带电粒子在复合场中的运动典型例题汇编
- 格式:doc
- 大小:1.33 MB
- 文档页数:23
一、带电粒子在复合场中的运动专项训练1.如图所示,在坐标系Oxy 的第一象限中存在沿y 轴正方向的匀强电场,场强大小为E .在其它象限中存在匀强磁场,磁场方向垂直于纸面向里.A 是y 轴上的一点,它到坐标原点O 的距离为h ;C 是x 轴上的一点,到O 的距离为L .一质量为m ,电荷量为q 的带负电的粒子以某一初速度沿x 轴方向从A 点进入电场区域,继而通过C 点进入磁场区域.并再次通过A 点,此时速度方向与y 轴正方向成锐角.不计重力作用.试求: (1)粒子经过C 点速度的大小和方向;(2)磁感应强度的大小B .【来源】2007普通高等学校招生全国统一考试(全国卷Ⅱ)理综物理部分【答案】(1)α=arctan 2h l(2)B 2212mhE h l q+【解析】【分析】【详解】 试题分析:(1)以a 表示粒子在电场作用下的加速度,有qE ma =①加速度沿y 轴负方向.设粒子从A 点进入电场时的初速度为0v ,由A 点运动到C 点经历的时间为t , 则有:212h at =② 0l v t =③由②③式得02a v h= 设粒子从C 点进入磁场时的速度为v ,v 垂直于x 轴的分量12v ah =⑤由①④⑤式得:22101v v v +=()2242qE h l mh+⑥设粒子经过C 点时的速度方向与x 轴的夹角为α,则有1vtanvα=⑦由④⑤⑦式得2harctanlα=⑧(2)粒子从C点进入磁场后在磁场中作速率为v的圆周运动.若圆周的半径为R,则有qvB=m2vR⑨设圆心为P,则PC必与过C点的速度垂直,且有PC=PA R=.用β表示PA与y轴的夹角,由几何关系得:Rcos Rcos hβα=+⑩Rsin l Rsinβα=-解得222242h lR h lhl++=由⑥⑨式得:B=2212mhEh l q+2.压力波测量仪可将待测压力波转换成电压信号,其原理如图1所示,压力波p(t)进入弹性盒后,通过与铰链O相连的“”型轻杆L,驱动杆端头A处的微型霍尔片在磁场中沿x轴方向做微小振动,其位移x与压力p成正比(,0x pαα=>).霍尔片的放大图如图2所示,它由长×宽×厚=a×b×d,单位体积内自由电子数为n的N型半导体制成,磁场方向垂直于x轴向上,磁感应强度大小为(1)0B B xββ=->,.无压力波输入时,霍尔片静止在x=0处,此时给霍尔片通以沿12C C方向的电流I,则在侧面上D1、D2两点间产生霍尔电压U0.(1)指出D 1、D 2两点那点电势高;(2)推导出U 0与I 、B 0之间的关系式(提示:电流I 与自由电子定向移动速率v 之间关系为I=nevbd ,其中e 为电子电荷量);(3)弹性盒中输入压力波p (t ),霍尔片中通以相同的电流,测得霍尔电压U H 随时间t 变化图像如图3,忽略霍尔片在磁场中运动场所的电动势和阻尼,求压力波的振幅和频率.(结果用U 0、U 1、t 0、α、及β)【来源】浙江新高考2018年4月选考科目物理试题【答案】(1) D 1点电势高 (2) 001IB U ne d= (3) 101(1)U A U αβ=- ,012f t = 【解析】【分析】由左手定则可判定电子偏向D 2边,所以D 1边电势高;当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力,根据电流I 与自由电子定向移动速率v 之间关系为I=nevbd 求出U 0与I 、B 0之间的关系式;图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则可知轻杆的运动周期,当杆运动至最远点时,电压最小,结合U 0与I 、B 0之间的关系式求出压力波的振幅.解:(1)电流方向为C 1C 2,则电子运动方向为C2C1,由左手定则可判定电子偏向D 2边,所以D 1边电势高;(2)当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力00U qvB qb= ① 由电流I nevbd = 得:I v nebd= ② 将②带入①得00IB U ned =(3)图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则轻杆的运动周期为T=2t 0所以,频率为: 012f t = 当杆运动至最远点时,电压最小,即取U 1,此时0(1)B B x β=-取x 正向最远处为振幅A ,有:01(1?)IB U A nedβ=-所以:11(1)1IBU nedIB AU Anedββ==--解得:01U UAUβ-=根据压力与唯一关系x pα=可得xpα=因此压力最大振幅为:01mU UpUαβ-=3.在xOy平面的第一象限有一匀强电磁,电场的方向平行于y轴向下,在x轴和第四象限的射线OC之间有一匀强电场,磁感应强度为B,方向垂直于纸面向里,有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场,质点到达x轴上A点,速度方向与x 轴的夹角为φ,A点与原点O的距离为d,接着,质点进入磁场,并垂直与OC飞离磁场,不计重力影响,若OC与x轴的夹角为φ.求:⑴粒子在磁场中运动速度的大小;⑵匀强电场的场强大小.【来源】带电粒子在复合场中的运动计算题【答案】(1) (2)【解析】【分析】【详解】试题分析:(1)由几何关系得:R=dsinφ由洛仑兹力公式和牛顿第二定律得解得:(2)质点在电场中的运动为类平抛运动.设质点射入电场的速度为v 0,在电场中的加速度为a ,运动时间为t ,则有:v 0=vcosφvsinφ=atd=v 0t设电场强度的大小为E ,由牛顿第二定律得qE=ma 解得:4.如图所示,在xOy 平面直角坐标系中,直角三角形ACD 内存在垂直平面向里磁感应强度为B 的匀强磁场,线段CO=OD=L ,CD 边在x 轴上,∠ADC=30°。
一、带电粒子在复合场中的运动专项训练1.离子推进器是太空飞行器常用的动力系统,某种推进器设计的简化原理如图所示,截面半径为R 的圆柱腔分为两个工作区.I 为电离区,将氙气电离获得1价正离子;II 为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.I 区产生的正离子以接近0的初速度进入II 区,被加速后以速度v M 从右侧喷出.I 区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出一定速度范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α<90◦).推进器工作时,向I 区注入稀薄的氙气.电子使氙气电离的最小速度为v 0,电子在I 区内不与器壁相碰且能到达的区域越大,电离效果越好.......................已知离子质量为M ;电子质量为m ,电量为e .(电子碰到器壁即被吸收,不考虑电子间的碰撞).(1)求II 区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请判断I 区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围; (4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系.【来源】2014年全国普通高等学校招生统一考试理科综合能力测试物理(浙江卷带解析)【答案】(1)22Mv L(2)垂直于纸面向外(3)043mv B eR >(4)()max 342sin eRB v m α=-【解析】 【分析】 【详解】(1)离子在电场中加速,由动能定理得:212M eU Mv =,得:22M Mv U e =.离子做匀加速直线运动,由运动学关系得:22Mv aL =,得:22Mv a L=.(2)要取得较好的电离效果,电子须在出射方向左边做匀速圆周运动,即为按逆时针方向旋转,根据左手定则可知,此刻Ⅰ区磁场应该是垂直纸面向外.(3)当90α=︒时,最大速度对应的轨迹圆如图一所示,与Ⅰ区相切,此时圆周运动的半径为34r R =洛伦兹力提供向心力,有2maxmaxv Bev m r= 得34max BeRv m=即速度小于等于34BeRm 此刻必须保证043mv B BR>. (4)当电子以α角入射时,最大速度对应轨迹如图二所示,轨迹圆与圆柱腔相切,此时有:90OCO α∠'=︒﹣2ROC =,OC r '=,OO R r '=﹣ 由余弦定理有222(29022R R R r r r cos α⎛⎫=+⨯⨯︒ ⎪⎝⎭﹣)﹣(﹣),90cos sin αα︒-=() 联立解得:()342Rr sin α=⨯-再由:maxmv r Be=,得 ()342max eBRv m sin α=-.考点:带电粒子在匀强磁场中的运动、带电粒子在匀强电场中的运动 【名师点睛】该题的文字叙述较长,要求要快速的从中找出物理信息,创设物理情境;平时要注意读图能力的培养,以及几何知识在物理学中的应用,解答此类问题要有画草图的习惯,以便有助于对问题的分析和理解;再者就是要熟练的掌握带电粒子在磁场中做匀速圆周运动的周期和半径公式的应用.2.如图,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.25m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小E =5.0×103V/m 。
一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUmB =,2(1,2,3,,1)n k =-(3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
专题带电粒子在复合场中的运动考点梳理一、复合场1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域,并不重叠或相邻或在同一区域,电场、磁场交替出现.2.三种场的比拟项目名称力的特点功和能的特点重力场大小:方向:静电场大小:方向:磁场洛伦兹力方向可用判断二、带电粒子在复合场中的运动形式1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于.2.匀速圆周运动当带电粒子所受的重力与电场力大小,方向时,带电粒子在的作用下,在垂直于匀强磁场的平面做.3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.【典型选择题】1.[带电粒子在复合场中的直线运动]某空间存在水平方向的匀强电场(图中未画出),带电小球沿如图1所示的直线斜向下由A点沿直线向B点运动,此空间同时存在由A指向B的匀强磁场,如此如下说确的是() A.小球一定带正电图1B.小球可能做匀速直线运动C.带电小球一定做匀加速直线运动D.运动过程中,小球的机械能增大2.[带电粒子在复合场中的匀速圆周运动]如图2所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,如此如下说确的是()A.小球一定带正电图2B.小球一定带负电C.小球的绕行方向为顺时针D.改变小球的速度大小,小球将不做圆周运动3.[质谱仪原理的理解]如图3所示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有磁感应强度为B0的匀强磁场.如下表述正确的答案是()A.质谱仪是分析同位素的重要工具图3B.速度选择器中的磁场方向垂直纸面向外C.能通过狭缝P的带电粒子的速率等于E/BD.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小4.[盘旋加速器原理的理解]劳伦斯和利文斯设计出盘旋加速器,工作原理示意图如图4所示.置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B的匀强磁场与盒面垂直,高频交流电频率为f,加速电压为U.假如A处粒子源产生的质子质量为m、电荷量为+q,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.如此如下说确的是()图4A.质子被加速后的最大速度不可能超过2πRfB.质子离开盘旋加速器时的最大动能与加速电压U成正比C.质子第2次和第1次经过两D形盒间狭缝后轨道半径之比为2∶1 D.不改变磁感应强度B和交流电频率f,该盘旋加速器的最大动能不变【规律总结】带电粒子在复合场中运动的应用实例 1.质谱仪(1)构造:如图5所示,由粒子源、加速电场、偏转磁场和照相底片等构成.图5(2)原理:粒子由静止被加速,根据动能定理可得关系式粒子在磁场中受作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷.r =,m =,qm =.2.盘旋加速器(1)构造:如图6所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处 接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的和粒子做圆周运动的,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地,粒子就会被一次一次地.由q v B =m v 2r ,得E km =,可见粒子获得的最大动能由图6 决定,与无关.特别提醒这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动) 的原理.3.速度选择器(如图7所示)(1)平行板中电场强度E 和磁感应强度B 互相.这种装置能把具有的粒子选择出来,所以叫做速度 选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是, 即图7 4.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把能直接转化为电能. (2)根据左手定如此,如图8中的是发电机正极.(3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,如此由qE =q UL =q v B 得两极板间能达到的最大电势图8差U =5.电磁流量计工作原理:如图9所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在的作用下横向偏转,a 、b 间出现,形成电场,当自由电荷所受的和平衡时,a 、b 间的电势差就图9保持稳定,即:q v B =qE =q Ud ,所以v =,因此液体流量Q =S v =. 【考点】考点一带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①假如重力和洛伦兹力平衡,如此带电体做匀速直线运动.②假如重力和洛伦兹力不平衡,如此带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①假如电场力和洛伦兹力平衡,如此带电体做匀速直线运动.②假如电场力和洛伦兹力不平衡,如此带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题. (3)电场力、磁场力、重力并存①假如三力平衡,一定做匀速直线运动. ②假如重力与电场力平衡,一定做匀速圆周运动.③假如合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题. 2.带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.例1如图10所示,带电平行金属板相距为2R ,在两板间有垂直纸面向里、磁感应强度为B的圆形匀强磁场区域 ,与两板与左侧边缘线相切.一个带正电的粒子(不计重力)沿两板间中心线O 1O 2从左侧边缘O 1点以某一速度射入,恰沿直线通过圆形磁场区域,并从极板边缘飞出,在极板间运动时间为t 0.假如撤去磁场,质子仍从O 1点以一样速度射入,如此经t 02时间打到极板上.图10(1)求两极板间电压U ;(2)假如两极板不带电,保持磁场不变,该粒子仍沿中心线O 1O 2从O 1点射入,欲使粒子从两板左侧间飞出,射入的速度应满足什么条件?突破训练1如图11所示,空间存在着垂直纸面向外的水平匀强磁场,磁感应强度为B ,在y 轴两侧分别有方向相反的匀强电场,电场强 度均为E ,在两个电场的交界处左侧,有一带正电的液滴a 在电场 力和重力作用下静止,现从场中某点由静止释放一个带负电的液滴 b ,当它的运动方向变为水平方向时恰与a 相撞,撞后两液滴合为一 体,速度减小到原来的一半,并沿x 轴向做匀速直线运动,已图11知液滴b 与a 的质量相等,b 所带电荷量是a 所带电荷量的2倍,且相撞前a 、b 间的静 电力忽略不计.(1)求两液滴相撞后共同运动的速度大小; (2)求液滴b 开始下落时距液滴a 的高度h .考点二带电粒子在组合场中的运动1.近几年各省市的高考题在这里的命题情景大都是组合场模型,或是一个电场与一个磁场相邻,或是两个或多个磁场相邻.2.解题时要弄清楚场的性质、场的方向、强弱、围等. 3.要进展正确的受力分析,确定带电粒子的运动状态. 4.分析带电粒子的运动过程,画出运动轨迹是解题的关键.例2(2012·理综·23)如图12甲所示,相隔一定距离的竖直边界两侧为一样的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极 板中心各有一小孔S 1、S 2,两极板间电压的变化规律如图乙所示,正反向电压的大小均 为U 0,周期为T 0.在t =0时刻将一个质量为m 、电荷量为-q (q >0)的粒子由S 1静止释放,粒子在电场力的作用下向右运动,在t =T 02时刻通过S 2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场)图12(1)求粒子到达S 2时的速度大小v 和极板间距d .(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件.(3)假如已保证了粒子未与极板相撞,为使粒子在t =3T 0时刻再次到达S 2,且速度恰好为零,求该过程中粒子在磁场运动的时间和磁感应强度的大小.突破训练2如图13所示装置中,区域Ⅰ和Ⅲ中分别有竖直向上和水平向右的匀强电场,电场强度分别为E 和E2;区域Ⅱ有垂直向外的水平匀强磁场,磁感应强度为B .一质量为 m 、带电荷量为q 的带负电粒子(不计重力)从左边界O 点正 上方的M 点以速度v 0水平射入电场,经水平分界限OP 上 的A 点与OP 成60°角射入区域Ⅱ的磁场,并垂直竖直边界图13 CD 进入Ⅲ区域的匀强电场中.求:(1)粒子在区域Ⅱ匀强磁场中运动的轨迹半径; (2)O 、M 间的距离;(3)粒子从M 点出发到第二次通过CD 边界所经历的时间.专题三.带电粒子在交变电场和交变磁场中的运动模型问题的分析突破训练3如图15甲所示,与纸面垂直的竖直面MN的左侧空间中存在竖直向上的场强大小为E=2.5×102 N/C的匀强电场(上、下与左侧无界).一个质量为m=0.5 kg、电荷量为q=2.0×10-2 C的可视为质点的带正电小球,在t=0时刻以大小为v0的水平初速度向右通过电场中的一点P,当t=t1时刻在电场所在空间中加上一如图乙所示随时间周期性变化的磁场,使得小球能竖直向下通过D点,D为电场中小球初速度方向上的一点,PD间距为L,D到竖直面MN的距离DQ为L/π.设磁感应强度垂直纸面向里为正.(g=10m/s2)图15(1)如果磁感应强度B0为量,使得小球能竖直向下通过D点,求磁场每一次作用时间t0的最小值(用题中所给物理量的符号表示);(2)如果磁感应强度B0为量,试推出满足条件的时刻t1的表达式(用题中所给物理量的符号表示);(3)假如小球能始终在电磁场所在空间做周期性运动,如此当小球运动的周期最大时,求出磁感应强度B0与运动的最大周期T的大小(用题中所给物理量的符号表示).参考答案【典型选择题】1、答案CD解析由于重力方向竖直向下,空间存在磁场,且直线运动方向斜向下,与磁场方向一样,故不受洛伦兹力作用,电场力必水平向右,但电场具体方向未知,故不能判断带电小球的电性,选项A 错误;重力和电场力的合力不为零,故不可能做匀速直线运动,所以选项B 错误;因为重力与电场力的合力方向与运动方向一样,故小球一定做匀加速直线运动,选项C 正确;运动过程中由于电场力做正功,故机械能增大,选项D 正确. 2、答案BC解析小球做匀速圆周运动,重力必与电场力平衡,如此电场力方向竖直向上,结合电场 方向可知小球一定带负电,A 错误,B 正确;洛伦兹力充当向心力,由曲线运动轨迹的 弯曲方向结合左手定如此可得绕行方向为顺时针方向,C 正确,D 错误.3、答案ABC解析粒子在题图中的电场中加速,说明粒子带正电,其通过速度选择器时,电场力与洛伦兹力平衡,如此洛伦兹力方向应水平向左,由左手定如此知,磁场的方向应垂直纸面向外,选项B 正确;由Eq =Bq v 可知,v =E /B ,选项C 正确;粒子打在胶片上的位置到狭缝的距离即为其做匀速圆周运动的直径D =2m vBq ,可见D 越小,如此粒子的比荷越大,D 不同,如此粒子的比荷不同,因此利用该装置可以分析同位素,A 正确,D 错误.4、答案AC解析粒子被加速后的最大速度受到D 形盒半径R 的制约,因v =2πR T=2πRf ,故A 正确;粒子离开盘旋加速器的最大动能E km =12m v 2=12m ×4π2R 2f 2=2m π2R 2f 2,与加速电压U无关,B 错误;根据R =m v Bq ,Uq =12m v 21,2Uq =12m v 22,得质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1,C 正确;因盘旋加速器的最大动能E km =2m π2R 2f 2与m 、R 、f 均有关,D 错误. 【考点】 例1解析 (1)设粒子从左侧O 1点射入的速度为v 0,极板长为L ,粒子在初速度方向上做匀速直线运动L ∶(L -2R )=t 0∶t 02,解得L =4R粒子在电场中做类平抛运动:L -2R =v 0·t 02a =qE mR =12a (t 02)2在复合场中做匀速运动:q U2R=q v 0B联立各式解得v 0=4R t 0,U =8R 2Bt 0(2)设粒子在磁场中做圆周运动的轨迹如下列图,设其轨道半径为r ,粒子恰好从上极板左边缘飞出时速度的偏转角为α,由几何关系可知:β=π-α=45°,r +2r =R因为R =12qE m (t 02)2,所以qE m =q v 0B m =8R t 20根据牛顿第二定律有q v B =m v 2r,解得v =2(2-1)Rt 0所以,粒子在两板左侧间飞出的条件为0<v <2(2-1)Rt 0答案 (1)8R 2Bt 0 (2)0<v <2(2-1)R t 0技巧点拨带电粒子(带电体)在叠加场中运动的分析方法1.弄清叠加场的组成. 2.进展受力分析.3.确定带电粒子的运动状态,注意运动情况和受力情况的结合. 4.画出粒子运动轨迹,灵活选择不同的运动规律.(1)当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解.(2)当带电粒子在叠加场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解. (3)当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解. (4)对于临界问题,注意挖掘隐含条件. 5.记住三点:(1)受力分析是根底; (2)运动过程分析是关键;(3)根据不同的运动过程与物理模型,选择适宜的定理列方程求解.[突破训练1] 答案 (1)E B (2)2E 23gB 2解析液滴在匀强磁场、匀强电场中运动,同时受到洛伦兹力、电场力和重力作用. (1)设液滴a 质量为m 、电荷量为q ,如此液滴b 质量为m 、电荷量为-2q , 液滴a 平衡时有qE =mg ①a 、b 相撞合为一体时,质量为2m ,电荷量为-q ,速度为v ,由题意知处于平衡状态, 重力为2mg ,方向竖直向下,电场力为qE ,方向竖直向上,洛伦兹力方向也竖直向上, 因此满足q v B +qE =2mg ②由①、②两式,可得相撞后速度v =EB(2)对b ,从开始运动至与a 相撞之前,由动能定理有W E +W G =ΔE k ,即(2qE +mg )h =12m v 20③a 、b 碰撞后速度减半,即v =v 02,如此v 0=2v =2EB再代入③式得h =m v 204qE +2mg =v 206g =2E23gB 2【例2】审题指导1.粒子的运动过程是什么?2.要在t =3T 0时使粒子再次到达S 2,且速度为零,需要满足什么条件? 解析 (1)粒子由S 1至S 2的过程,根据动能定理得qU 0=12m v 2①由①式得v =2qU 0m②设粒子的加速度大小为a ,由牛顿第二定律得q U 0d=ma ③由运动学公式得d =12a (T 02)2④联立③④式得d =T 042qU 0m⑤(2)设磁感应强度的大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,由牛顿第二定律得q v B =m v 2R⑥要使粒子在磁场中运动时不与极板相撞,需满足2R >L2⑦联立②⑥⑦式得B <4L 2mU 0q(3)设粒子在两边界之间无场区向左匀速运动的过程所用时间为t 1,有d =v t 1⑧ 联立②⑤⑧式得t 1=T 04⑨假如粒子再次到达S 2时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的时间为t 2,根据运动学公式得d =v2t 2⑩联立⑧⑨⑩式得t 2=T 02⑪设粒子在磁场中运动的时间为tt =3T 0-T 02-t 1-t 2⑫联立⑨⑪⑫式得t =7T 04⑬设粒子在匀强磁场中做匀速圆周运动的周期为T ,由⑥式结合运动学公式得T =2πmqB⑭由题意可知T =t ⑮联立⑬⑭⑮式得B =8πm 7qT 0. 答案 (1) 2qU 0m T 042qU 0m (2)B <4L2mU 0q(3)7T 048πm 7qT 0方法点拨解决带电粒子在组合场中运动问题的思路方法[突破训练2]答案 (1)2m v 0qB (2)3m v 022qE (3)(8+3)m v 0qE +πm 3qB审题指导1.粒子的运动过程是怎样的?2.尝试画出粒子的运动轨迹.3.注意进入磁场时的速度的大小与方向.解析 (1)粒子的运动轨迹如下列图,其在区域Ⅰ的匀强电场中做类平抛运动,设粒子过A 点时速度为v ,由类平抛运动规律知v =v 0cos60°粒子在匀强磁场中做匀速圆周运动,由牛顿第二定律得Bq v =m v 2R ,所以R =2m v 0qB(2)设粒子在区域Ⅰ的电场中运动时间为t 1,加速度为a .如此有qE =ma ,v 0tan60°=at 1,即t 1=3m v 0qEO 、M 两点间的距离为L =12at 21=3m v 022qE(3)设粒子在Ⅱ区域磁场中运动时间为t 2如此由几何关系知t 2=T 16=πm 3qB设粒子在Ⅲ区域电场中运动时间为t 3,a ′=q E 2m =qE 2m 如此t 3=2×2v 0a ′=8m v 0qE粒子从M 点出发到第二次通过CD 边界所用时间为t =t 1+t 2+t 3=3m v 0qE +πm 3qB +8m v 0qE =(8+3)m v 0qE +πm 3qB【例3】解析 (1)粒子在磁场中运动时q v B =m v 2R(2分) T =2πR v (1分)解得T =2πm qB=4×10-3s(1分) (2)粒子的运动轨迹如下列图,t =20×10-3s 时粒子在坐标系做了两个圆周运动和三段类平抛运动,水平位移x =3v 0T ×10-2m(1分)竖直位移y =12a (3T )2(1分) Eq =ma (1分)解得y ×10-2m故t =20×10-3s 时粒子的位置坐标为:(×10-2m ,-3.6×10-2m)(1分)(3)t =24×10-3s 时粒子的速度大小、方向与t =20×10-3s 时一样,设与水平方向夹角为 α(1分)如此v =v 20+v 2y (1分) v y =3aT (1分)tan α=v y v 0(1分) 解得v =10m/s(1分)与x 轴正向夹角α为37°(或arctan 34)斜向右下方(1分) 答案 (1)4×10-3s (2)(×10-2m ,-×10-2m) (3)10m/s 方向与x 轴正向夹角α为37°(或arctan 34)突破训练3答案 (1)3πm 2qB 0 (2)L v 0+m qB 0 (3)2πm v 0qL 6L v 0解析 (1)当小球仅有电场作用时:mg =Eq ,小球将做匀速直线运动.在t 1时刻参加磁场,小球在时间t 0将做匀速圆周运动,圆周运动周期为T 0,假如竖直向下通过D 点,由图甲分析可知:t 0=3T 04=3πm 2qB 0(2)PF -PD =R ,即:甲v 0t 1-L =Rq v 0B 0=m v 20/R所以v 0t 1-L =m v 0qB 0,t 1=L v 0+m qB 0(3)小球运动的速率始终不变,当R 变大时,T 0也增加,小球在电 磁场中的运动的周期T 增加,在小球不飞出电磁场的情况下,当T 最大时有:DQ =2R =L π=2m v 0qB 0B 0=2πm v 0qL ,T 0=2πR v 0=L v 0乙 由图分析可知小球在电磁场中运动的最大周期:T =8×3T 04=6L v 0,小球运动轨迹如图乙所示.。
压轴题08带电粒子在复合场、组合场中的运动1.本专题是电磁场的典型题型之一,包括应用电场力洛伦兹力的知识解决实际问题。
高考中经常在选择题中命题,更是在在计算题中频繁出现。
2024年高考对于复合场、组合场的考查仍然是热点。
2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。
3.用到的相关知识有:电场的知识,磁场的知识等。
近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型带电粒子在复合场中的运动,组合场中的运动等。
考向一:带电体在磁场中的运动1.带电体在匀强磁场中速度变化时洛伦兹力往往随之变化,并进一步导致弹力、摩擦力等的变化,带电体将在变力作用下做变加速运动。
2.利用牛顿运动定律和平衡条件分析各物理量的动态变化时要注意弹力为零的临界状态,此状态是弹力方向发生改变的转折点。
考向二:带电粒子在叠加场中的运动1.三种场的比较力的特点功和能的特点重力场大小:G =mg 方向:竖直向下重力做功与路径无关;重力做功改变物体的重力势能电场大小:F =qE方向:正电荷受力方向与场强方向相同,负电荷受力方向与电强方向相反电场力做功与路径无关;W =qU ;电场力做功改变电势能磁场大小:f =qvB (v ⊥B )方向:可用左手定则判断洛伦兹力不做功,不改变带电粒子的动能2.分析的基本思路(1)弄清叠加场的组成。
(2)进行受力分析,确定带电粒子的运动状态,注意运动情况和受力情况的结合。
(3)画出粒子的运动轨迹,灵活选择不同的运动规律。
①由于洛伦兹力的大小与速度有关,带电粒子在含有磁场的叠加场中的直线运动一定为匀速直线运动,根据平衡条件列式求解。
②当带电粒子在叠加场中做匀速圆周运动时,一定是电场力和重力平衡,洛伦兹力提供向心力,应用平衡条件和牛顿运动定律分别列方程求解。
③当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解。
考向三:带电粒子在组合场中的运动带电粒子在电场、磁场组合场中的运动是指粒子从电场到磁场或从磁场到电场的运动。
一、带电粒子在复合场中的运动专项训练1.压力波测量仪可将待测压力波转换成电压信号,其原理如图1所示,压力波p (t )进入弹性盒后,通过与铰链O 相连的“”型轻杆L ,驱动杆端头A 处的微型霍尔片在磁场中沿x 轴方向做微小振动,其位移x 与压力p 成正比(,0x p αα=>).霍尔片的放大图如图2所示,它由长×宽×厚=a×b×d ,单位体积内自由电子数为n 的N 型半导体制成,磁场方向垂直于x 轴向上,磁感应强度大小为0(1)0B B x ββ=->,.无压力波输入时,霍尔片静止在x=0处,此时给霍尔片通以沿12C C 方向的电流I ,则在侧面上D 1、D 2两点间产生霍尔电压U 0.(1)指出D 1、D 2两点那点电势高;(2)推导出U 0与I 、B 0之间的关系式(提示:电流I 与自由电子定向移动速率v 之间关系为I=nevbd ,其中e 为电子电荷量);(3)弹性盒中输入压力波p (t ),霍尔片中通以相同的电流,测得霍尔电压U H 随时间t 变化图像如图3,忽略霍尔片在磁场中运动场所的电动势和阻尼,求压力波的振幅和频率.(结果用U 0、U 1、t 0、α、及β)【来源】浙江新高考2018年4月选考科目物理试题【答案】(1) D 1点电势高 (2) 001IB U ne d= (3) 101(1)U A U αβ=- ,012f t =【解析】【分析】由左手定则可判定电子偏向D 2边,所以D 1边电势高;当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力,根据电流I 与自由电子定向移动速率v 之间关系为I=nevbd 求出U 0与I 、B 0之间的关系式;图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则可知轻杆的运动周期,当杆运动至最远点时,电压最小,结合U 0与I 、B 0之间的关系式求出压力波的振幅.解:(1)电流方向为C 1C 2,则电子运动方向为C2C1,由左手定则可判定电子偏向D 2边,所以D 1边电势高;(2)当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力0U qvB qb= ① 由电流I nevbd =得:Iv nebd=② 将②带入①得00IB U ned=(3)图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则轻杆的运动周期为T=2t 0 所以,频率为: 012f t =当杆运动至最远点时,电压最小,即取U 1,此时0(1)B B x β=- 取x 正向最远处为振幅A ,有:01(1?)IB U A nedβ=- 所以:00011(1)1IB U ned IB A U Aned ββ==-- 解得:01U U A U β-=根据压力与唯一关系x p α=可得xp α=因此压力最大振幅为:01m U U p U αβ-=2.在平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电的粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图所示.不计粒子重力,求(1)M 、N 两点间的电势差U MN ; (2)粒子在磁场中运动的轨道半径r ; (3)粒子从M 点运动到P 点的总时间t . 【来源】带电粒子在电场、磁场中的运动【答案】1)U MN=(2)r=(3)t=【解析】【分析】【详解】(1)设粒子过N点时的速度为v,有:解得:粒子从M点运动到N点的过程,有:解得:(2)粒子在磁场中以O′为圆心做匀速圆周运动,半径为r,有:解得:(3)由几何关系得:设粒子在电场中运动的时间为t1,有:粒子在磁场中做匀速圆周运动的周期:设粒子在磁场中运动的时间为t2,有:3.如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由.【来源】带电粒子在电场中运动压轴大题【答案】(1)mgEq=,方向沿y轴正方向;mvBqR=,方向垂直xOy平面向外(2)通过坐标原点后离开;理由见解析(3)范围是x>0;理由见解析【解析】【详解】(1)带电微粒平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力的大小相等,方向相反.设电场强度大小为E,由:mg qE=可得电场强度大小:mgqE=方向沿y轴正方向;带电微粒进入磁场后受到重力、电场力和洛伦兹力的作用.由于电场力和重力相互抵消,它将做匀速圆周运动.如图(a)所示:考虑到带电微粒是从C 点水平进入磁场,过O 点后沿y 轴负方向离开磁场,可得圆周运动半径r R =;设磁感应强度大小为B ,由:2v qvB m R=可得磁感应强度大小:mv B qR=根据左手定则可知方向垂直xOy 平面向外;(2)从任一点P 水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动,如图(b )所示,设P 点与O '点的连线与y 轴的夹角为θ,其圆周运动的圆心Q 的坐标为(sin ,cos )R R θθ-,圆周运动轨迹方程为:222(sin )(cos )x R y R R θθ++-=而磁场边界是圆心坐标为(0,R )的圆周,其方程为:22()x y R R +-=解上述两式,可得带电微粒做圆周运动的轨迹与磁场边界的交点为0x y =⎧⎨=⎩或:sin {(1cos )x R y R θθ=-=+坐标为[sin ,(1cos )]R R θθ-+的点就是P 点,须舍去.由此可见,这束带电微粒都是通过坐标原点后离开磁场的;(3)带电微粒初速度大小变为2v ,则从任一点P 水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r '为:(2)2m v r R qB'== 带电微粒在磁场中经过一段半径为r '的圆弧运动后,将在y 轴的右方(x >0区域)离开磁场并做匀速直线运动,如图(c )所示.靠近M 点发射出来的带电微粒在穿出磁场后会射向x 轴正方向的无穷远处;靠近N 点发射出来的带电微粒会在靠近原点之处穿出磁场 所以,这束带电微粒与x 轴相交的区域范围是x >0.答:(1)电场强度mg qE = ,方向沿y 轴正方向和磁感应强度mvB qR=,方向垂直xOy 平面向外.(2)这束带电微粒都是通过坐标原点后离开磁场的;(3)若这束带电微粒初速度变为2v ,这束带电微粒与x 轴相交的区域范围是x >0。
一、带电粒子在复合场中的运动专项训练1.如图所示,在坐标系Oxy 的第一象限中存在沿y 轴正方向的匀强电场,场强大小为E .在其它象限中存在匀强磁场,磁场方向垂直于纸面向里.A 是y 轴上的一点,它到坐标原点O 的距离为h ;C 是x 轴上的一点,到O 的距离为L .一质量为m ,电荷量为q 的带负电的粒子以某一初速度沿x 轴方向从A 点进入电场区域,继而通过C 点进入磁场区域.并再次通过A 点,此时速度方向与y 轴正方向成锐角.不计重力作用.试求: (1)粒子经过C 点速度的大小和方向; (2)磁感应强度的大小B .【来源】2007普通高等学校招生全国统一考试(全国卷Ⅱ)理综物理部分 【答案】(1)α=arctan2h l(2)B 2212mhEh l q+【解析】 【分析】 【详解】试题分析:(1)以a 表示粒子在电场作用下的加速度,有qE ma =①加速度沿y 轴负方向.设粒子从A 点进入电场时的初速度为0v ,由A 点运动到C 点经历的时间为t , 则有:212h at =② 0l v t =③由②③式得02a v h= 设粒子从C 点进入磁场时的速度为v ,v 垂直于x 轴的分量12v ah =⑤ 由①④⑤式得:22101v v v +=()2242qE h l mh+⑥设粒子经过C 点时的速度方向与x 轴的夹角为α,则有1vtanvα=⑦由④⑤⑦式得2harctanlα=⑧(2)粒子从C点进入磁场后在磁场中作速率为v的圆周运动.若圆周的半径为R,则有qvB=m2vR⑨设圆心为P,则PC必与过C点的速度垂直,且有PCuuu r=PA Ru u u r=.用β表示PAu u u r与y轴的夹角,由几何关系得:Rcos Rcos hβα=+⑩Rsin l Rsinβα=-解得222242h lR h lhl++=由⑥⑨式得:B2212mhEh l q+2.利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示的矩形区域ACDG(AC边足够长)中存在垂直于纸面的匀强磁场,A处有一狭缝.离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA边且垂直于磁场的方向射入磁场,运动到GA边,被相应的收集器收集.整个装置内部为真空.已知被加速的两种正离子的质量分别是m1和m2(m1>m2),电荷量均为q.加速电场的电势差为U,离子进入电场时的初速度可以忽略.不计重力,也不考虑离子间的相互作用.(1)求质量为m 1的离子进入磁场时的速率v 1;(2)当磁感应强度的大小为B 时,求两种离子在GA 边落点的间距s ;(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度.若狭缝过宽,可能使两束离子在GA 边上的落点区域交叠,导致两种离子无法完全分离.设磁感应强度大小可调,GA 边长为定值L ,狭缝宽度为d ,狭缝右边缘在A 处.离子可以从狭缝各处射入磁场,入射方向仍垂直于GA 边且垂直于磁场.为保证上述两种离子能落在GA 边上并被完全分离,求狭缝的最大宽度.【来源】2011年普通高等学校招生全国统一考试物理卷(北京) 【答案】(1)12qU m (2)()1228Um m qB - (3)d m =12122m m m m --L【解析】(1)动能定理 Uq =12m 1v 12 得:v 1=12qUm …① (2)由牛顿第二定律和轨道半径有:qvB =2mv R,R = mv qB 利用①式得离子在磁场中的轨道半径为别为(如图一所示):R 1=122mU qB,R 2=222 m U qB ②两种离子在GA 上落点的间距s =2(R 1−R 2)=1228()Um m qB - …③ (3)质量为m 1的离子,在GA 边上的落点都在其入射点左侧2R 1处,由于狭缝的宽度为d ,因此落点区域的宽度也是d (如图二中的粗线所示).同理,质量为m 2的离子在GA 边上落点区域的宽度也是d (如图二中的细线所示).为保证两种离子能完全分离,两个区域应无交叠,条件为2(R 1-R 2)>d…④ 利用②式,代入④式得:2R 1(1−21m m )>d R 1的最大值满足:2R 1m =L-d 得:(L −d )(1−21m m )>d 求得最大值:d m =12122m m m m --L3.如图为一种质谱仪工作原理示意图.在以O 为圆心,OH 为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH 轴的C 和D 分别是离子发射点和收集点.CM 垂直磁场左边界于M ,且OM =d .现有一正离子束以小发散角(纸面内)从C 射出,这些离子在CM 方向上的分速度均为v 0.若该离子束中比荷为qm的离子都能汇聚到D ,试求:(1)磁感应强度的大小和方向(提示:可考虑沿CM 方向运动的离子为研究对象); (2)离子沿与CM 成θ角的直线CN 进入磁场,其轨道半径和在磁场中的运动时间; (3)线段CM 的长度.【来源】电粒子在磁场中的运动【答案】(1)0mv Bqd =,磁场方向垂直纸面向外;(2)cos dR θ'=,()02t d v θα+=;(3)cos CM d t α=。
N专题十一 带电粒子在磁场及复合场中的运动2012年高考题组1.(2012 全国)如图,两根互相平行的长直导线过纸面上的M 、N 两点,且与纸面垂直,导线中通有大小相等、方向相反的电流。
a 、o 、b 在M 、N 的连线上,o 为MN 的中点,c 、d 位于MN 的中垂线上,且a 、b 、c 、d 到o 点的距离均相等。
关于以上几点处的磁场,下列说法正确的是( )A .o 点处的磁感应强度为零B .a 、b 两点处的磁感应强度大小相等,方向相反C .c 、d 两点处的磁感应强度大小相等,方向相同D .a 、c 两点处磁感应强度的方向不同2.(2012 天津)如图所示,金属棒MN 两端由等长的轻质细线水平悬挂,处于竖直向上的匀强磁场中,棒中通以由M 向N 的电流,平衡时两悬线与竖直方向夹角均为θ,如果仅改变下列某一个条件,θ角的相应变化情况是( )A .棒中的电流变大,θ角变大B .两悬线等长变短,θ角变小C .金属棒质量变大,θ角变大D .磁感应强度变大,θ角变小3.(2012 海南)图中装置可演示磁场对通电导线的作用。
电磁铁上下两磁极之间某一水平面内固定两条平行金属导轨,L 是置于导轨上并与导轨垂直的金属杆。
当电磁铁线圈两端a 、b ,导轨两端e 、f ,分别接到两个不同的直流电源上时,L 便在导轨上滑动。
下列说法正确的是( )A .若a 接正极,b 接负极,e 接正极,f 接负极,则L 向右滑动B .若a 接正极,b 接负极,e 接负极,f 接正极,则L 向右滑动C .若a 接负极,b 接正极,e 接正极,f 接负极,则L 向左滑动D .若a 接负极,b 接正极,e 接负极,f 接正极,则L 向左滑动B4.(2012 北京)处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圈周运动。
将该粒子的运动等效为环形电流,那么此电流值( )A .与粒子电荷量成正比B .与粒子速率成正比C .与粒子质量成正比D .与磁感应强度成正比 5.(2012 海南)如图,在两水平极板间存在匀强电场和匀强磁场,电场方向竖直向下,磁场方向垂直于纸面向里。
带电粒子在复合场中的运动典型例题解析【例1】一带电量为+q、质量为m的小球从倾角为θ的光滑的斜面上由静止开始下滑.斜面处于磁感应强度为B的匀强磁场中,磁场方向如图16-83所示,求小球在斜面上滑行的速度范围和滑行的最大距离.解析:带正电小球从光滑斜面下滑过程中受到重力m g、斜面的支持力N 和洛伦兹力f的作用.由于小球下滑速度越来越大,所受的洛伦兹力越来越大,斜面的支持力越来越小,当支持力为零时,小球运动达到临界状态,此时小球的速度最大,在斜面上滑行的距离最大.故m gcosθ=Bqv,v=m gcosθ/Bq,为小球在斜面上运动的最大速度.此时小球移动距离为s=v2/2a=m2gcos2θ/(2B2q2sinθ).点拨:临界条件是物理学中一类较难的问题,在学习中要熟悉它们,并掌握应用的方法.【例2】空气电离后形成正负离子数相等、电性相反、呈现中性状态的等离子体,现有如图16-84所示的装置:P和Q为一对平行金属板,两板距离为d,内有磁感应强度为B的匀强磁场.此装置叫磁流体发电机.设等离子体垂直进入磁场,速度为v,电量为q,气体通过的横截面积(即PQ两板正对空间的横截面积)为S,等效内阻为r,负载电阻为R,求(1)磁流体发电机的电动势ε;(2)磁流体发电机的总功率P.解析:正负离子从左侧进入匀强磁场区域后,正离子受到洛伦兹力后向P 板偏转,负离子向Q板偏转,在两极间形成竖直向下的电场,此后的离子将受到电场力作用.当洛伦兹力与电场力平衡后,等离子流不再偏转,磁流体发电机P、Q板间的电势达到最高.(1)当二力平衡时,有εq/d=Bqv,ε=Bvd.(2)当开关S闭合后,由闭合电路欧姆定律得I=ε/(R+r)=Bvd/(R+r).发电机的总功率P =εI =B 2v 2d 2/(R +r).点拨:分析运动过程,构建物理模型是解决问题的关键.【例3】如图16-85所示,在x 轴上方有水平向左的匀强电场,电场强度为E ,在x 轴下方有垂直纸面向里的匀强磁场,磁感应强度为B .正离子从M 点垂直磁场方向,以速度v 射入磁场区域,从N 点以垂直于x 轴的方向进入电场区域,然后到达y 轴上P 点,若OP =ON ,则入射速度应多大?若正离子在磁场中运动时间为t 1,在电场中运动时间为t 2,则t 1∶t 2多大?点拨:正离子匀强磁场中作匀速圆周运动,从M 经1/4圆弧到N ,在匀强电场中作类平抛运动.【例4】 如图16-86所示,套在很长的绝缘直棒上的小球,其质量为m 、带电量是+q ,小球可在棒上滑动,将此棒竖直放在互相垂直,且沿水平方向的匀强电场和匀强磁场中,电场强度是E ,磁感强度是B ,小球与棒的摩擦系数为μ,求小球由静止沿棒下落的最大加速度和最大速度.(设小球带电量不变)点拨:分析小球受力情况,确定加速度和速度最大的条件:v =0时,a 最大;F 合=0时,v 最大.参考答案例.,π∶例.α=-μ=μ-最大3E /2B 2 4mV mg /qB E /B m mg Eq跟踪反馈1.如图16-87所示,一质量为m 的带电液滴在相互垂直的匀强电场和匀强磁场中(电场竖直向下,磁场在水平方向)的竖直平面内作半径为R 的匀速圆周运动,则这个液滴[ ] A.一定带正电,而且沿逆时针方向运动B.一定带负电,而且沿顺时针方向运动C.一定带负电,但绕行方向不能确定D.不能确定带电性质,也不能确定绕行方向2.图16-88中虚线所围的区域内,存在电场强度为E的匀强电场和磁感应强度为B的匀强磁场.已知从左方P点处以v水平射入的电子,穿过此区域未发生偏转,设重力可忽略不计,则在这区域中的E和B的方向可能是[ ] A.E和B都沿水平方向,并与v方向相同B.E和B都沿水平方向,并与v方向相反C.E竖直向上,B垂直纸面向外D.E竖直向上,B垂直纸面向里3.如图16-89所示,光滑的半圆形绝缘曲面半径为R,有一质量为m,带电量为q的带正电小球从与圆心等高的A位置由静止沿曲面下滑,整个装置处于匀强电场和匀强磁场中,磁场的磁感应强度为B,电场强度为E=mg/q.则小球第二次经过最低点时对曲面的压力为多大?4.如图16-90所示,相互垂直的匀强电场和匀强磁场,其电场强度和磁感应强度分别为E和B,一个质量为m,带正电量为q的油滴,以水平速度v0从a点射入,经一段时间后运动到b,试计算(1)油滴刚进入叠加场a点时的加速度.(2)若到达b点时,偏离入射方向的距离为d,此时速度大小为多大?参考答案[]1 B 2ABC 36mg 2Bq Rg 4跟踪反馈...-.①-+②+a Bqv mg Eq m v v Eq mg d m ==+00202()()。
一、带电粒子在复合场中的运动专项训练1.如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面向外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开始沿MN 下滑,到达C 点时离开MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .(1)求小滑块运动到C 点时的速度大小v c ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间为t ,求小滑块运动到P 点时速度的大小v p .【来源】2015年全国普通高等学校招生统一考试物理(福建卷带解析) 【答案】(1)E/B (2)(3)【解析】 【分析】 【详解】小滑块到达C 点时离开MN ,此时与MN 间的作用力为零,对小滑块受力分析计算此时的速度的大小;由动能定理直接计算摩擦力做的功W f ;撤去磁场后小滑块将做类平抛运动,根据分运动计算最后的合速度的大小;(1)由题意知,根据左手定则可判断,滑块在下滑的过程中受水平向左的洛伦兹力,当洛伦兹力等于电场力qE 时滑块离开MN 开始做曲线运动,即Bqv qE = 解得:E v B=(2)从A 到C 根据动能定理:2102f mgh W mv -=- 解得:2212f E W mgh m B=-(3)设重力与电场力的合力为F ,由图意知,在D 点速度v D 的方向与F 地方向垂直,从D 到P 做类平抛运动,在F 方向做匀加速运动a=F /m ,t 时间内在F 方向的位移为212x at =从D 到P ,根据动能定理:150a a +=,其中2114mv 联立解得:()22222()P Dmg qE v t v m+=+ 【点睛】解决本题的关键是分析清楚小滑块的运动过程,在与MN 分离时,小滑块与MN 间的作用力为零,在撤去磁场后小滑块将做类平抛运动,根据滑块的不同的运动过程逐步求解即可.2.在xOy 平面的第一象限有一匀强电磁,电场的方向平行于y 轴向下,在x 轴和第四象限的射线OC 之间有一匀强电场,磁感应强度为B ,方向垂直于纸面向里,有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场,质点到达x 轴上A 点,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d ,接着,质点进入磁场,并垂直与OC 飞离磁场,不计重力影响,若OC 与x 轴的夹角为φ.求:⑴粒子在磁场中运动速度的大小; ⑵匀强电场的场强大小.【来源】带电粒子在复合场中的运动 计算题 【答案】(1) (2)【解析】 【分析】 【详解】试题分析:(1)由几何关系得:R=dsi nφ 由洛仑兹力公式和牛顿第二定律得解得:(2)质点在电场中的运动为类平抛运动.设质点射入电场的速度为v0,在电场中的加速度为a,运动时间为t,则有:v0=vcosφvsinφ=atd=v0t设电场强度的大小为E,由牛顿第二定律得qE=ma解得:3.对铀235的进一步研究在核能的开发和利用中具有重要意义.如图所示,质量为m、电荷量为q的铀235离子,从容器A下方的小孔S1不断飘入加速电场,其初速度可视为零,然后经过小孔S2垂直于磁场方向进入磁感应强度为B的匀强磁场中,做半径为R的匀速圆周运动.离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I.不考虑离子重力及离子间的相互作用.(1)求加速电场的电压U;(2)求出在离子被收集的过程中任意时间t内收集到离子的质量M;(3)实际上加速电压的大小会在U+ΔU范围内微小变化.若容器A中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,应小于多少?(结果用百分数表示,保留两位有效数字)【来源】2012年普通高等学校招生全国统一考试理综物理(天津卷)【答案】(1)(2)(3)0.63%【解析】解:(1)设离子经电场加速后进入磁场时的速度为v,由动能定理得:qU =mv2离子在磁场中做匀速圆周运动,由牛顿第二定律得:qvB=解得:U =(2)设在t时间内收集到的离子个数为N,总电荷量Q = ItQ = NqM =" Nm" =(3)由以上分析可得:R =设m/为铀238离子质量,由于电压在U±ΔU之间有微小变化,铀235离子在磁场中最大半径为:R max=铀238离子在磁场中最小半径为:R min=这两种离子在磁场中运动的轨迹不发生交叠的条件为:R max<R min即:<得:<<其中铀235离子的质量m = 235u(u为原子质量单位),铀238离子的质量m,= 238u 则:<解得:<0.63%4.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为、重力不计的d,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m、带电量q带电粒子,以初速度1v垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)5.如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由.【来源】带电粒子在电场中运动压轴大题【答案】(1)mgEq=,方向沿y轴正方向;mvBqR=,方向垂直xOy平面向外(2)通过坐标原点后离开;理由见解析(3)范围是x>0;理由见解析【解析】【详解】(1)带电微粒平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力的大小相等,方向相反.设电场强度大小为E,由:mg qE=可得电场强度大小:mg qE =方向沿y 轴正方向;带电微粒进入磁场后受到重力、电场力和洛伦兹力的作用.由于电场力和重力相互抵消,它将做匀速圆周运动.如图(a )所示:考虑到带电微粒是从C 点水平进入磁场,过O 点后沿y 轴负方向离开磁场,可得圆周运动半径r R =;设磁感应强度大小为B ,由:2v qvB m R=可得磁感应强度大小:mv B qR=根据左手定则可知方向垂直xOy 平面向外;(2)从任一点P 水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动,如图(b )所示,设P 点与O '点的连线与y 轴的夹角为θ,其圆周运动的圆心Q 的坐标为(sin ,cos )R R θθ-,圆周运动轨迹方程为:222(sin )(cos )x R y R R θθ++-=而磁场边界是圆心坐标为(0,R )的圆周,其方程为:22()x y R R +-=解上述两式,可得带电微粒做圆周运动的轨迹与磁场边界的交点为0x y =⎧⎨=⎩或:sin {(1cos )x R y R θθ=-=+坐标为[sin ,(1cos )]R R θθ-+的点就是P 点,须舍去.由此可见,这束带电微粒都是通过坐标原点后离开磁场的;(3)带电微粒初速度大小变为2v ,则从任一点P 水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r '为:(2)2m v r R qB'== 带电微粒在磁场中经过一段半径为r '的圆弧运动后,将在y 轴的右方(x >0区域)离开磁场并做匀速直线运动,如图(c )所示.靠近M 点发射出来的带电微粒在穿出磁场后会射向x 轴正方向的无穷远处;靠近N 点发射出来的带电微粒会在靠近原点之处穿出磁场 所以,这束带电微粒与x 轴相交的区域范围是x >0.答:(1)电场强度mg qE = ,方向沿y 轴正方向和磁感应强度mvB qR=,方向垂直xOy 平面向外.(2)这束带电微粒都是通过坐标原点后离开磁场的;(3)若这束带电微粒初速度变为2v ,这束带电微粒与x 轴相交的区域范围是x >0。
一、带电粒子在复合场中的运动专项训练1.离子推进器是太空飞行器常用的动力系统,某种推进器设计的简化原理如图所示,截面半径为R 的圆柱腔分为两个工作区.I 为电离区,将氙气电离获得1价正离子;II 为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.I 区产生的正离子以接近0的初速度进入II 区,被加速后以速度v M 从右侧喷出.I 区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出一定速度范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α<90◦).推进器工作时,向I 区注入稀薄的氙气.电子使氙气电离的最小速度为v 0,电子在I 区内不与器壁相碰且能到达的区域越大,电离效果越好.......................已知离子质量为M ;电子质量为m ,电量为e .(电子碰到器壁即被吸收,不考虑电子间的碰撞).(1)求II 区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请判断I 区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围; (4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系.【来源】2014年全国普通高等学校招生统一考试理科综合能力测试物理(浙江卷带解析)【答案】(1)22Mv L(2)垂直于纸面向外(3)043mv B eR >(4)()max 342sin eRB v m α=-【解析】 【分析】 【详解】(1)离子在电场中加速,由动能定理得:212M eU Mv =,得:22M Mv U e =.离子做匀加速直线运动,由运动学关系得:22Mv aL =,得:22Mv a L=.(2)要取得较好的电离效果,电子须在出射方向左边做匀速圆周运动,即为按逆时针方向旋转,根据左手定则可知,此刻Ⅰ区磁场应该是垂直纸面向外.(3)当90α=︒时,最大速度对应的轨迹圆如图一所示,与Ⅰ区相切,此时圆周运动的半径为34r R =洛伦兹力提供向心力,有2maxmaxv Bev m r= 得34max BeRv m=即速度小于等于34BeRm 此刻必须保证043mv B BR>. (4)当电子以α角入射时,最大速度对应轨迹如图二所示,轨迹圆与圆柱腔相切,此时有:90OCO α∠'=︒﹣2ROC =,OC r '=,OO R r '=﹣ 由余弦定理有222(29022R R R r r r cos α⎛⎫=+⨯⨯︒ ⎪⎝⎭﹣)﹣(﹣),90cos sin αα︒-=() 联立解得:()342Rr sin α=⨯-再由:maxmv r Be=,得 ()342max eBRv m sin α=-.考点:带电粒子在匀强磁场中的运动、带电粒子在匀强电场中的运动 【名师点睛】该题的文字叙述较长,要求要快速的从中找出物理信息,创设物理情境;平时要注意读图能力的培养,以及几何知识在物理学中的应用,解答此类问题要有画草图的习惯,以便有助于对问题的分析和理解;再者就是要熟练的掌握带电粒子在磁场中做匀速圆周运动的周期和半径公式的应用.2.在xOy平面的第一象限有一匀强电磁,电场的方向平行于y轴向下,在x轴和第四象限的射线OC之间有一匀强电场,磁感应强度为B,方向垂直于纸面向里,有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场,质点到达x轴上A点,速度方向与x 轴的夹角为φ,A点与原点O的距离为d,接着,质点进入磁场,并垂直与OC飞离磁场,不计重力影响,若OC与x轴的夹角为φ.求:⑴粒子在磁场中运动速度的大小;⑵匀强电场的场强大小.【来源】带电粒子在复合场中的运动计算题【答案】(1) (2)【解析】【分析】【详解】试题分析:(1)由几何关系得:R=dsinφ由洛仑兹力公式和牛顿第二定律得解得:(2)质点在电场中的运动为类平抛运动.设质点射入电场的速度为v0,在电场中的加速度为a,运动时间为t,则有:v0=vcosφd=v0t设电场强度的大小为E,由牛顿第二定律得qE=ma解得:3.对铀235的进一步研究在核能的开发和利用中具有重要意义.如图所示,质量为m、电荷量为q的铀235离子,从容器A下方的小孔S1不断飘入加速电场,其初速度可视为零,然后经过小孔S2垂直于磁场方向进入磁感应强度为B的匀强磁场中,做半径为R的匀速圆周运动.离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I.不考虑离子重力及离子间的相互作用.(1)求加速电场的电压U;(2)求出在离子被收集的过程中任意时间t内收集到离子的质量M;(3)实际上加速电压的大小会在U+ΔU范围内微小变化.若容器A中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,应小于多少?(结果用百分数表示,保留两位有效数字)【来源】2012年普通高等学校招生全国统一考试理综物理(天津卷)【答案】(1)(2)(3)0.63%【解析】解:(1)设离子经电场加速后进入磁场时的速度为v,由动能定理得:qU =mv2离子在磁场中做匀速圆周运动,由牛顿第二定律得:qvB=解得:U =(2)设在t时间内收集到的离子个数为N,总电荷量Q = ItM =" Nm" =(3)由以上分析可得:R =设m /为铀238离子质量,由于电压在U±ΔU 之间有微小变化,铀235离子在磁场中最大半径为:R max =铀238离子在磁场中最小半径为:R min =这两种离子在磁场中运动的轨迹不发生交叠的条件为:R max <R min 即:< 得:<<其中铀235离子的质量m = 235u (u 为原子质量单位),铀238离子的质量m ,= 238u则:<解得:<0.63%4.小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”.两相距为d 的平行金属栅极板M 、N ,板M 位于x 轴上,板N 在它的正下方.两板间加上如图2所示的幅值为U 0的交变电压,周期02mT qBπ=.板M 上方和板N 下方有磁感应强度大小均为B 、方向相反的匀强磁场.粒子探测器位于y 轴处,仅能探测到垂直射入的带电粒子.有一沿x 轴可移动、粒子出射初动能可调节的粒子发射源,沿y 轴正方向射出质量为m 、电荷量为q (q >0)的粒子.t =0时刻,发射源在(x ,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.(1)若粒子只经磁场偏转并在y =y 0处被探测到,求发射源的位置和粒子的初动能; (2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x 与被探测到的位置y 之间的关系【来源】【省级联考】浙江省2019届高三上学期11月选考科目考试物理试题【答案】(1)00x y = ,()202qBy m(2)见解析【解析】 【详解】(1)发射源的位置00x y =, 粒子的初动能:()2002k qBy Em=;(2)分下面三种情况讨论: (i )如图1,002k E qU >由02101mv mv mvy R R Bq Bq Bq===、、, 和221001122mv mv qU =-,222101122mv mv qU =-, 及()012x y R R =++, 得()()22002224x y yqB mqU yqB mqU qBqB=++++;(ii )如图2,0002k qU E qU <<由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =+, 及()032x y d R =--+,得()222023)2x y d y d q B mqU qB=-++++(;(iii )如图3,00k E qU <由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =-, 及()04x y d R =--+, 得()222042x y d y d q B mqU qB=--++-;5.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)6.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
一、带电粒子在复合场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【来源】【市级联考】广东省广州市2019届高三12月调研测试理科综合试题物理试题【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.如图所示,在直角坐标系0≤x≤L 区域内有沿y 轴正方向的匀强电场,在边长为2L 的正方形abcd 区域(包括边界)内有方向垂直纸面向外的匀强磁场.一电子从y 轴上的A (0,32L)点以大小为v 0的速度沿x 轴正方向射入电场,已知电子的质量为m 、电荷量为e ,正方形abcd 的中心坐标为(3L ,0),且ab 边与x 轴平行,匀强电场的电场强度大小20mv E eL=.(1)求电子进入磁场时的位置坐标;(2)若要使电子在磁场中从ab 边射出,求匀强磁场的磁感应强度大小B 满足的条件. 【来源】【全国市级联考】河北省邯郸市2018届高三第一次模拟考试理综物理试题 【答案】(1)(2L ,0)(2)0(21)mv +≤B <0(21)mv +【解析】试题分析:电子在电场中做类平抛运动,分别列出竖直和水平方向的方程,即可求出电子进入磁场时的位置坐标;电子从ab 边界射出,其运动轨迹的临界状态分别与ab 相切和bc 相切,根据几何关系求出相应半径,由洛伦兹力提供向心力即可求出强磁场的磁感应强度大小B 满足的条件.(1)电子在电场中做类平抛运动,轨迹如图所示:则有: 竖直方向有:2112y at = 加速度为:eE a m=水平方方向为:10L t v = 竖直速度:v y =at 1 解得:y 1=2Lv y =v 0所以电子射出电场时的速度方向与x 轴成45°角,则电子在电场中沿x 轴正方向和沿y 轴负方向运动的距离分别为L 和2L,又因为A 点的坐标是(0,32L ),电子在无电场和磁场的区域内做匀速直线运动,则电子射入磁场区的位置坐标为(2L ,0)且射入磁场区的速度大小:v 2v 0,方向与x 轴成45°角.(2)分使电子从ab 边界射出,其运动轨迹的临界状态分别与ab 相切和bc 相切当运动轨迹与ab相切时,有r1+r1sin45°=L电子在磁场中运动,由洛伦兹力提供向心力,有:211mv evBr=解得:01(21)mvB+=当运动轨迹与bc相切时,有:r2+r2sin45°=2L电子在磁场中运动,由洛伦兹力提供向心力,有:222mvevBr=解得:02(21)2mvBLe+=匀强磁场的磁感应强度大小B满足的条件:0(21)2mvLe+≤B<0(21)mvLe+点睛:本题主要考查了带电粒子由电场进入磁场的情况,电子在电场中做类平抛运动,分别列出竖直和水平方向的方程列式分析求解;在磁场中,关键要画出轨迹图分析,根据几何关系求解.3.如图甲所示,在直角坐标系中的0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有以点(2L,0)为圆心、半径为L的圆形区域,与x轴的交点分别为M、N,在xOy平面内,从电离室产生的质量为m、带电荷量为e的电子以几乎为零的初速度从P点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q点沿x轴正方向进入匀强电场,已知O、Q两点之间的距离为2L,飞出电场后从M点进入圆形区域,不考虑电子所受的重力。
一、带电粒子在复合场中的运动专项训练 1.如图所示,在坐标系Oxy的第一象限中存在沿y轴正方向的匀强电场,场强大小为E.在其它象限中存在匀强磁场,磁场方向垂直于纸面向里.A是y轴上的一点,它到坐标
原点O的距离为h;C是x轴上的一点,到O的距离为L.一质量为m,电荷量为q的带负电的粒子以某一初速度沿x轴方向从A点进入电场区域,继而通过C点进入磁场区域.并再次通过A点,此时速度方向与y轴正方向成锐角.不计重力作用.试求: (1)粒子经过C点速度的大小和方向; (2)磁感应强度的大小B.
【来源】2007普通高等学校招生全国统一考试(全国卷Ⅱ)理综物理部分 【答案】(1)α=arctan2hl
(2)B=22
12mhE
hlq
【解析】 【分析】 【详解】 试题分析:(1)以a表示粒子在电场作用下的加速度,有qEma=①
加速度沿y轴负方向.设粒子从A点进入电场时的初速度为0v,由A点运动到C点经历的时间为t,
则有:212hat②
0lvt③
由②③式得02avlh
=④
设粒子从C点进入磁场时的速度为v,v垂直于x轴的分量12vah=⑤
由①④⑤式得:22101vvv==2242qEhlmh
⑥
设粒子经过C点时的速度方向与x轴的夹角为,则有 10
vtanv=⑦
由④⑤⑦式得2harctanl=⑧
(2)粒子从C点进入磁场后在磁场中作速率为v的圆周运动.若圆周的半径为R, 则有qvB=m2vR⑨ 设圆心为P,则PC必与过C点的速度垂直,且有PC=PAR=.用表示PA与y轴的夹角,由几何关系得:RcosRcosh⑩
RsinlRsin- 解得 222242hlRhlhl=
由⑥⑨式得:B=22
12mhE
hlq
2.如图所不,在x轴的上方存在垂直纸面向里,磁感应强度大小为B0的匀强磁场.位于x轴下方的离子源C发射质量为m、电荷量为g的一束负离子,其初速度大小范围0〜
专题八带电粒子在复合场中的运动考纲解读 1.能分析计算带电粒子在复合场中的运动.2.能够解决速度选择器、磁流体发电机、质谱仪等磁场的实际应用问题1.[带电粒子在复合场中的直线运动]某空间存在水平方向的匀强电场(图中未画出),带电小球沿如图1所示的直线斜向下由A点沿直线向B点运动,此空间同时存在由A指向B的匀强磁场,则下列说确的是()A.小球一定带正电B.小球可能做匀速直线运动C.带电小球一定做匀加速直线运动;D.运动过程中,小球的机械能增大;图1 2.[带电粒子在复合场中的匀速圆周运动]如图2所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说确的是() A.小球一定带正电B.小球一定带负电;C.小球的绕行方向为顺时针;D.改变小球的速度大小,小球将不做圆周运动图2考点梳理一、复合场1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域,并不重叠或相邻或在同一区域,电场、磁场交替出现.2.三种场的比较项目名称力的特点功和能的特点重力场大小:G=mg方向:竖直向下重力做功与路径无关重力做功改变物体的重力势能静电场大小:F=qE方向:a.正电荷受力方向与场强方向相同b.负电荷受力方向与场强方向相反电场力做功与路径无关W=qU电场力做功改变电势能磁场洛伦兹力F=q v B方向可用左手定则判断洛伦兹力不做功,不改变带电粒子的动能二、带电粒子在复合场中的运动形式1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.3.[质谱仪原理的理解]如图3所示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有磁感应强度为B0的匀强磁场.下列表述正确的是()A.质谱仪是分析同位素的重要工具;B.速度选择器中的磁场方向垂直纸面向外;C.能通过狭缝P的带电粒子的速率等于E/BD.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小;图3 4.[回旋加速器原理的理解]劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图4所示.置于高真空中的D 形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B的匀强磁场与盒面垂直,高频交流电频率为f,加速电压为U.若A处粒子源产生的质子质量为m、电荷量为+q,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说确的是()A.质子被加速后的最大速度不可能超过2πRf ;B.质子离开回旋加速器时的最大动能与加速电压U成正比C.质子第2次和第1次经过两D形盒间狭缝后轨道半径之比为2∶1 ;D.不改变磁感应强度B和交流电频率f,该回旋加速器的最大动能不变图4规律总结带电粒子在复合场中运动的应用实例1.质谱仪(1)构造:如图5所示,由粒子源、加速电场、偏转磁场和照相底片等构成.图5(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =12m v 2.粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式q v B =m v 2r .由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷. r =1B 2mU q ,m =qr 2B 22U ,q m =2U B 2r 2. 2. 回旋加速器(1)构造:如图6所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处 接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由q v B =m v 2r ,得 E km =q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒 图6半径r 决定,与加速电压无关.(特别提醒 这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动) 的原理.)3. 速度选择器(如图7所示)(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =q v B , 即v =EB . 图74. 磁流体发电机(1)磁流体发电是一项新兴技术,它可以把能直接转化为电能. (2)根据左手定则,如图8中的B 是发电机正极.(3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =q UL =q v B 得两极板间能达到的最大电势差U =BL v . 图85. 电磁流量计工作原理:如图9所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负 离子),在洛伦兹力的作用下横向偏转,a 、b间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定,即:q v B =qE =q U d ,所以v =U Bd ,因此液体流量Q =S v =πd 24·U Bd =πdU4B . 图9考点一 带电粒子在叠加场中的运动1. 带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题. (3)电场力、磁场力、重力并存 ①若三力平衡,一定做匀速直线运动. ②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.2. 带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.例1 如图10所示,带电平行金属板相距为2R ,在两板间有垂直纸面向里、磁感应强度为B 的圆形匀强磁场区域 ,与两板及左侧边缘线相切.一个带正电的粒子(不计重力)沿两板间中心线O 1O 2从左侧边缘O 1点以某一速度射入,恰沿直线通过圆形磁场区域,并从极板边缘飞出,在极板间运动时间为t 0.若撤去磁场,质子仍从O 1点以相同速度射入,则经t 02时间打到极板上. 图10(1)求两极板间电压U ;(2)若两极板不带电,保持磁场不变,该粒子仍沿中心线O 1O 2从O 1点射入,欲使粒子从两板左侧间飞出,射入的速度应满足什么条件?解析 (1)设粒子从左侧O 1点射入的速度为v 0,极板长为L ,粒子在初速度方向上做匀速直线运动L ∶(L -2R )=t 0∶t 02,解得L =4R粒子在电场中做类平抛运动:L -2R =v 0·t 02a =qE mR =12a (t 02)2在复合场中做匀速运动:q U2R=q v 0B联立各式解得v 0=4R t 0,U =8R 2Bt 0(2)设粒子在磁场中做圆周运动的轨迹如图所示,设其轨道半径为r ,粒子恰好从上极板左边缘飞出时速度的偏转角为α,由几何关系可知:β=π-α=45°,r +2r =R因为R =12qE m (t 02)2,所以qE m =q v 0B m =8R t20根据牛顿第二定律有q v B =m v 2r,解得v =2(2-1)Rt 0所以,粒子在两板左侧间飞出的条件为0<v <2(2-1)Rt 0答案 (1)8R 2Bt 0 (2)0<v <2(2-1)R t 0技巧点拨带电粒子(带电体)在叠加场中运动的分析方法1.弄清叠加场的组成. 2.进行受力分析.3.确定带电粒子的运动状态,注意运动情况和受力情况的结合. 4.画出粒子运动轨迹,灵活选择不同的运动规律.(1)当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解.(2)当带电粒子在叠加场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解. (3)当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解. (4)对于临界问题,注意挖掘隐含条件. 5.记住三点:(1)受力分析是基础; (2)运动过程分析是关键;(3)根据不同的运动过程及物理模型,选择合适的定理列方程求解.方法点拨解决带电粒子在组合场中运动问题的思路方法突破训练1 如图11所示,空间存在着垂直纸面向外的水平匀强磁场,磁感应强度为B ,在y 轴两侧分别有方向相反的匀强电场,电场强度均为E ,在两个电场的交界处左侧,有一带正电的液滴a 在电场力和重力作用下静止,现从场中某点由静止释放一个带负电的液滴b ,当它的运动方向变为水平方向时恰与a 相撞,撞后两液滴合为一体,速度减小到原来的一半,并沿x 轴正方向做匀速直线运动,已知液滴b 与a 的质量相等,b 所带电荷量是a 所带电荷量的2倍,且相撞前a 、b 间的静电力忽略不计.(1)求两液滴相撞后共同运动的速度大小;(2)求液滴b 开始下落时距液滴a 的高度h . 图11答案 (1)E B (2)2E 23gB 2解析 液滴在匀强磁场、匀强电场中运动,同时受到洛伦兹力、电场力和重力作用. (1)设液滴a 质量为m 、电荷量为q ,则液滴b 质量为m 、电荷量为-2q , 液滴a 平衡时有qE =mg ① a 、b 相撞合为一体时,质量为2m ,电荷量为-q ,速度为v ,由题意知处于平衡状态, 重力为2mg ,方向竖直向下,电场力为qE ,方向竖直向上,洛伦兹力方向也竖直向上, 因此满足q v B +qE =2mg ②由①、②两式,可得相撞后速度v =EB(2)对b ,从开始运动至与a 相撞之前,由动能定理有W E +W G =ΔE k ,即(2qE +mg )h =12m v 20 ③a 、b 碰撞后速度减半,即v =v 02,则v 0=2v =2EB再代入③式得h =m v 204qE +2mg =v 206g =2E 23gB 2考点二 带电粒子在组合场中的运动1. 近几年各省市的高考题在这里的命题情景大都是组合场模型,或是一个电场与一个磁场相邻,或是两个或多个磁场相邻.2. 解题时要弄清楚场的性质、场的方向、强弱、围等. 3. 要进行正确的受力分析,确定带电粒子的运动状态. 4. 分析带电粒子的运动过程,画出运动轨迹是解题的关键.例2 (2012·理综·23)如图12甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔S 1、S 2,两极板间电压的变化规律如图乙所示,正反向电压的大小均为U 0,周期为T 0.在t =0时刻将一个质量为m 、电荷量为-q (q >0)的粒子由S 1静止释放,粒子在电场力的作用下向右运动,在t =T 02时刻通过S 2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场)(1)求粒子到达S 2时的速度大小v 和极板间距d .(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件.(3)若已保证了粒子未与极板相撞,为使粒子在t =3T 0时刻再次到达S 2,且速度恰好为零,求该过程中粒子在磁场运动的时间和磁感应强度的大小. 审题指导 1.粒子的运动过程是什么?2.要在t =3T 0时使粒子再次到达S 2,且速度为零,需要满足什么条件?解析 (1)粒子由S 1至S 2的过程,根据动能定理得qU 0=12m v 2 ①由①式得v = 2qU 0m②设粒子的加速度大小为a ,由牛顿第二定律得q U 0d=ma ③由运动学公式得d =12a (T 02)2 ④联立③④式得d =T 04 2qU 0m⑤(2)设磁感应强度的大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,由牛顿第二定律得q v B =m v 2R⑥要使粒子在磁场中运动时不与极板相撞,需满足2R >L2⑦联立②⑥⑦式得B <4L 2mU 0q(3)设粒子在两边界之间无场区向左匀速运动的过程所用时间为t 1,有d =v t 1 ⑧ 联立②⑤⑧式得t 1=T 04⑨若粒子再次到达S 2时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的时间为t 2,根据运动学公式得d =v2t 2 ⑩联立⑧⑨⑩式得t 2=T 02 ⑪设粒子在磁场中运动的时间为tt =3T 0-T 02-t 1-t 2 ⑫联立⑨⑪⑫式得t =7T 04⑬设粒子在匀强磁场中做匀速圆周运动的周期为T ,由⑥式结合运动学公式得T =2πmqB⑭由题意可知T =t ⑮联立⑬⑭⑮式得B =8πm7qT 0.答案 (1) 2qU 0m T 04 2qU 0m (2)B <4L 2mU 0q(3)7T 04 8πm 7qT 0突破训练2 如图13所示装置中,区域Ⅰ和Ⅲ中分别有竖直向上和水平向右的匀强电场,电场强度分别为E 和E/2;区域Ⅱ有垂直向外的水平匀强磁场,磁感应强度为B .一质量为m 、带电荷量为q 的带负电粒子(不计重力)从左边界O 点正上方的M 点以速度v 0水平射入电场,经水平分界线OP 上的A 点与OP 成60°角射入区域Ⅱ的磁场,并垂直竖直边界CD 进入Ⅲ区域的匀强电场中.求:(1)粒子在区域Ⅱ匀强磁场中运动的轨迹半径; (2)O 、M 间的距离;(3)粒子从M 点出发到第二次通过CD 边界所经历的时间. 图13答案 (1)2m v 0qB (2) 3m v 022qE (3)(8+3)m v 0qE +πm3qB审题指导 1.粒子的运动过程是怎样的? 2.尝试画出粒子的运动轨迹.3.注意进入磁场时的速度的大小与方向.解析 (1)粒子的运动轨迹如图所示,其在区域Ⅰ的匀强电场中做类平抛运动,设粒子过A 点时速度为v ,由类平抛运动规律知v =v 0cos 60°粒子在匀强磁场中做匀速圆周运动,由牛顿第二定律得Bq v =m v 2R ,所以R =2m v 0qB(2)设粒子在区域Ⅰ的电场中运动时间为t 1,加速度为a .则有qE =ma ,v 0tan 60°=at 1,即t 1=3m v 0qEO 、M 两点间的距离为L =12at 21=3m v 022qE(3)设粒子在Ⅱ区域磁场中运动时间为t 2 则由几何关系知t 2=T 16=πm3qB设粒子在Ⅲ区域电场中运动时间为t 3,a ′=qE 2m =qE2m则t 3=2×2v 0a ′=8m v 0qE粒子从M 点出发到第二次通过CD 边界所用时间为t =t 1+t 2+t 3=3m v 0qE +πm 3qB +8m v 0qE =(8+3)m v 0qE +πm3qB42.带电粒子在交变电场和交变磁场中的运动模型问题的分析解析 (1)粒子在磁场中运动时q v B =m v 2R(2分)T =2πRv (1分)解得T =2πm qB =4×10-3 s (1分)(2)粒子的运动轨迹如图所示,t =20×10-3 s 时粒子在坐标系做了两个 圆周运动和三段类平抛运动,水平位移x =3v 0T =9.6×10-2 m (1分)竖直位移y =12a (3T )2 (1分)Eq =ma (1分) 解得y =3.6×10-2 m故t =20×10-3 s 时粒子的位置坐标为:(9.6×10-2 m ,-3.6×10-2 m) (1分) (3)t =24×10-3 s 时粒子的速度大小、方向与t =20×10-3 s 时相同,设与水平方向夹角为 α (1分) 则v =v 20+v 2y (1分) v y =3aT (1分)tan α=v yv 0 (1分)解得v =10 m/s (1分)与x 轴正向夹角α为37°(或arctan 34)斜向右下方 (1分)答案 (1)4×10-3 s (2)(9.6×10-2 m ,-3.6×10-2 m) (3)10 m/s 方向与x 轴正向夹角α为37°(或arctan 34)突破训练3 如图15甲所示,与纸面垂直的竖直面MN 的左侧空间中存在竖直向上的场强大小为E =2.5×102 N/C 的匀强电场(上、下及左侧无界).一个质量为m =0.5 kg 、电荷 量为q =2.0×10-2 C 的可视为质点的带正电小球,在t =0时刻以大小为v 0的水平初速度 向右通过电场中的一点P ,当t =t 1时刻在电场所在空间中加上一如图乙所示随时间周期 性变化的磁场,使得小球能竖直向下通过D 点,D 为电场中小球初速度方向上的一点, PD 间距为L ,D 到竖直面MN 的距离DQ 为L /π.设磁感应强度垂直纸面向里为正.(g = 10 m/s 2)图15(1)如果磁感应强度B 0为已知量,使得小球能竖直向下通过D 点,求磁场每一次作用时 间t 0的最小值(用题中所给物理量的符号表示);(2)如果磁感应强度B 0为已知量,试推出满足条件的时刻t 1的表达式(用题中所给物理量 的符号表示);(3)若小球能始终在电磁场所在空间做周期性运动,则当小球运动的周期最大时,求出磁感应强度B 0及运动的最大周期T 的大小(用题中所给物理量的符号表示).答案 (1)3πm 2qB 0 (2)L v 0+mqB 0 (3)2πm v 0qL 6L v 0解析 (1)当小球仅有电场作用时:mg =Eq ,小球将做匀速直线运 动.在t 1时刻加入磁场,小球在时间t 0将做匀速圆周运动,圆周 运动周期为T 0,若竖直向下通过D 点,由图甲分析可知: t 0=3T 04=3πm 2qB 0(2)PF -PD =R ,即: 甲 v 0t 1-L =Rq v 0B 0=m v 20/R所以v 0t 1-L =m v 0qB 0,t 1=L v 0+mqB 0(3)小球运动的速率始终不变,当R 变大时,T 0也增加,小球在电 磁场中的运动的周期T 增加,在小球不飞出电磁场的情况下,当T 最大时有:DQ =2R =L π=2m v 0qB 0 B 0=2πm v 0qL ,T 0=2πR v 0=Lv 0 乙由图分析可知小球在电磁场中运动的最大周期: T =8×3T 04=6Lv 0,小球运动轨迹如图乙所示.高考题组1. (2012·课标全国·25)如图16,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线从圆上的a 点射入柱形区域,从圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为3/5R .现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线从a 点射入柱形区域,也从b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小. 答案 14qRB 25m解析 粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛伦兹力公式得q v B =m v 2r ①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 点和d 点.由几何关系知,线段ac 、bc 和过a 、b 两点的圆弧轨迹的两条半径(未画出)围成一正方形.因此ac =bc =r ②设cd =x ,由几何关系得ac =45R +x ③bc =35R +R 2-x 2 ④联立②③④式得r =75R ⑤再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设 其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE =ma ⑥粒子在电场方向和直线方向运动的距离均为r ,由运动学公式得r =12at 2 ⑦r =v t ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得E =14qRB 25m .2. (2012·理综·24)如图17所示,两块水平放置、相距为d 的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m 、水平速度均为v 0、带相等电荷量的墨滴.调节电源电压至U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M 点.(1)判断墨滴所带电荷的种类,并求其电荷量;(2)求磁感应强度B 的值; 图17 (3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M 点,应将磁感应强度调至B ′,则B ′的大小为多少?答案 (1)负电荷 mgdU (2)v 0U gd 2 (3)4v 0U 5gd 2解析 (1)墨滴在电场区域做匀速直线运动,有q Ud=mg ① 由①式得:q =mgdU ②由于电场方向向下,电荷所受电场力向上,可知:墨滴带负电荷.(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力, 墨滴做匀速圆周运动,有q v 0B =m v 02R ③考虑墨滴进入电场、磁场共存区域和下板的几何关系,可知墨滴在该区域恰完成四分之 一圆周运动,则半径R =d ④由②③④式得B =v 0Ugd 2(3)根据题设,墨滴运动轨迹如图所示,设墨滴做圆周运动的半径为R ′,有q v 0B ′=m v 02R ′ ⑤由图可得:R ′2=d 2+(R ′-d2)2 ⑥由⑥式得:R ′=54d ⑦联立②⑤⑦式可得:B ′=4v 0U 5gd 2.3. (2012·理综·24)有人设计了一种带电颗粒的速率分选装置,其原理如图18所示,两带电金属板间有匀强电场,方向竖直向上,其中PQNM 矩形区域还有方向垂直纸面向外的匀强磁场.一束比荷(电荷量与质量之比)均为1k的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O ′O进入两金属板之间,其中速率为v 0的颗粒刚好从Q 点处离开磁场,然后做匀速直线运动到达收集板,重力加速度为g ,PQ =3d , NQ =2d ,收集板与NQ 的距离为l ,不计颗粒间的相互作用.求:(1)电场强度E 的大小; (2)磁感应强度B 的大小;(3)速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离. 图18 答案 见解析解析 (1)设带电颗粒的电荷量为q ,质量为m .由于粒子从Q 点离开磁场后做匀速直线运 动,则有Eq =mg 将q m =1k代入,得E =kg .(2)如图所示,粒子在磁场区域由洛伦兹力提供其做圆周运动的向心力,则有q v 0B =m v 20R ①而由几何知识有R 2=(3d )2+(R -d )2 ②联立①②解得B =k v 05d . ③(3)设速度为λv 0的颗粒在磁场区域运动时竖直方向的位移为y 1, 离开磁场后做匀速直线运动时竖直方向的位移为y 2,偏转角为θ,如图所示,有qλv 0B =m (λv 0)2R 1④将q m =1k 及③式代入④式,得 R 1=5d λ tan θ=221)3(3d R d -y 1=R 1-)3(221d R - y 2=l tan θ则速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离为 y =y 1+y 2解得y =d (5λ-25λ2-9)+3l25λ2-9.模拟题组4. 如图19所示,坐标平面第Ⅰ象限存在大小为E =4×105 N/C 、方向水平向左的匀强电场,在第Ⅱ象限存在方向垂直纸面向里的匀强磁场.质荷比为m q =4×10-10 N/C 的带正电粒子从x轴上的A 点以初速度v 0=2×107 m/s 垂直x 轴射入电场,OA =0.2 m ,不计重力.求: 图19 (1)粒子经过y 轴时的位置到原点O 的距离;(2)若要求粒子不能进入第三象限,求磁感应强度B 的取值围(不考虑粒子第二次进入 电场后的运动情况.)答案 (1)0.4 m (2)B ≥(22+2)×10-2 T解析 (1)设粒子在电场中运动的时间为t ,粒子经过y 轴时的位置与原点O 的距离为y ,则:s OA =12at 2a =F m E =F qy =v 0t联立解得a =1.0×1015 m/s 2 t =2.0×10-8 s y =0.4 m (2)粒子经过y 轴时在电场方向的分速度为: v x =at =2×107 m/s粒子经过y 轴时的速度大小为: v =v x 2+v 02=22×107 m/s与y 轴正方向的夹角为θ,θ=arctanv xv 0=45° 要使粒子不进入第三象限,如图所示,此时粒子做匀速圆周 运动的轨道半径为R ,则:R +22R ≤yq v B =m v 2R联立解得B ≥(22+2)×10-2 T.5. 如图20甲所示,在以O 为坐标原点的xOy 平面,存在着围足够大的电场和磁场,一个带正电小球在t =0时刻以v 0=3gt 0的初速度从O 点沿+x 方向(水平向右)射入该空 间,在t 0时刻该空间同时加上如图乙所示的电场和磁场,其中电场方向竖直向上,场强大小E 0=mg q ,磁场垂直于xOy 平面向外,磁感应强度大小B 0=πmqt 0,已知小球的质量为m ,带电荷量为q ,时间单位为t 0,当地重力加速度为g ,空气阻力不计.试求:图20(1)t 0末小球速度的大小;(2)小球做圆周运动的周期T 和12t 0末小球速度的大小;(3)在给定的xOy 坐标系中,大体画出小球在0到24t 0运动轨迹的示意图; (4)30t 0小球距x 轴的最大距离. 答案 (1)10gt 0 (2)2t 0 13gt 0 (3)见解析图(4)⎝ ⎛⎭⎪⎫92+3+32πgt 20 解析 (1)由题图乙知,0~t 0,小球只受重力作用,做平抛运动,在t 0末: v =v 0x 2+v 0y 2=(3gt 0)2+(gt 0)2=10gt 0(2)当同时加上电场和磁场时,电场力F 1=qE 0=mg ,方向向上因为重力和电场力恰好平衡,所以小球只受洛伦兹力而做匀速圆周运动,有q v B 0=m v 2r运动周期T =2πrv ,联立解得T =2t 0由题图乙知,电场、磁场同时存在的时间正好是小球做匀速圆周运动周期的5倍,即在 这10t 0,小球恰好做了5个完整的匀速圆周运动.所以小球在t 1=12t 0时刻的速度相 当于小球做平抛运动t =2t 0时的末速度. v y 1=g ·2t 0=2gt 0,v x 1=v 0x =3gt 0 所以12t 0末v 1=v x 12+v y 12=13gt 0(3)24t 0运动轨迹的示意图如图所示.(4)分析可知,小球在30t 0时与24t 0时的位置相同,在24t 0小球相当于做了t 2=3t 0的平 抛运动和半个圆周运动.23t 0末小球平抛运动的竖直分位移大小为y 2=12g (3t 0)2=92gt 20竖直分速度v y 2=3gt 0=v 0,所以小球与竖直方向的夹角为θ=45°,速度大小为 v 2=32gt 0此后小球做匀速圆周运动的半径r 2=m v 2qB 0=32gt 20π30t 0小球距x 轴的最大距离:y 3=y 2+(1+cos 45°)r 2=⎝ ⎛⎭⎪⎫92+3+32πgt 20专题突破练 带电粒子在复合场中的运动(限时:60分钟)►题组1 对带电粒子在叠加场中运动的考查1. 如图1所示,在水平匀强电场和垂直纸面向里的匀强磁场中,有一竖直足够长固定绝缘杆MN ,小球P 套在杆上,已知P 的质量为m , 电荷量为+q ,电场强度为E ,磁感应强度为B ,P 与杆间的动摩擦 因数为μ,重力加速度为g .小球由静止开始下滑直到稳定的过程中( )A .小球的加速度一直减小B .小球的机械能和电势能的总和保持不变 图1C .下滑加速度为最大加速度一半时的速度可能是v =2μqE -mg2μqBD .下滑加速度为最大加速度一半时的速度可能是v =2μqE +mg2μqB答案 CD解析 对小球受力分析如图所示,则mg -μ(Eq -q v B )=ma ,随着v 的增加,小球加速度先增加,当Eq =q v B 时加速度达到最大值a max =g ,继续运动,mg -μ(q v B -Eq )=ma ,随着v 的增加,a 逐渐减 小,所以A 错误.因为有摩擦力做功,机械能与电势能总和在减小,B 错误.若在前半段达到最大加速度的一半,则mg -μ(Eq -q v B )=m g2,得v =2μqE -mg 2μqB,若在后半段达到最大加速度的一半,则mg -μ(q v B -Eq )=m g2,得v =2μqE +mg 2μqB ,故C 、D 正确.2. 如图2所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U 加速后,水平进入互相垂直的匀强电场E 和匀强磁场B 的复合场中(E 和B 已知),小球在此空间的竖直面做匀速圆周运动,则 ( ) 图2 A .小球可能带正电B .小球做匀速圆周运动的半径为r =1B2UEg。