垂直的分力,这种分解方法称为正交分解法; 用正交分解法求合力的步骤:①首先建立平面直角坐标系,并确定正方向②把各个力向x 轴、y 轴上投影,但应注意的是:与确定的正方向相同的力为正,与确定的正方向相反的为负,这样,就用正、负号表示了被正交分解的力的分力的方向③求在x 轴上的各分力的代数和F x 合和在y 轴上的各分力的代数和F y 合 ④求合力的大小 22)()(合合y x F F F +=合力的方向:tan α=合合x y F F α为合力F 与x 轴的夹角3. 物体的平衡1平衡状态:静止:物体的速度和加速度都等于零; 匀速运动:物体的加速度为零,速度不为零且保持不变; 2共点力作用下物体的平衡条件:合外力为零即F 合=0;3平衡条件的推论:当物体平衡时,其中某个力必定与余下的其它的力的合力等值反向;二. 解题方法:1、共点力的合成⑴同一直线上的两个力的合成 ①方向相同的两个力的合成②方向相反的两个力的合成⑵同一直线上的多个力的合成通过规正方向的办法;与正方向同向的力取正值,与正方向相反的力取负值,然后将所有分力求和,结果为正表示合力与正方向相同,结果为负表示合力方向与正方向相反; ⑶互成角度的两个力的合成F 1F 2F 合= F 2- F 1 方向与F 2相同F 1F 2F 合=F 1+F 2方向与F 1或F 2相同⑷当两个分力F1、F2互相垂直时,合力的大小2221F F F +=合⑸两个大小一定的共点力,当它们方向相同时,合力最大,合力的最大值等于两分力之和;当它们的方向相反时,它们的合力最小,合力的最小值等于两分之差的绝对值;即2121F F F F F +≤≤-合⑹多个共点力的合成①依次合成:F1和F2合成为F12,再用F12与F3合成为F123,再用F123与F4合成,…… ②两两合成:F1和F2合成为F12,F3和F4合成为F34,……,再用F12和F34合成为F1234,…… ③将所有分力依次首尾相连,则由第一个分力的箭尾指向最后一个分力箭头的有向线段就是所有分力的合力;⑺同一平面内互成120°角的共点力的合成①同一平面内互成120°角的二个大小相等的共点力的合力的大小等于分力的大小,合力的方向沿两分夹角的角平分线 2、有条件地分解一个力:⑴已知合力和两个分力的方向,求两个分力的大小时,有唯一解;⑵已知合力和一个分力的大小、方向,求另一个分力的大小和方向时,有唯一解;⑶已知合力和两个分力的大小,求两个分力的方向时,其分解不惟一; 3、用力的矢量三角形定则分析力最小值的规律:⑴当已知合力F 的大小、方向及一个分力F1的方向时,另一个分力F2取最小值的条件是两分力垂直;如图所示,F2的最小值为:F2min=F sin α⑵当已知合力F 的方向及一个分力F1的大小、方向时,另一个分力F2取最小值的条件是:所求分力F2与合力F 垂直,如图所示,F2的最小值为:F2min=F1sin αFF 1F 2FF 1F 1F 2遵循平行四边形定则:以两个分力为邻边的平行四边形所夹对角线表示这两个分力的合力;⑶当已知合力F 的大小及一个分力F1的大小时,另一个分力F2取最小值的条件是:已知大小的分力F1与合力F 同方向,F2的最小值为|F -F1|有两种可能性;⑷已知合力、一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一;有四种可能性;4、用正交分解法求合力的步骤:⑴首先建立平面直角坐标系,并确定正方向⑵把不在坐标轴上的各个力向x 轴、y 轴上投影,但应注意的是:与确定的正方向相同的力为正,与确定的正方向相反的为负,这样,就用正、负号表示了被正交分解的力的分力的方向⑶求在x 轴上的各分力的代数和F x 合和在y 轴上的各分力的代数和F y 合⑷求合力的大小 22)()(合合y x F F F +=合力的方向:tan α=合合x y F F α为合力F 与x 轴的夹角5、受力分析的基本方法:1、明确研究对象:在进行受力分析时,研究对象可以是某一个物体,也可以是保持相对静止的若干个物体整体;在解决比较复杂的问题时,灵活的选取研究对象可以使问题简洁地得到解决;研究对象确定以后,只分析研究对象以外的物体施于研究对象的力即研究对象所受的外力,而不分析研究对象施于外界的力;2、隔离研究对象,按顺序找力;把研究对象从实际情景中分离出来,按先已知力,再重力,再弹力,然后摩擦力只有在有弹力的接触面之间才可能有摩擦力,最后其它力的顺序逐一分析研究对象所受的力,并画出各力的示意图;3、只画性质力,不画效果力画受力图时,只按力的性质分类画力,不能按作用效果画力,否则将重复出现; 受力分析的几点注意⑴牢记力不能脱离物体而存在,每一个力都有一个明确的施力者,如指不出施力者,意味着这FF 1F 2FF 1F 2个力不存在;⑵区分力的性质和力的命名,通常受力分析是根据力的性质确定研究对象所受到的力,不能根据力的性质指出某个力后又从力的命名重复这个力⑶结合物理规律的应用;受力分析不能独立地进行,在许多情况下要根据研究对象的运动状态,结合相应的物理规律,才能作出最后的判断;三. 经典例题例1. 用轻绳AC 与BC 吊起一重物,绳与竖直方向夹角分别为30°和60°,如图所示;已知AC 绳所能承受的最大拉力为150N,BC 绳所能承受的最大拉力为100N,求能吊起的物体最大重力是多少解析:对C 点受力分析如图:可知T A :T B :G =2:1:3设AC 达到最大拉力T A =150N, 则此时T B =N N N T A 1006.863503<==∴AC 绳子先断,则此时: G =说明:本题主要考查力的平衡知识,利用力的合成法即三角形法解决;例2. 如图所示,轻绳AO 、BO 结于O 点,系住一个质量为m 的物体,AO 与竖直方向成α角,BO 与竖直方向成β角,开始时α+β<90°;现保持O 点位置不变,缓慢地移动B 端使绳BO 与竖直方向的夹角β逐渐增大,直到BO 成水平方向,试讨论这一过程中绳AO 及BO 上的拉力大小各如何变化用解析法和作图法两种方法求解解析:以O 点为研究对象,O 点受三个力:T 1、T 2和mg,如下图所示,由于缓慢移动,可认为每一瞬间都是平衡状态;1解析法x 方向:T 2sin β-T 1sin α=0,1y 方向:T 1cos α+T 2cos β-mg =0;2 由式1得T T 12=sin sin βα· 3 式3代入式2,有sin cos sin cos βααβT T mg 220+-=,化简得T 2=)sin(sin βαα+mg 4讨论:由于α角不变,从式4看出:当α+β<90°时,随β的增大,则T 2变小; 当α+β=90°时,T 2达到最小值mgsin α; 当α+β>90°时,随β的增大,T 2变大; 式4代入式3,化简得 T 1=αβαβαβαββαααβcos sin sin cos cos sin sin )sin(sin ·sin sin +=+=+ctg mgmg mg ; 由于α不变,当β增大时,T 1一直在增大; 2作图法由平行四边形法则推广到三角形法则,由于O 点始终处于平衡状态,T 1、T 2、mg 三个力必构成封闭三角形,如图a 所示,即T 1、T 2的合力必与重力的方向相反,大小相等;由图b看出,mg大小、方向不变;T1的方向不变;T2的方向和大小都改变;开始时,α+β<90°,逐渐增大β角,T2逐渐减小,当T2垂直于T1时,即α+β<90°时,T2最小为mgsin α;然后随着β的增大,T2也随之增大,但T1一直在增大;说明:力的平衡动态问题一般有两种解法,利用平衡方程解出力的计算公式或作图研究,但需要指出的是作图法一般仅限于三力平衡的问题;例3. 光滑半球面上的小球可是为质点被一通过定滑轮的力F由底端缓慢拉到顶端的过程中如图所示,试分析绳的拉力F及半球面对小球的支持力F N的变化情况;解析:如图所示,作出小球的受力示意图,注意弹力F N总与球面垂直,从图中可得到相似三角形;设球面半径为R,定滑轮到球面的距离为h,绳长为L,据三角形相似得:F Lmgh RFRmgh RN=+=+由上两式得:绳中张力:F mgL h R=+小球的支持力:又因为拉动过程中,h不变,R不变,L变小,所以F变小,F N不变;说明:如果在对力利用平行四边形定则或三角形法则运算的过程中,力三角形与几何三角形相似,则可根据相似三角形对应边成比例等性质求解;例4. 如图所示,一个半球形的碗放在桌面上,碗口水平,O 点为其球心,碗的内表面及碗口是光滑的;一根细线跨在碗口上,线的两端分别系有质量为m 1和m 2的小球,当它们处于平移状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=60°;两小球的质量比m m 21为A B C D ....33233222解析:对m 2而言T m g m g m g ==2213N T =23033121T m gm m ·°cos ==∴选A说明:注意研究对象的选取,利用m 2的平衡得到拉力与m 2重力的关系,利用m 1的三力平衡得到m 1重力与拉力的关系,绳拉m 1、 m 2的作用力相等时联系点;例5. 如图所示,A 、B 是系在绝缘细线两端,带有等量同种电荷的小球,其中1.0=A m kg,细线总长为20cm,现将绝缘细线通过O 点的光滑定滑轮,将两球悬挂起来,两球平衡时,OA 的线长等于OB 的线长,A 球依靠在光滑绝缘竖直墙上,B 球悬线OB 偏离竖直方向60,求:1B球的质量2墙所受A球的压力解析:对A受力分析如图,由平衡得T-m A g-Fsin30°=0 ①Fcos30°-N=0 ②对B受力分析如图所示,由平衡得FT=③2Fsin30°=m B g④由①②③④⑤得2.0=Bm kg ⑤732.1=N N ⑥根据牛顿第三定律可知,墙受到A球的压力为; ⑦说明:注意A、B两的联系点,绳的拉力大小相同,库仑力大小相同,方向相反;四.达标测试1. 物体受到三个共点力的作用,以下分别是这三个力的大小,不可能使该物体保持平衡状态的是A. 3N,4N,6NB. 1N,2N,4NC. 2N,4N,6ND. 5N,5N,2N2. 如图所示,在倾角为α的斜面上,放一个质量为m的小球,小球被竖直的木板挡住,不计摩擦,则小球对挡板的压力大小是A. mg cosαB. mg tanαC.mgcosαD. mg3. 上题中若将木板AB绕下端点B点缓慢转动至水平位置,木板对球的弹力将A. 逐渐减小B. 逐渐增大C. 先增大,后减小D. 先减小,后增大4. 如图所示,物体静止于光滑水平面M上,力F作用于物体O点,现要使物体沿着OO'方向做匀加速运动F和OO'都在M平面内,那么必须同时再加一个力F1,这个力的最小值为A. F tanθB. F cosθC. FsinθD.F sin5. 水平横梁的一端A插在墙壁内,另一端装有一小滑轮B;一轻绳的一端C固定于墙壁上,另一端跨过滑轮后悬挂一质量m=10kg的重物,∠CBA=30°,如图所示,则滑轮受到绳子的作用力为g取10m/s2A. 50NB. 503NC. 100ND. 1003N6、2005 东城二模如图所示,斜面体放在墙角附近,一个光滑的小球置于竖直墙和斜面之间,若在小球上施加一个竖直向下的力F,小球处于静止;如果稍增大竖直向下的力F,而小球和斜面体都保持静止,关于斜面体对水平地面的压力和静摩擦力的大小的下列说法:①压力随力F 增大而增大;②压力保持不变;③静摩擦力随F增大而增大;④静摩擦力保持不变;其中正确的是:A. 只有①③正确B. 只有①④正确C. 只有②③正确D. 只有②④正确7. 下面四个图象依次分别表示A、B、C、D四个物体的加速度、速度、位移和滑动摩擦力随时间变化的规律;其中可能处于受力平衡状态的物体是8. 如图所示,质量为m、横截面为直角三角形的物块ABC,∠ABC=α,AB边靠在竖直墙面上,F是垂直于斜面BC的推力,现物块静止不动,则摩擦力的大小为__________;9. 如图所示,已知G A=100N,A、B都处于静止状态,若A与桌面间的最大静摩擦力为30N,在保持系统平衡的情况下,B的最大质量为;10. 如图,人重500N,站在重为300N的木板上,若绳子和滑轮的质量不计,摩擦不计,整个系统匀速上升时,则人对绳子的拉力为N,人对木板的压力为N;11. 如图所示,人重300N,物体重200N,地面粗糙,无水平方向滑动,当人用100N的力向下拉绳子时,求人对地面的弹力和地面对物体的弹力五.综合测试1. 两个共点力的夹角θ与其合力F之间的关系如图所示,则两力的大小是A. 1N和4NB. 2N和3NC. 和D. 6N和1N2. 设有五个力同时作用在质点P,它们的大小和方向相当于正六边形的两条边和三条对角线,如图所示;这五个力中的最小力的大小为F,则这五个力的合力等于A. 3FB. 4FC. 5FD. 6F3. 如图所示,一个物体A静止于斜面上,现用一竖直向下的外力压物体A,下列说法正确的是A. 物体A所受的摩擦力可能减小B. 物体A对斜面的压力可能保持不变C. 不管F怎样增大,物体A总保持静止D. 当F增大到某一值时,物体可能沿斜面下滑4. 一物体m放在粗糙的斜面上保持静止,先用水平力F推m,如图,当F由零逐渐增加但物体m仍保持静止状态的情况下,则①物体m所受的静摩擦力逐渐减小到零②物体m所受的弹力逐渐增加③物体m所受的合力逐渐增加④物体m所受的合力不变A. ①③B. ③④C. ①④D.②④5. 如图所示,质量为M的木楔ABC静置于粗糙水平地面上;在木楔的斜面上,有一质量为m 的物块沿斜面向上做匀减速运动,设在此过程中木楔没有动,①地面对木楔的摩擦力为零②地面对木楔的静摩擦力水平向左③地面对木楔的静摩擦力水平向右④地面对木楔的支持力等于M+mg⑤地面对木楔支持力大于M+mg ⑥地面对木楔的支持力小于M+mg则以上判断正确的是A. ①④B. ②⑥C. ②⑤D. ③⑤6. 水平横梁一端A插在墙壁内,另一端装有一小滑轮B;一轻绳的一端C固定于墙壁上,另一端跨过滑轮后悬挂一重物,如图所示,若将C点缓慢向上移动,则滑轮受到绳子作用力的大小和方向变化情况是A. 作用力逐渐变大,方向缓慢沿顺时针转动B. 作用力逐渐变小,方向缓慢沿顺时针转动C. 作用力逐渐变大,方向缓慢沿逆时针转动D. 作用力大小方向都不变7. 如图所示,A、B是两根竖直立在地上的木桩,轻绳系在两木桩不等高的P、Q两点,C为光滑的质量不计的滑轮,当Q点的位置变化时,轻绳的张力的大小变化情况是A. Q 点上下移动时,张力不变B. Q 点上下移动时,张力变大C. Q 点上下移动时,张力变小D. 条件不足,无法判断8. 2005 海淀二模如图所示,用绝缘细绳悬吊一质量为m 、电荷量为q 的小球,在空间施加一匀强电场,使小球保持静止时细线与竖直方向成θ角,则电场强度的最小值为A.mg qsin θB.mg qcos θC.mg qtan θD.mg qcot θ9. 跳伞运动员和伞正匀速下落,已知运动员体重1G ,伞的重量2G ,降落伞为圆顶形;8根相同的拉线均匀分布于伞边缘,每根拉线均与竖直方向成30°夹角,则每根拉线上的拉力为A.1123G B. 12)(321G G + C.821G G + D. 41G10. 2005 天津如图所示,表面粗糙的固定斜面顶端安有滑轮,两物块P 、Q 用轻绳连接并跨过滑轮不计滑轮的质量和摩擦,P 悬于空中,Q 放在斜面上,均处于静止状态;当用水平向左的恒力推Q 时,P 、Q 仍静止不动,则A. Q 受到的摩擦力一定变小B. Q 受到的摩擦力一定变大C. 轻绳上拉力一定变小D. 轻绳上拉力一定不变 11. 2006 全国卷二如图,位于水平桌面上的物块P,由跨过定滑轮的轻绳与物块Q 相连,从滑轮到P 和到Q 的两段绳都是水平的;已知Q 与P 之间以及P 与桌面之间的动摩擦因数都是μ,两物块的质量都是m,滑轮的质量、滑轮轴上的摩擦都不计,若用一水平向右的力F 拉P 使它做匀速运动,则F 的大小为A. 4μmgB. 3μmgC. 2μmgD.μmg12. 一个质量为m,顶角为α的直角斜劈和一个质量为M的木块夹在两竖直墙壁之间,不计一切摩擦,则M对地的压力为________,左面墙壁对M的压力为_______;13. 如图所示,斜面倾角为α,其上放一质量为M的木板A,A上再放一质量为m的木块B,木块B用平行于斜面的细绳系住后,将细绳的另一端栓在固定杆O上;已知M=2m;此情况下,A板恰好能匀速向下滑动,若斜面与A以及A与B间的动摩擦因数相同,试求动摩擦因数的大小达标测试答案1. B提示:三力大小如符合三角形三边的关系即可; 2. B提示:利用三力平衡知识求解; 3. D提示:力三角形图解法; 4. C提示: 利用三角形求最小值; 5. C提示:如图受力分析,可知拉力T =G ,根据平行四边形法则,所以两力的合力为100N;6. A提示:整体法求出支持力大小为F g M m ++)(,静摩擦力大小为墙对小球的弹力大小,隔离小球求出弹力大小αtg F mg )(+;7. CD提示:平衡状态加速度为零,滑动摩擦力可能与其它外力平衡; 8. Fsin α+mg提示: 物体静止不动,研究竖直方向受力:有重力,向上墙的静摩擦力,F 在竖直方向的分力F sinα,向下,所以得到f =Fsin α+mg; 9. 3kg提示:利用水平绳的拉力大小为30 N 求出; 10. 200,300提示:整体法4F =800,求出绳子对人的拉力F =200N,隔离人N +F =500; 11. 200N提示:对人而言mg F N =+1,对物体Mg F N =︒+60sin 2;综合测试答案1. B提示:N F F N F F 1,52121=-=+;2. D提示:正中央力为2F,其余四力合成大小为中央对角线的两倍,力大小4F 3. C提示:物体A 能静止于斜面上,是由于重力的下滑分力小于最大静摩擦,即mgsinθ<μmgcosθ,得μ>tgθ,此为放在斜面上的物体能否静止的条件;现增加竖直向下的F 力,相当于物重增大,则物体仍保持静止,但弹力和静摩擦力都会增大; 4. D提示:物体四力平衡,需正交分解列平衡方程,注意静摩擦力减小到零后会反向; 5. B提示:物块沿斜面向上做匀减速直线运动,加速度沿斜面向下,将加速度分解为向左的水平分量和向下的竖直分量;∴木楔对物块的作用力即支持力和摩擦力的合力在水平方向的分量向左,竖直方向的分量向上,但比自身重力要小;根据牛顿第三定律:物块对木楔的反作用力在水平方向的分量向右——为平衡,所以地面对木楔产生向左的静摩擦力;物块对木楔的反作用力在竖直方向分量向下,但小于mg,∴地面对木楔的支持力g m M N )(+<;6. B提示:抓住绳的拉力大小不变,夹角变大,作图得到; 7. A提示:Q 点移动时,绳与竖直方向的夹角不变; 8. A提示:电场力与绳垂直向上时,电场强度最小; 9. A提示:8Tcos30°=1G 解得:1123G T =; 10. D提示:静摩擦力可能沿斜面向上或向下; 11. A提示:F mg mg T mg T =++=2,μμμ; 12. M +mg 、 mgctgα提示:整体求出g m M N )(+=,左边墙的压力大小等于右边墙对斜劈的压力大小,隔离斜劈得到右边墙对斜劈的压力大小αmgctg N =1; 13. αμtg 21=提示:由αμαμαμαtg 21,cos cos )3(sin 2=+=解得mg g m mg。
力的合成和分解原理力是物体间相互作用的结果,是描述物体受力情况的物理量。
在物理学中,我们经常会遇到多个力同时作用于一个物体的情况。
这时,我们需要了解力的合成和分解原理,以便更好地理解和分析力的作用。
一、力的合成原理力的合成是指将多个力合并为一个力的过程,求得这个合力的大小和方向。
合力的大小等于各力矢量的代数和,合力的方向与合力矢量相同。
对于平行力的合成,我们可以使用平行四边形法则或三角形法则进行计算。
平行四边形法则是将各力矢量按照大小和方向画成相邻的两条边,然后连接两个非相邻点,形成一个平行四边形,合力就是对角线的矢量。
三角形法则是将各力矢量按照大小和方向画成相邻的两条边,然后连接两个相邻点,形成一个三角形,合力就是第三条边的矢量。
对于不平行的力的合成,我们可以使用三角法计算合力。
首先,我们将各力按照大小和方向画成一条条边,然后按照顺序将它们首尾相连,形成一个多边形。
接下来,我们从起点到终点划一条直线,这条直线的长度和方向就代表了合力的大小和方向。
二、力的分解原理力的分解是指将一个力分解为多个力的过程,求得这些分力的大小和方向。
分力的大小等于被分解力在分解方向上的投影,分力的方向与分解方向相同。
对于平行力的分解,我们可以使用三角法进行计算。
首先,我们将被分解力按照大小和方向画成一条线段,然后从线段的起点和终点分别画一条与分解方向垂直的线段,形成一个矩形。
接着,我们连接矩形的对角线,将被分解力分解为两个力,这两个力的大小和方向分别等于矩形的两条边。
对于不平行的力的分解,我们可以使用正交法进行计算。
首先,我们将被分解力按照大小和方向画成一条线段,然后选择一个垂直于被分解力的方向作为正交方向,将被分解力分解为两个力,这两个力的大小和方向分别等于被分解力在正交方向上的投影和垂直于正交方向的分解。
三、力的合成和分解实例下面我们通过一个实例来说明力的合成和分解原理。
假设有两个力F1和F2,它们的大小分别为10N和15N,方向分别为向右和向上。
高中物理力的合成与分解高中物理力的合成与分解一、什么是物理力的合成与分解物理力的合成与分解是指物理力的构成和其结果的分解,也就是把两个或多个相互作用的力通过分析、变换运算而组合起来,产生新的力,或者逆运算把一个力分解为它的组成部分。
二、物理力的合成1、合成平行力平行力可以用下面的公式合成:F=F1+F2,这句公式表示将两个力(F1和F2)把它们合成一个力,两个力的方向应该相同,这两个力的大小可以相同也可以不同,经过运算只剩下一个力,大小为F1+F2。
2、合成垂直力垂直力可以用下面的公式合成:F=F1+F2,这句公式表示将两个力(F1和F2)把它们合成一个力,两个力的方向应该垂直,这两个力的大小可以相同也可以不同,经过运算只剩下一个力,大小为F1+F2。
三、物理力的分解1、分解平行力平行力可以用下面的公式分解:F=F1+F2,这句公式表示将一个力(F)分解成两个力(F1和F2),两个力的方向应该相同,可以使用推出的力和原来的力的比值来确定两个力的大小,例如原来的力F是30N,可以分解为F1=20N,F2=10N。
2、分解垂直力垂直力可以用下面的公式分解:F=F1+F2,这句公式表示将一个力(F)分解成两个力(F1和F2),两个力的方向应该垂直,可以使用推出的力和原来的力的比值来确定两个力的大小,例如原来的力F是30N,可以分解为F1=20N,F2=10N。
四、物理力的合成与分解的应用物理力的合成与分解在物理和工程学中都有广泛的应用,它可以用于分析物理现象,可以用于物体运动的分析,也可以用于结构力学的计算和分析。
此外,物理力的合成与分解也可以用于物体机械工程结构设计,例如机械臂的设计和调整,以及飞机机翼结构的设计和优化调整。
力的合成(解析版)力的合成(解析版)力的合成是物理学中一个重要的概念,用来描述多个力共同作用时的结果。
力的合成涉及矢量的运算和几何图形的分析,它在解决各种力学问题中发挥着关键的作用。
本文将详细介绍力的合成的原理和方法,并结合实例进行解析,以帮助读者更好地理解和应用力的合成。
一、力的合成原理在物理学中,力是一个矢量量(向量),具有大小和方向。
当多个力同时作用在一个物体上时,力的合成就是找到一个等效的力,它能够代替这些力对物体产生的合力效果。
力的合成原理基于平行四边形法则和三角法则,它们是力的矢量运算的基础。
1. 平行四边形法则平行四边形法则是力的平行四边形法则的特例。
当两个力作用在同一个物体上且方向不同的时候,可用平行四边形法则求得合力。
具体的步骤如下:(1) 将两个力的起点连线连接,形成一个平行四边形;(2) 以该平行四边形的对角线为合力的方向,合力的大小等于对角线的长度。
2. 三角法则三角法则适用于力的方向相同时的合力求解。
具体的步骤如下:(1) 将两个力的起点连线连接;(2) 以连接线的起点为起点,绘制一个力的向量;(3) 以连接线的终点为起点,绘制另一个力的向量;(4) 以第一个力的终点为终点,绘制一个从第二个力的终点指向该点的向量,该向量就是合力的方向。
二、力的合成实例解析下面通过一个具体的实例来解析力的合成。
假设有一个物体受到两个力的作用,一个力的大小为10牛,方向向右,另一个力的大小为8牛,方向向上。
我们来求这两个力的合力。
首先,我们可以通过平行四边形法则计算合力。
将两个力的起点连线连接,形成一个平行四边形。
然后,画出连接线的对角线,作为合力的方向,并测量其长度。
根据平行四边形法则,我们可以得到合力的大小为12牛,方向为右上方。
接下来,我们也可以使用三角法则来计算合力。
首先,将两个力的起点连线连接。
然后,以连接线的起点为起点,绘制一个10牛的向右的力。
以连接线的终点为起点,绘制一个8牛的向上的力。
力与力的合成力是物体之间相互作用的一种表现形式,是物体之间相互施加的作用或影响。
力的合成是指多个力作用在物体上时所产生的结果力,它是将多个作用力合并为一个力的过程。
力的合成有两种基本情况,即力的合成与力的分解。
力的合成是将两个或多个力按照一定的规律合并为一个力,而力的分解则是将一个力分解为两个或多个力的合力。
在物理学中,力的合成通常采用矢量法进行求解。
矢量法是利用矢量的几何方法来描述和运算力的大小和方向的一种方法。
一、力的合成的几何方法力的合成的几何方法是通过将各个力的向量相加来求得合力的方法。
这种方法利用力的性质,可以直观地表示力的合成情况。
设有两个力F1和F2,它们分别作用于同一物体上。
根据力的几何方法,我们可以在一个坐标系中用向量来表示这两个力。
向量的长度表示力的大小,而箭头的方向表示力的方向。
当F1和F2的向量之间不存在夹角时,它们之间的合力就等于它们的矢量和F。
也就是说,合力的大小等于各个力的大小之和,方向等于力的向量之和。
当F1和F2的向量之间存在夹角时,它们之间的合力就不再等于它们的矢量和了。
此时,我们需要利用三角函数来求得合力的大小和方向。
二、力的合成的数值解法力的合成的数值解法是通过将各个力的大小和方向进行运算,求得合力的大小和方向的方法。
设有两个力F1和F2,它们分别作用于同一物体上。
如果F1的大小为F1,方向为α,F2的大小为F2,方向为β,我们可以利用三角函数来求得合力F的大小和方向。
合力F的大小可以通过以下公式来计算:F = sqrt(F1^2 + F2^2 + 2F1F2cos(α-β))合力F的方向可以通过以下公式来计算:tanθ = (F1sinα + F2sinβ) / (F1cosα + F2cosβ)其中,θ为合力F的方向角。
三、力的合成实例为了更好地理解力的合成,我们来看一个实际的例子。
假设有一辆汽车,汽车受到两个力的作用,一个是沿着x轴正方向的推力F1,另一个是沿着y轴正方向的拉力F2。
力的合成原理力是物体之间相互作用的结果,它能够改变物体的状态或形状。
当多个力同时作用于一个物体时,可以利用力的合成原理来求解合力的大小和方向。
力的合成原理是物理学中基本的概念,它对于解决力学问题非常重要。
力的合成原理可以用几何方法和向量方法来描述。
下面将分别介绍这两种方法及其应用。
一、几何方法在几何方法中,力的合成原理是基于平行四边形法则的。
根据平行四边形法则,如果两个力的大小、方向和作用点满足平行四边形的条件,那么它们的合力就等于对角线的向量和。
举个例子,假设有两个力F1和F2作用于一个物体上,它们的大小分别为F1和F2,方向分别为θ1和θ2。
根据平行四边形法则,我们将这两个力按照大小和方向绘制在坐标系中,然后连接它们的起点和终点,得到一个平行四边形。
合力的大小和方向可以通过测量平行四边形对角线的长度和方向来确定。
利用几何方法,我们可以方便地求解任意数量的力合成问题。
只需要按照相应的步骤绘制平行四边形,然后测量对角线即可。
这种方法在解决力的平衡问题或者多个力作用于一个物体上的问题时非常有效。
二、向量方法在向量方法中,力的合成原理是基于向量的加法和分解来描述的。
当多个力作用于一个物体上时,我们可以将这些力用向量来表示,然后利用向量的加法和分解运算来求解合力的大小和方向。
假设有两个力F1和F2作用于一个物体上,我们可以将它们分解为两个分力F1x、F1y和F2x、F2y,分别在x轴和y轴方向上产生作用。
然后利用向量的加法运算,求出合力Fx和Fy,并利用勾股定理和三角函数求解合力的大小和方向。
向量方法在力学中有广泛的应用,尤其是在斜面问题、绳子拉力问题等方面。
通过对力的分解和合成,我们可以简化问题,使得求解过程更加简单和直观。
综上所述,力的合成原理是解决力学问题的基本方法。
通过几何方法和向量方法,我们可以求解合力的大小和方向。
通过掌握力的合成原理,我们能够更好地理解物体之间相互作用的结果,并且能够应用于解决实际问题。
力的合成与分解力的矢量运算力的合成与分解力的矢量运算是物理力学中的重要概念。
在物体运动和静止的研究中,力的合成与分解力的矢量运算可以帮助我们更好地理解力的作用和相互作用。
一、力的合成力的合成是指将多个力合成为一个力的过程。
在物体上受到多个力的作用时,可以将这些力按照一定的方法合成为一个力,这个力被称为合力,合力的大小和方向根据所合成力的矢量运算得到。
在矢量运算中,力被表示为一个有大小和方向的箭头,箭头的长度表示力的大小,箭头的指向表示力的方向。
为了方便计算,通常使用画图的方法来合成力。
假设有两个力F1和F2作用在物体上,力F1的大小为F1,方向为θ1;力F2的大小为F2,方向为θ2。
根据力的合成原理,可以在一张纸上画出力F1和力F2的矢量图,然后将它们的起点连接起来,连接线的终点就是力的合力的方向。
通过测量画出的图形,可以计算出合力的大小。
二、力的分解力的分解是指将一个力拆分为多个力的过程。
在某些情况下,我们需要研究一个力在某个方向上的作用效果,这时就需要将该力分解为在垂直方向和平行方向上的两个力,分别进行研究和计算。
假设有一个力F作用在物体上,力的大小为F,方向为θ。
为了方便计算,我们可以将力F分解为平行于某个方向的力F1和垂直于该方向的力F2。
通过测量力的大小和角度,可以计算出力F1和力F2的大小。
力的分解在实际问题中常常被使用,例如斜面上的物体受到重力和斜面对其作用的力,可以将斜面对其作用的力分解为平行于斜面和垂直于斜面的两个力,进而研究物体在斜面上的运动状态。
三、矢量运算的数学表达式在力的合成和分解中,力被看作是可以相互叠加的矢量量,而矢量量既有大小又有方向。
因此,可以通过数学方法进行矢量运算的表达。
1. 合成力的数学表达式设力F1的大小为F1,方向为θ1;力F2的大小为F2,方向为θ2。
合力F的大小和方向可以通过以下公式计算:F = √(F1^2 + F2^2 + 2F1F2cos(θ1 - θ2))θ = A tan [(F1sinθ1 + F2sinθ2) / (F1cosθ1 + F2cosθ2)]其中,√表示开方,^2表示乘方,cos表示余弦函数,sin表示正弦函数,θ表示力的合力方向的角度。
力的合成一、力的合成 求几个力的合力的过程叫做力的合成。
1.合成法则:平行四边形定则或三角形定则.2.同一直线上的力合成:选定一个正方向,与正方向相同的力为正,与正方向相反的力为负.即可将矢量运算转化为代数运算求合力.3.互成角度的两力F 1、F 2的合成①作图法:选定合适的标度,以F 1、F 2为两邻边作平行四边形,两邻边之间的对角线即为所求.根据标度,用刻度尺量出合力的大小,用量角器量出合力与任意分力的夹角φ.②计算法:若以F 1、F 2为邻边作平行四边形后,F 1、F 2夹角为θ,如图所示,利用余弦定理得合力大小F 1F θφA D C2212122cos F F F F F θ=++合力F 方向与分力F 2的夹角φ121sin tan cos F CD OD F F θϕθ==+ a .若θ=0°,则F = F 1+F 2 ; b .若θ=90°,则2212F F F =+c .若θ=180°,则F = |F 1-F 2|;d .若θ=120°,且F 1=F 2,则F = F 1=F 2.4.两种特殊情况下合力的计算方法(1)夹角为θ的两个等大的力的合成,如图 (a)所示,作出的平行四边形为菱形,利用其对角线互相垂直的特点可求得合力F ′=2F cos θ2。
(2)夹角为120°的两个等大的力的合成,如图(b)所示,实际是图(a)的特殊情况,求得合力F ′=2F cos 120°2=F 。
5.合力范围的确定(1)两个共点力的合力范围:|F 1-F 2|≤F ≤F 1+F 2.(2)三个共点力的合成范围①最大值:三个力同向时,其合力最大,为F max =F 1+F 2+F 3.②最小值:以这三个力的大小为边,如果能组成封闭的三角形,则其合力的最小值为零,即F min =0;如果不能,则合力的最小值为F min =F 1-|F 2+F 3|(F 1为三个力中最大的力).6.多个共点力的合成方法依据平行四边形定则先求出任意两个力的合力,再求该合力与第三个力的合力,依次类推,求完为止.也可以先正交分解后合成的方法.7.合力与分力相关性(1)等效性:合力的作用效果与分力的共同作用效果相同,它们在效果上可以相互替代,是一种等效替代关系。
1.5 力的合成
一、教学目标
1、理解合力与力的合成的概念.
2、掌握力的平行四边形定则.
3、会用作图法和直角三角形知识求共点力的合力
4、初步体会等效替代的物理思维方法
二、重点难点
1、运用平行四边形定则求合力是重点。
2、运用等效替代思想理解合力概念是本节思维方式上的一大难点.
运用数学工具求解物理问题,如何从实验中归纳总结出平行四边形定则也是难
点。
三、教学方法
演示实验、归纳、总结
四、教具
平行四边形定则演示器,合力与分力关系模拟演示器、三角板、弹簧秤2个、钩码.
五、教学过程
演示实验1:
一个大人提一桶水所用的力为F,两个小孩提同一桶水所用的力为F1,F2,则F1,F2
的作用效果与F的相同,可用F1,F2 代替F。
在日常生活中这种例子很多。
1.力的合成与分解
(1)一个力对物体的作用效果与几个力对物体的作用效果相同时,这个力就叫那几个力的合力,那几个力就叫这个力的分力。
强调“等效替代”思想.
(2)由几个已知力求合力叫力的合成。
由一个已知力求分力叫力的分解。
2.同一直线上的二力合成
方向相同:F=F1+F2合力方向与它们方向相同。
方向相反:F=F1-F2合力方向与大的力方向相同。
3.互成角度的二力求合力
演示实验2:运用平行四边形定则演示器完成教材所述实验.
结论:
(1)平行四边形定则:如果用表示两个共点力F1和F2的线段为邻边作平行四边形,那么,合力F的大小和方向就可以用这两个邻边之间的对角线表示出来,这叫做力的平
行四边形定则.
(2)解释共点力:几个力如果都作用在物体的同一点,或者它们的作用线相交于同一点,这几个力叫做共点力.
(3)平行四边形定则的具体应用方法有两种:
图解法:
5.矢量与标量
即有大小,又有方向,并遵循平行四边形定则的物理量叫做矢量.只有大小而没有方向,遵循代数求和法则的物理量叫做标量.
力、速度是矢量;长度、质量、时间、温度、能量、电流强度等物理量是标量.
矢量和标量的根本区别就在于它们分别遵循两种不同的求和运算法则.
(六)课堂小结
合力→力的合成→平行四边形定则
(七)课外作业
P14 练习四(1)、(2)、(3)、(4)。