ch02电子和空穴的运动与复合.
- 格式:ppt
- 大小:607.00 KB
- 文档页数:28
课程考核:考勤、作业、考试课程简介系统设计电路设计版图设计111.1.6 1.1.71.1.7.1 1.1.7.11.1.7.1 1.1.7.21.1.7.21.1.7.31.1.7.3 1.1.7.3 1.1.7.3 1.1.7.31.1.81.1.81.1.8 1.1.8 1.1.8 1.1.8 1.1.8子只能在相似壳层间转移。
、电子共有化运动使能级分裂为能带相距很远时,如同孤立原子,每个能级都有两个态与之相应,、电子共有化运动使能级分裂为能带互相靠近时,原子中的电子除受本身原子的势场作用,还受到另一个结果每个二度简并的能级都分裂为二个彼此相距很近的能级;两个原示意地画出了八个原子互相靠近时能级分裂的情况。
可以看到.每个能级部分裂为八个相距很硅、锗晶体能带的形成个原子结合成的晶体,共根据电子先填充低能这一原理,下面一个能带填满了电子,它们相应于共价键中的满带;上面一个能带是空(轨道杂化,并非p对应高能级,s的运动状态,自由电子的能可用以描述自由电子的运动状态,的连续变化,自由电子的能量自由电子:222m k E h =半导体中的电子状态和能带、电子在周期场中的运动布里渊区划分E(k)平移a π4−aπ3−a π2−a π−aπ4a π3a π2a πaπ−aπ金刚石结构的第一布里渊区是一个十四面体。
§1.2半导体中的电子状态和能带§1.2.4电子在周期场中的运动——能带论、能带理论的应用能带产生的原因:定性理论(物理概念):晶体中原子之间的相互作用,使能级分裂形成能带。
定量理论(量子力学计算):电子在周期场中运动,其能量不连续形成能带。
1.2半导体中的电子状态和能带§1.2.4电子在周期场中的运动——能带论、能带理论的应用能带(energy band )包括允带和禁带。
允带(allowed band ):允许电子存在的能量范围。
禁带(forbidden band ):不允许电子存在的能量范围。
空穴在平面上的运动一、CuO2平面上空穴的概念CuO2平面上的空穴是一种常见的物理概念,它指的是在金属氧化物中,由原子核之间的氧原子构成的空间结构。
它们可以在CuO2平面上形成一种特殊的拓扑结构,其中原子核之间的氧原子会形成一种被称为“空穴”的物理结构。
空穴的特性决定了它们在物理上的作用。
空穴可以对电子轨道产生影响,从而改变元素的电子性质。
当掺入一定量的空穴时,电子轨道就会从半导体性质转变为金属性质,这种转变被称为“金属-半导体转变”,它是金属氧化物材料中的重要性质之一。
CuO2平面上的空穴也可以被用来控制金属氧化物材料的电学性质,如磁性、光学性质等。
例如,在铁电材料中,空穴可以影响电子的双自旋,从而改变材料的磁性;在太阳能电池中,空穴的存在可以改变电子的轨道,从而改变太阳能电池的光学性质。
总之,CuO2平面上的空穴是一种重要的物理概念,它可以影响金属氧化物的电子性质,从而改变材料的物理性质。
它是金属氧化物材料的重要性质之一,并且可以用来控制材料的电学性质,从而改变材料的物理性质。
二、CuO2平面上空穴的运动规律CuO$_2$平面上的空穴运动规律是一种令人兴奋的物理现象。
它的运动可以被看作是一种可以被描述的随机运动,它们在平面上的运动具有一定的概率,从而产生了一种平均的空穴运动模式。
从实验上看,CuO$_2$平面上的空穴运动规律表明,它们在平面上的运动具有一定的概率,比如,如果一个空穴从一个原子中脱离,它有一定的概率会被另一个原子吸引,并且有一定的概率会在平面上运动,从而形成一种随机的空穴运动模式。
此外,CuO$_2$平面上的空穴运动规律还表明,它们在平面上的运动受到环境的影响,比如,在温度较高的情况下,空穴的运动更加活跃,而在温度较低的情况下,空穴的运动则更加缓慢,从而形成不同的空穴运动模式。
总之,CuO$_2$平面上的空穴运动规律是一种令人兴奋的物理现象,它们的运动具有一定的概率,并受到环境的影响,从而形成不同的空穴运动模式,这种空穴运动模式可以被用来解释许多物理现象,比如高温超导体的特性。
2化学本科毕业论文题目:金属离子掺杂的硫化镉光催化剂可见光分解水产氢性能学院:化学化工学院专业:化学毕业年限:2013年6月30日学生姓名:连菊红学号:200973010120指导教师:王其召金属离子掺杂的硫化镉硫化锌固溶体光催化剂可见光分解水产氢性能中文摘要环境恶化和能源危机是当前人类社会所面临的两个重大问题,利用可再生资源制备清洁无污染的氢能源是解决上述问题的有效途径之一。
在众多的制氢方法中,由“ Fujishima - Hond£效应发展而来的多相光催化分解水技术日益受到广泛关注。
设计和制备能够完全分解水的光催化剂材料,具有非常重要的理论现实意义。
3+2+2+本文以NaS和NaSC为电子给体,研究了Y、Ba、Sr掺杂对2233+CdZnS固溶体催化剂的光催化制氢性能的影响。
以水热法制备了丫、x1-x 2+2+Ba Sr掺杂CdZnS固溶体催化剂。
借助X射线衍射仪(XRD)、漫反x1-x 3+射(UV-Vis)、扫描电镜(SEM)等手段对催化剂进行表征。
结果表明,丫、2+2+2+2+Ba Sr的掺杂对CdZnS的晶型没有影响,在可见光下,Ba、Sr掺x1-x 3+杂有效的提高了催化剂的产氢量,而丫的掺杂基本没有改变催化剂的产氢2+2+量,主要是因为Ba、Sr掺杂有效地抑制了电子和空穴的分离,提高了光催化活性。
关键词:光催化;产氢;固溶体;水热法;CdZnS;掺杂x1-x金属离子掺杂的硫化镉硫化锌固溶体光催化剂可见光分解水产氢性能2AbstractNowadays, it is very urgent for human beings to develop clean, nopolluting hydrogen energy, since the energy and environmental problem caused by the large-scale exploitation and use of fossil energy. Among many methods of hydrogen production, the heterogeneous photocatalytic water splitting technique which was developed from “Fujishima -Honda”isincreasingly under the spotlight. It is meaningful to design and develop solid photocatalysts which can stoichiometrically split water into hydrogen and oxygen.3+2+2+In this thesis, the effects of Y 、Ba、Sr ion doping on photocatalytichydrogen evolution over sulfide photocatalysts from aqueous solution3+2+2+containing NaS and NaS0 as a electron donor were researched. Y、Ba、Sr 223doped CdZnS photocatalysts were prepared by hydrothermal method. x1-xphotocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM),UV-Vis absorption spectroscope (UV- Vis). The2+2+results showed that Ba 、Sr ion doping on photocatalysts had not effect on 2+2+crystal structure. The modification of Ba 、Sr doping can efficiently depressthe recombination of electron and hole.Keywords: photocatalytic; Hydrogen evolution; solid solution; hydrothermal reaction; CdZnS; doping. x1-x3 金属离子掺杂的硫化镉硫化锌固溶体光催化剂可见光分解水产氢性能目录中文摘要...................................... . (2)Abstract .............................................................. .. (3)........................... 5 第一部分综述1.1 课题背景...................................... (5)1.2 研究现状...................................... (6)1.2.1 光催化制氢的原理........................................ 61.2.2 光催化分解水的基本步骤 (8)1.2.3 光催化分解水过程影响因素 (8)1.2.4 光解水催化剂的研究现状 (9)1.3 硫化物型半导体光催化剂......................................9 第二部分实验部分...................................... . (11)2.1 主要化学试剂和仪器....................................... . (11)2.1.1 主要化学试剂...................................... . (11)2.1.2 主要仪器....................................... . (11)2.2 催化剂的制备...................................... .. (11)2.2.1 CdZnS 的制备......................................11 0.10.92.2.2 CdSrZnS 的制备 (12)0.10.050.852.2.3 CdYZnS 的制备 (12)0.10.050.852.2.4 CdBaZnS 的制备 (12)0.10.050.852.3 催化剂可见光光催化反应 (12)2.3.1 光催化反应系统...................................... (12)2.3.2 光催化反应...................................... .......... 13 第三部分催化剂的理化性质及光解水性3.1 催化剂的表征...................................... . (14)3.1.1 扫描电镜(SEM) ................................................................. (14)3.1.2 X- 射线衍射(XRD) (15)3.1.3 紫外-漫反射光谱(UV-vis) (16)3.2 制备的催化剂的光解水性能 (16)四部分结论...................................... .................... 18 参考文献...................................... ...................................... 19 致谢...................................... . (21)4金属离子掺杂的硫化镉硫化锌固溶体光催化剂可见光分解水产氢性能第一部分综述1.1 课题背景随着经济的持续发展, 能源的需求量越来越大,然而, 日益增长的能源需求, 造成了能源供需矛盾加剧的局面,目前, 我国能源的获得主要以化石燃料为主,化石燃料燃烧所产生的污染物如CO NO SO CH烟尘、XXXXX飞灰和其它有机化合物等进入大气后会造成严重的大气污染。
催化分解水的基本原理。
锐钛矿型的Ti02其价带到导带的禁带宽度约为3.2eV,当受到光子能量等于或高于禁带宽度的光辐照时,其价带上的电子(e一)就会受激跃迁至导带,在价带上产生相应的空穴(h+),形成了电子一空穴对。
产生的电子、空穴在内部电场作用下分离并迁移到粒子表面。
光生空穴有很强的得电子能力,具有强氧化性,可夺取半导体颗粒表面被吸附物质或溶剂中的电子,使原本不吸收光的物质被氧化,电子受体则通过接受表面的电子而被还原,完成光催化反应过程,如图1所示[¨:图1光催化分解水的基本过程模型①半导体光催化剂吸收能量足够大的光子,产生电子一空穴对;⑦电子一空穴对分离,向半导体光催化剂表面移动;③电子与水反应产生氢气I④空穴与水反应产生氧气I⑤部分电子与空穴复合,产生热或光。
光催化分解水反应式可写为(以Ti02为例)‘“l2Ti02+2hv—・2Ti02+2h++2e一(1)2e一+2H+—・H’+H‘一H2(Z)2h++2H20一2H。
o+一20H’+2H+(3)oH‘+oH‘—,H:o+1/202(4)但也并不是所有的半导体光催化剂都能作为光分解水的催化剂,必须满足一定的氧化还原化学反应条件,即首先其禁带宽度要大于水的分解电压(理论值1.23eV),且由于超电压的存在,半导体材料的禁带宽度要大于水的分解电压,其次,半导体光催化剂的价带位置应比O。
/H。
o的电位更正,而导带的位置应比H+/H。
更负,最合适的禁带宽度应为2.0eV左右‘…。
3光催化分解水体系自从Fujishima和Honda发现可以利用二氧・128・化钛(Ti02)光催化分解水制备氢气和氧气以来,各国学者一直致力于光催化分解水的研究,并在高效光催化剂的研究方面取得了重要进展,开发了为数众多的光催化剂o]。
目前,光催化分解水的评价体系主要是粉末直接光照的水溶早匝悬浮反应体系和光电化学体系。
其中,粉末悬浮作为光催化分解水制氢的反应体系可用来评价半导体光催化剂的许多性质,如导带与价带的位置、禁带宽度、材料本身在水溶液中的稳定性等。
5二氧化钛纳米材料的应用格便宜。
由于其良好的光学和生物学性能,可应用于紫外线保护。
如果水表面接触角大于130。
或小于5 °可将表面分别定义为超疏水或超亲水表面。
各种玻璃制品具有防雾功能,如镜子,眼镜,具有超亲水或超疏水表面。
例如,冯等人发现可逆超亲水性和超疏水性,可来回切换二氧化钛纳米薄膜。
用紫外光照射二氧化钛纳米棒薄膜时,光生空穴和晶格氧产生反应,表面氧空缺。
动力学上,水分子与这些氧空缺相协调,球形水滴沿纳米棒填补了凹槽,并且在二氧化钛纳米棒薄膜上分散,接触角约为0° -这会导致超亲水二氧化钛薄膜。
羟基吸附后,表面转化成大力亚稳态。
如薄膜被放置在黑暗中,被吸附羟基逐渐取代了大气中的氧气,表面回到原始状态。
表面润湿度由超亲水转换成超疏水。
由于超亲水或超疏水表面,许多不同类型的表面具有防污、自洁性能。
电气或光学性质随吸附而产生变化,二氧化钛纳米材料也可用来作为各种气体和湿度传感器。
就未来的清洁能源应用而言,最重要的研究领域之一,是寻找高效电力和/或氢气材料。
如二氧化钛和有机染料或无机窄禁带半导体敏化,二氧化钛能吸收光,形成可见光区域,并将太阳能转换成电能,应用于太阳能电池。
Gratzel领导的小组,运用染料敏化太阳能技术,实现了将所有太阳能转换成电流,转换效率物10.6%电流。
人们广泛研究了二氧化钛纳米材料用于水分解和制氢,这是因为于水氧化还原时,其具有合适的电子能带结构。
二氧化钛纳米材料另外应用-二氧化钛纳米材料与染料或金属纳米粒子敏化时,形成光致变色。
当然,二氧化钛纳米材料的众多应用之一是光催化分解各种污染物。
5.1光催化应用二氧化钛被认为是最有效的、无害环境的光催化剂,广泛用于各种污染物的降解。
二氧化钛光催化剂还可以用来杀死细菌,可处理大肠杆菌悬液。
发亮的二氧化钛具有强氧化力,癌症治疗中,可用于杀死肿瘤细胞。
人们广泛研究了光催化反应机制。
半导体的光催化反应原理非常简单。
吸收的光子能量大于二氧化钛带隙,电子从价带激发到导带,形成电子空穴对。
TiO2光催化反应机理光催化反应基本途径当能量大于TiO2禁带宽度的光照射半导体时,光激发电子跃迁到导带,形成导带电子(矿),同时在价带留下空穴(矿)。
由于半导体能带的不连续性,电子和空穴的寿命较长,它们能够在电场作用下或通过扩散的方式运动,与吸附在半导体催化剂粒子表面上的物质发生氧化还原反应,或者被表面晶格缺陷俘获。
空穴和电子在催化剂粒子内部或表面也可能直接复合。
空穴能够同吸附在催化剂粒子表面的OH或H2O发生作用生成HO·。
HO·是一种活性很高的粒子,能够无选择地氧化多种有机物并使之矿化,通常认为是光催化反应体系中主要的氧化剂。
光生电子也能够与O2发生作用生成HO2·和O2-·等活性氧类,这些活性氧自由基也能参与氧化还原反应。
该过程如图1(a)所示,可用如下反应式表示:HO·能与电子给体作用,将之氧化,矿能够与电子受体作用将之还原,同时h+也能够直接与有机物作用将之氧化:光催化反应的量子效率低(理论上不会超过20%)是其难以实用化的最为关键因素之一。
光催化反应的量子效率取决于载流子的复合几率,载流子复合过程则主要取决于两个因素:载流子在催化剂表面的俘获过程和表面电荷迁移过程。
增加载流子的俘获或提高表面电荷迁移速率能够抑制电荷载流子复合,增加光催化反应的量子效率。
电子和空穴复合的速率很快,在TiO2表面其速率在10-9s以内,而载流子被俘获的速率相对较慢,通常在10-7~10-8s(Hoffmann,1995)。
所以为了有效俘获电子或空穴,俘获剂在催化剂表面的预吸附是十分重要的。
催化剂的表面形态、晶粒大小、晶相结构及表面晶格缺陷均会影响载流子复合及电荷迁移过程。
如果反应液中存在一些电子受体能够及时与电子作用,通常能够抑制电子空穴的复合,如Elmorsi(2000)发现溶液中含10-3M的Ag+时,其光催化效率提高,原因在于Ag+作为电子受体与电子反应生成金属银,从而减少了空穴.电子对复合的几率。