带电粒子在复合场中的运动(总结)
- 格式:docx
- 大小:89.78 KB
- 文档页数:3
带电粒子在复合场中的运动一、两种模型1、组合场:即电场与磁场有明显的界线,带电粒子分别在两个区域内做两种不同的运动,即分段运动,该类问题运动过程较为复杂,但对于每一段运动又较为清晰易辨,往往这类问题的关键在于分段运动的连接点时的速度,具有承上启下的作用.2、复合场:即在同一区域内同时有电场和磁场,些类问题看似简单,受力不复杂,但仔细分析其运动往往比较难以把握。
二、三种场力比较电场磁场重力场力的大小①F=qE②与电荷的运动状态无关,在匀强电场中,电场力为恒力。
与电荷的运动状态有关,①电荷静止或v∥B时,不受f洛,②v⊥B时洛仑兹力最大f洛= q B v①G=mg②与电荷的运动状态无关力的方向正电荷受力方向与E方向相同,(负电荷受力方向与E相反)。
f洛方向⊥(B和v)所决定的平面,(可用左手定则判定)总是竖直向下力做功特点做功多少与路径无关,只取决于始末两点的电势差,W=q UAB=ΔEf洛对电荷永不做功,只改变电荷的速度方向,不改变速度的大小做功多少与路径无关,只取决于始末位置的高度差,W=mgh=ΔEp一、带电粒子在复合场中的运动的分类1、带电微粒在三个场共同作用下做匀速圆周运动:必然是电场力和重力平衡,而洛伦兹力充当向心力.2、带电微粒在三个场共同作用下做直线运动:重力和电场力是恒力,它们的合力也是恒力。
当带电微粒的速度平行于磁场时,不受洛伦兹力,因此可能做匀速运动也可能做匀变速运动;当带电微粒的速度垂直于磁场时,一定做匀速运动。
3、较复杂的曲线运动当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.4、分阶段运动带电粒子可能一次通过几个情况不同的复合区域,其运动情况随区域发生变化.该类问题运动过程较为复杂,但对于每一段运动又较为清晰易辨,往往这类问题的关键在于分段运动的连接点时的速度,具有承上启下的作用.【典例训练1】(2009·辽宁、宁夏高考)医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度. 电磁血流计由一对电极a和b以及一对磁极N和S构成,磁极间的磁场是均匀的.使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图5-2-6所示.由于血液中的正负离子随血流一起在磁场中运动,电极a、b之间会有微小电势差.在达到平衡时,血管内部的电场可看做是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测中,两触点间的距离为3.0 mm,血管壁的厚度可忽略,两触点间的电势差为160 μV,磁感应强度的大小为0.040 T.则血流速度的近似值和电极a、b的正负为( )A.1.3 m/s,a正、b负B.2.7 m/s,a正、b负C.1.3 m/s,a负、b正D.2.7 m/s,a负、b正【【典例训练2】(2009·北京高考)如图5-2-7所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场.一带电粒子a(不计重力)以一定的初速度由左边界的O点射入磁场、电场区域,恰好沿直线由区域右边界的O′点(图中未标出)穿出.若撤去该区域内的磁场而保留电场不变,另一个同样的粒子b(不计重力)仍以相同初速度由O点射入,从区域右边界穿出,则粒子b()A.穿出位置一定在O′点下方B.穿出位置一定在O′点上方C.运动时,在电场中的电势能一定减小D.在电场中运动时,动能一定减小3在如图1所示的空间中,存在场强为E 的匀强电场,同时存在沿x 轴负方向、磁感应强度为B 的匀强磁场.一质子(电荷量为e)在该空间恰沿y 轴正方向以速度v 匀速运动.据此可以判断出( ) A.质子所受电场力大小等于eE,运动中电势能减小;沿z 轴正方向电势升高 B.质子所受电场力大小等于eE,运动中电势能增大;沿z 轴正方向电势降低 C.质子所受电场力大小等于evB,运动中电势能不变;沿z 轴正方向电势升高 D.质子所受电场力大小等于evB,运动中电势能不变;沿z 轴正方向电势降低4如图所示,在两平行带电金属板间有垂直纸面向里的匀强磁场,质子、氘核、氚核沿平行于金属板方向,从两极板正中间以相同动能射入两极板间,最后都能从极板间射出,其中氘核沿直线运动未发生偏转,则下列说法正确的是(不计三种粒子的重力)( ) A.质子和氚核也不会偏转 B.质子偏向上极板 C.氚核偏向上极板D.射出时动能最大的是氚核5在一绝缘、粗糙且足够长的水平管道中有一带电量为q 、质量为m 的带电球体,管道半径略大于球体半径。
课题:带电粒子在复合场中的运动知识点总结:一、带电粒子在有界磁场中的运动1.解决带电粒子在有界磁场中运动问题的方法可总结为:(1)画轨迹(草图);(2)定圆心;(3)几何方法求半径.2.几个有用的结论:(1)粒子进入单边磁场时,进、出磁场具有对称性,如图2(a)、(b)、(c)所示.(2)在圆形磁场区域内,沿径向射入的粒子,必沿径向射出,如图(d)所示.(3)当速率一定时,粒子运动的弧长越长,圆心角越大,运动时间越长.二、带电粒子在有界磁场中运动的临界问题带电粒子刚好穿出或刚好不穿出磁场的条件是带电粒子在磁场中运动的轨迹与边界相切.这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极植,但关键是从轨迹入手找准临界状态.(1)当粒子的入射方向不变而速度大小可变时,由于半径不确定,可从轨迹圆的缩放中发现临界点.(2)当粒子的入射速度大小确定而方向不确定时,轨迹圆大小不变,只是位置绕入射点发生了旋转,可从定圆的动态旋转中发现临界点.三、带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.四、带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,除受场力外,还受弹力、摩擦力作用,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.五、带电粒子在组合场中的运动带电粒子在组合场中的运动,实际上是几个典型运动过程的组合,因此解决这类问题要分段处理,找出各分段之间的衔接点和相关物理量,问题即可迎刃而解.常见类型如下:1.从电场进入磁场(1)粒子先在电场中做加速直线运动,然后进入磁场做圆周运动.在电场中利用动能定理或运动学公式求粒子刚进入磁场时的速度.(2)粒子先在电场中做类平抛运动,然后进入磁场做圆周运动.在电场中利用平抛运动知识求粒子进入磁场时的速度.2.从磁场进入电场(1)粒子进入电场时的速度与电场方向相同或相反,做匀变速直线运动(不计重力).(2)粒子进入电场时的速度方向与电场方向垂直,做类平抛运动典例强化例1、在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图3所示.一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出.(1)请判断该粒子带何种电荷,并求出其荷质比q m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?例2、真空区域有宽度为L 、磁感应强度为B 的匀强磁场,磁场方向如图4所示,MN 、PQ 是磁场的边界.质量为m 、电荷量为+q 的粒子沿着与MN 夹角为θ=30°的方向垂直射入磁场中,粒子刚好没能从PQ 边界射出磁场(不计粒子重力的影响),求粒子射入磁场的速度大小及在磁场中运动的时间.例3、如图所示的直角坐标系xOy 中,x <0,y >0的区域内有沿x 轴正方向的匀强电场,x ≥0的区域内有垂直于xOy 坐标平面向外的匀强磁场,x 轴上P 点坐标为(-L,0),y 轴上M 点的坐标为(0,233L ).有一个带正电的粒子从P 点以初速度v 沿y 轴正方向射入匀强电场区域,经过M 点进入匀强磁场区域,然后经x 轴上的C 点(图中未画出)运动到坐标原点O .不计重力.求:(1)粒子在M 点的速度v ′;(2)C 点与O 点的距离x ;(3)匀强电场的电场强度E 与匀强磁场的磁感应强度B 的比值.例4、如图5所示,在NOQ 范围内有垂直于纸面向里的匀强磁场Ⅰ,在MOQ 范围内有垂直于纸面向外的匀强磁场Ⅱ,M 、O 、N 在一条直线上,∠MOQ =60°,这两个区域磁场的磁感应强度大小均为B 。
带电粒子在复合场中的运动1、如图所示,在y > 0的空间中存在匀强电场,场强沿y 轴负方向;在y < 0的空间中,存在匀强磁场,磁场方向垂直xy 平面(纸面)向外.一电量为q 、质量为m 的带正电的运动粒子,经过y 轴上y = h 处的点P1时速率为v0,方向沿x 轴正方向,然后经过x 轴上x = 2h 处的P2点进入磁场,并经过y 轴上y = – 2h 处的P3点.不计粒子的重力,求 (1)电场强度的大小;(2)粒子到达P2时速度的大小和方向; (3)磁感应强度的大小. 2、如图所示的区域中,第二象限为垂直纸面向外的匀强磁场,磁感应强度为B ,第一、第四象限是一个电场强度大小未知的匀强电场,其方向如图。
一个质量为m ,电荷量为+q 的带电粒子从P 孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=30°,粒子恰好从y 轴上的C孔垂直于匀强电场射入匀强电场,经过x 轴的Q 点,已知OQ=OP ,不计粒子的重力,求:(1)粒子从P 运动到C 所用的时间t ; (2)电场强度E 的大小;(3)粒子到达Q 点的动能Ek 。
3、如图所示,半径分别为a 、b 的两同心虚线圆所围空间分别存在电场和磁场,中心O 处固定一个半径很小(可忽略)的金属球,在小圆空间内存在沿半径向内的辐向电场,小圆周与金属球间电势差为U ,两圆之间的空间存在垂直于纸面向里的匀强磁场,设有一个带负电的粒子从金属球表面沿+x 轴方向以很小的初速度逸出,粒子质量为m ,电量为q ,(不计粒子重力,忽略粒子初速度)求:(1)粒子到达小圆周上时的速度为多大?(2)粒子以(1)中的速度进入两圆间的磁场中,当磁感应强度超过某一临界值时,粒子将不能到达大圆周,求此最小值B 。
(3)若磁感应强度取(2)中最小值,且b =(2+1)a ,要粒子恰好第一次沿逸出方向的反方向回到原出发点,粒子需经过多少次回旋?并求粒子在磁场中运动的时间。
带电粒子在复合场中的运动一、知识梳理1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现.2.带电粒子在复合场中的运动形式当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止。
当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动. 当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动。
当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理。
3. 题型分析:带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零做初速度为零的匀加速直线运动保持静止初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点受恒力作用,做匀变速运动洛伦兹力不做功,动能不变“电偏转”和“磁偏转"的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力 F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力运动规律 匀速圆周运动r =mv 0Bq,T =错误!类平抛运动v x =v 0,v y =Eqm tx =v 0t ,y =错误!t 2运动时间 t =错误!T =错误!t =错误!,具有等时性动能 不变变化4。
常见模型(1)从电场进入磁场电场中:加速直线运动⇓磁场中:匀速圆周运动电场中:类平抛运动⇓磁场中:匀速圆周运动(2)从磁场进入电场磁场中:匀速圆周运动⇓错误!电场中:匀变速直线运动磁场中:匀速圆周运动⇓错误!电场中:类平抛运动二、针对练习1.在某一空间同时存在相互正交的匀强电场和匀强磁场,匀强电场的方向竖直向上,磁场方向如图。
高三物理带电粒子在复合场中的运动知识点总结|带电粒子在电场中的运动知识点一、带点粒子在复合场中的运动本质是力学问题1、带电粒子在电场、磁场和重力场等共存的复合场中的运动,其受力情况和运动图景都比较复杂,但其本质是力学问题,应按力学的基本思路,运用力学的基本规律研究和解决此类问题。
2、分析带电粒子在复合场中的受力时,要注意各力的特点。
如带电粒子无论运动与否,在重力场中所受重力及在匀强电场中所受的电场力均为恒力,它们的做功只与始末位置在重力场中的高度差或在电场中的电势差有关,而与运动路径无关。
而带电粒子在磁场中只有运动(且速度不与磁场平行)时才会受到洛仑兹力,力的大小随速度大小而变,方向始终与速度垂直,故洛仑兹力对运动电荷不做功.二、带电微粒在重力、电场力、磁场力共同作用下的运动(电场、磁场均为匀强场)1、带电微粒在三个场共同作用下做匀速圆周运动:必然是电场力和重力平衡,而洛伦兹力充当向心力.2、带电微粒在三个场共同作用下做直线运动:重力和电场力是恒力,它们的合力也是恒力。
当带电微粒的速度平行于磁场时,不受洛伦兹力,因此可能做匀速运动也可能做匀变速运动; 当带电微粒的速度垂直于磁场时,一定做匀速运动。
3、与力学紧密结合的综合题,要认真分析受力情况和运动情况(包括速度和加速度)。
必要时加以讨论。
三、带电粒子在重力场、匀强电场、匀强磁场的复合场中的运动的基本模型有:1、匀速直线运动。
自由的带点粒子在复合场中作的直线运动通常都是匀速直线运动,除非粒子沿磁场方向飞入不受洛仑兹力作用。
因为重力、电场力均为恒力,若两者的合力不能与洛仑兹力平衡,则带点粒子速度的大小和方向将会改变,不能维持直线运动了。
2、匀速圆周运动。
自由的带电粒子在复合场中作匀速圆周运动时,必定满足电场力和重力平衡,则当粒子速度方向与磁场方向垂直时,洛仑兹力提供向心力,使带电粒子作匀速圆周运动。
3、较复杂的曲线运动。
在复合场中,若带电粒子所受合外力不断变化且与粒子速度不在一直线上时,带电粒子作非匀变速曲线运动。
物理专题三 带电粒子在复合场(电场磁场)中的运动解决这类问题时一定要重视画示意图的重要作用。
⑴带电粒子在匀强电场中做类平抛运动。
这类题的解题关键是画出示意图,要点是末速度的反向延长线跟初速度延长线的交点在水平位移的中点。
⑵带电粒子在匀强磁场中做匀速圆周运动。
这类题的解题关键是画好示意图,画示意图的要点是找圆心、找半径和用对称。
例1 右图是示波管内部构造示意图。
竖直偏转电极的板长为l =4cm ,板间距离为d =1cm ,板右端到荧光屏L =18cm ,(本题不研究水平偏转)。
电子沿中心轴线进入偏转电极时的速度为v 0=1.6×107m/s ,电子电荷e =1.6×10-19C ,质量为0.91×10-30kg 。
为了使电子束不会打在偏转电极的极板上,加在偏转电极上的电压不能超过多少?电子打在荧光屏上的点偏离中心点O 的最大距离是多少?[解:设电子刚好打在偏转极板右端时对应的电压为U ,根据侧移公式不难求出U (当时对应的侧移恰好为d /2):2212⎪⎭⎫ ⎝⎛⋅=v l dm Ue d ,得U =91V ;然后由图中相似形对应边成比例可以求得最大偏离量h =5cm 。
]例2 如图甲所示,在真空中,足够大的平行金属板M 、N 相距为d ,水平放置。
它们的中心有小孔A 、B ,A 、B 及O 在同一条竖直线上,两板的左端连有如图所示的电路,交流电源的内阻忽略不计,电动势为U ,U 的方向如图甲所示,U 随时间变化如图乙所示,它的峰值为ε。
今将S 接b 一段足够长时间后又断开,并在A 孔正上方距A 为h (已知d h <)的O 点释放一个带电微粒P ,P 在AB 之间刚好做匀速运动,再将S 接到a 后让P 从O 点自由下落,在t=0时刻刚好进入A 孔,为了使P 一直向下运动,求h 与T 的关系式?[解析:当S 接b 一段足够长的时间后又断开,而带电微粒进入A 孔后刚好做匀速运动,说明它受到的重力与电场力相等,有d q mg ε= 若将S 接a 后,刚从t=0开始,M 、N 两板间的电压为,2ε,故带电粒子进入电场后,所受到的电场力为mg d q F 22==ε,也就是以大小为g 、方向向上的加速度作减速运动。
专题:带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.粒子速度选择器2.磁流体发电机3.电磁流量计.4.质谱仪5.回旋加速器1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.初速为零的离子经过电势差为U的电场加速后,从离子枪T中水平射出,经过一段路程后进入水平放置的两平行金属板MN和PQ之间.离子所经空间存在一磁感强度为B的匀强磁场,如图所示.(不考虑重力作用),离子荷质比q/m(q、m分别是离子的电量与质量)在什么范围内,离子才能打在金属板上?4.如图所示,M 、N 为两块带等量异种电荷的平行金属板,S 1、S 2为板上正对的小孔,N 板右侧有两个宽度均为d 的匀强磁场区域,磁感应强度大小均为B ,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S 1、S 2共线的O 点为原点,向下为正方向建立x 轴.板左侧电子枪发射出的热电子经小孔S 1进入两板间,电子的质量为m ,电荷量为e ,初速度可以忽略.求:(1)当两板间电势差为U 0时,求从小孔S 2射出的电子的速度v 0;(2)两金属板间电势差U 在什么范围内,电子不能穿过磁场区域而打到荧光屏上; (3)电子打到荧光屏上的位置坐标x 和金属板间电势差U 的函数关系.5.如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外.大小可调节的均匀磁场,质量为m ,电量+q 的粒子在环中作半径为R 的圆周运动,A 、B 为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A 板时,A 板电势升高为U ,B 板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B 板时,A场一次次加速下动能不断增大,而绕行半径不变. (l )设t=0时粒子静止在A 板小孔处,在电场作用下加速,并绕行第一圈,求粒子绕行n 圈回到A 板时获得的总动能E n . (2)为使粒子始终保持在半径为R 的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n 圈时的磁感应强度B n .(3)求粒子绕行n 圈所需的总时间t n (设极板间距远小于R ).(4)在(2)图中画出A 板电势U 与时间t 的关系(从t =0起画到粒子第四次离开B 板时即可).(5)在粒子绕行的整个过程中,A 板电势是否可始终保持为+U ?为什么?6.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B =5.0×10-3T 的匀强磁场,方向分别垂直纸面向外和向里.质量为m =6.64×10-27㎏、电荷量为q =+3.2×10-19C 的α粒子(不计α粒子重力),由静止开始经加速电压为U =1205V 的电场(图中未画出)加速后,从坐标点M (-4,2)处平行于x 轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径; (2)你在图中画出α粒子从直线x =-4到直线x =4之间的运动轨迹,并在图中标明轨迹与直线x =4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.7.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N /c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求:(1)小球运动到O 点时的速度大小; (2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离8.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.9.如图甲所示,竖直挡板MN 左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度E =40N/C ,磁感应强度B 随时间t 变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向.t =0时刻,一质量m =8×10-4kg 、电荷量q =+2×10-4C 的微粒在O 点具有竖直向下的速度v =0.12m/s ,O ´是挡板MN 上一点,直线OO´与挡板MN 垂直,取g =10m/s 2.求:(1)微粒再次经过直线OO´时与O 点的距离; (2)微粒在运动过程中离开直线OO ´的最大高度;(3)水平移动挡板,使微粒能垂直射到挡板上,挡板与O 点间的距离应满足的条件.-10.如图所示,在倾角为30°的斜面OA 的左侧有一竖直档板,其上有一小孔P ,OP=0.5m.现有一质量m =4×10-20kg ,带电量q =+2×10-14C 的粒子,从小孔以速度v 0=3×104m/s 水平射向磁感应强度B =0.2T 、方向垂直纸面向外的一圆形磁场区域.且在飞出磁场区域后能垂直打在OA 面上,粒子重力不计.求:(1)粒子在磁场中做圆周运动的半径; (2)粒子在磁场中运动的时间; (3)圆形磁场区域的最小半径;(4)若磁场区域为正三角形且磁场方向垂直向里,粒子运动过程中始终不碰到挡板,其他条件不变,求:此正三角形磁场区域的最小边长.11.如图所示,在x>0的空间中,存在沿x 轴方向的匀强电场,电场强度E=10N/C ;在x<0的空间中,存在垂直xy 平面方向的匀强磁场,磁感应强度B=0.5T .一带负电的粒子(比荷q/m=160C/kg ),在x=0.06m 处的d 点以8m/s 沿y 轴正方向的初速度v 0开始运动,不计带电粒子的重力.求:(1)带电粒子开始运动后第一次到达y 轴时的坐标. (2)带电粒子进入磁场后经多长时间会返回电场. (3)带电粒子的y 方向分运动的周期.12.如图所示,一绝缘圆环轨道位于竖直平面内,半径为R,空心内径远小于R.以圆环圆心O为原点在环面建立平面直角坐标系xOy,在第四象限加一竖直向下的匀强电场,其他象限加垂直环面向外的匀强磁场.一带电量为+q、质量为m的小球在轨道内从b点由静止释放,小球刚好能顺时针沿圆环轨道做圆周运动.(1)求匀强电场的电场强度E.(2)若第二次到达最高点a,小球对轨道恰好无压力,求磁感应强度B.(3)求小球第三次到达a点时对圆环的压力.13.如图所示的区域中,左边为垂直纸面向里的匀强磁场,磁感应强度为B,右边是一个电场强度大小未知的匀强电场,其方向平行于OC且垂直于磁场方向.一个质量为m,电荷量为-q 的带电粒子从P孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=60°,粒子恰好从C孔垂直于OC射入匀强电场,最后打在Q点,已知OQ=2OC,不计粒子的重力,求:(1)粒子从P运动到Q所用的时间t.(2)电场强度E的大小.(3)粒子到达Q点的动能E kQ.14.如图所示,在半径为R的绝缘圆筒内有匀强磁场,方向垂直纸面向里,圆筒正下方有小孔C与平行金属板M、N相通.两板问距离为两板与电动势为E的电源连接,一带电量为一质量为-q、质量为m的带电粒子(重力忽略不计),开始时静止于C点正下方紧靠N板的A点,经电场加速后从C点进入磁场,并以最短的时间从C点射出,己知带电粒子与筒壁的碰撞无电荷量的损失,且每次碰撞时间极短,碰后以原速率返回.求:(1)筒内磁场的磁感应强度大小.(2)带电粒子从A点出发至第一次回到A点射出所经历的时间.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L =3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v3、解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹TP和TQ,分别作出离子在 T、P、Q三点所受的洛仑兹力,分别延长之后相交于O1、O2点,如图所示,O1和O2分别是TP和TQ的圆心,设 R1和 R2分别为相应的半径.离子经电压U加速,由动能定理得.qU=½mv2………①由洛仑兹力充当向心力得qvB=mv2/R………②由①②式得q/m=2U/B2R2由图直角三角形O1CP和O2CQ可得R12=d2+(R1一d/2)2,R1=5d/4……④R22=(2d)2+(R2一d/2)2,R2=17d/4……⑤依题意R1≤R≤R2……⑥由③④⑤⑥可解得2228932dBU≤mq≤222532dBU.(2)4、解析:(1)根据动能定理,得20012eU mv=解得0v=(2)欲使电子不能穿过磁场区域而打在荧光屏上,应有mvr deB=<而212eU mv=由此即可解得222d eBUm<(3)若电子在磁场区域做圆周运动的轨道半径为r,穿过磁场区B2x r=-注意到mvreB=和212eU mv=所以,电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系为222)2d eBx UeB m=≥(3)5、解析:(1)E n=nqv(2)∵nqU=½mv2n∴v n=mnqU2Rmv n2=qv n B n B n=mv n/qR以v n结果代入,B n=qRmmnqU2=R1qnmv2(3)绕行第n圈需时nvRπ2=2πRqvm2n1∴t n=2πRqvm2(1+21+31+……+n1)(4)如图所示,(对图的要求:越来越近的等幅脉冲)(5)不可以,因为这样粒子在A、B之间飞行时电场对其做功+qv,使之加速,在A、B之外飞行时电场又对其做功-qv使之减速,粒子绕行一周,电场对其作的总功为零,能量不会增大。
带电粒子在复合场中的运动发表时间:2011-08-19T16:29:23.780Z 来源:《学习方法报》教研周刊 作者: 马敬卫[导读] 带电粒子在复合场中的运动一般有两种情况:直线运动和圆周运动。
山东省郓城第一中学 马敬卫复合场是指电场、磁场、重力场中三者或任意两者共存的场。
虽然带电粒子在复合场中的运动情况一般较为复杂,但它作为一个力学问题,同样遵循联系力和运动的基本规律。
带电粒子在复合场中的运动一般有两种情况:直线运动和圆周运动。
(1)若带电粒子在电场力、重力和洛伦兹力共同作用下做直线运动,由于电场力和重力为恒力,洛伦兹力方向和速度方向垂直且大小随速度大小而改变,所以只要带电粒子速度大小发生变化,垂直于速度方向的合力就要发生变化,该方向带电粒子的运动状态就会发生变化,带电粒子就会脱离原来的直线轨道而沿曲线运动。
可见,只有带电粒子速度大小不变,才可能做直线运动,也就是说,带电粒子在电场力、重力和洛伦兹力共同作用下做直线运动时,一定是做匀速直线运动。
(2)若带电粒子在电场力、重力和洛伦兹力共同作用下做匀速圆周运动时,由于物体做匀速圆周运动的条件是所受合外力大小恒定、方向时刻和速度方向垂直,这是任何几个恒力或恒力和某一变力无法合成实现的,只有洛伦兹力可满足该条件。
也就是说,带电粒子在上述复合场中如果做匀速圆周运动,只能是除洛伦兹力以外的所有恒力的合力为零才能实现。
总之,处理此类问题,一定要牢牢把握隐含条件。
在解决实际问题时,要做到以下三点:①正确分析受力情况;②充分理解和掌握不同场对带电粒子作用的特点和差异;③认真分析带电粒子运动的详细过程,充分发掘题目中的隐含条件,建立清晰的物理情景,最终把物理模型转化为数学表达式。
下面以两个例子来说明处理此类问题的方法。
1. 带电微粒在电场力、重力和洛伦兹力共同作用下做匀速圆周运动。
必然是电场力和重力平衡,而洛伦兹力充当向心力。
例1 一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直平面内做匀速圆周运动。
带电粒子在复合场中的运动一、带电粒子....(通常不计重力)在混合场中的运动 1.速度选择器正交的匀强磁场和匀强电场组成速度选择器。
带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。
否则将发生偏转。
这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq ,BE v =。
在本图中,速度方向必须向右。
(1)这个结论与离子带何种电荷、电荷多少都无关。
(2)若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。
【例1】 某带电粒子从图中速度选择器左端由中点O 以速度v 0向右射去,从右端中心a 下方的b 点以速度v 1射出;若增大磁感应强度B ,该粒子将打到a 点上方的c 点,且有ac =ab ,则该粒子带___电;第二次射出时的速度为_____。
【例2】 如图所示,一个带电粒子两次以同样的垂直于场线的初速度v 0分别穿越匀强电场区和匀强磁场区, 场区的宽度均为L 偏转角度均为α,求E ∶B2.回旋加速器(1)有关物理学史知识和回旋加速器的基本结构和原理1932年美国物理学家应用了带电粒子在磁场中运动的特点发明了回旋加速器,其原理如图所示。
A 0处带正电的粒子源发出带正电的粒子以速度v 0垂直进入匀强磁场,在磁场中匀速转动半个周期,到达A 1时,在A 1 A 1/处造成向上的电场,粒子被加速,速率由v 0增加到v 1,然后粒子以v 1在磁场中匀速转动半个周期,到达A 2/时,在A 2/ A 2处造成向下的电场,粒子又一次被加速,速率由v 1增加到v 2,如此继续下去,每当粒子经过A A /的交界面时都是它被加速,从而速度不断地增加。
带电粒子在磁场中作匀速圆周运动的周期为qBT mπ2=,为达到不断加速的目的,只要在A A /上加上周期也为T 的交变电压就可以了。
带电粒子在复合场中的运动
一、带电粒子在复合场中的运动
1、复合场的分类
(1)叠加场:电场、磁场、重力场共存,或其中某两场共存。
(2)组合场:电场与磁场各位于一定的区域内,并不重叠或在同一区域,电场、磁场交替出现。
2、带电粒子在复合场中的运动分类
(1)静止或匀速直线运动
当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动。
(2)匀速圆周运动
当带电粒子所受的重力与电场力大小相等、方向相反时(即:Eq=mg),带电粒子在洛伦兹力的作用
下,在垂直于匀强磁场的平面内做匀速圆周运动(即:Bqv=
2
v
m
r
)。
(3)非匀变速曲线运动
当带电粒子所受的合外力的大小和方向均变化,且与初速度方向不在同一条直线上时,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线。
(4)分阶段运动
带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成。
二、带电粒子在复合场中运动的实例分析
1、速度选择器
(1) 带电粒子能够沿直线匀速通过速度选择器的条件是qE=qv B,即v=
(2)平行板中电场强度E和磁感应强度B互相垂直.这种装置能把具有一定
速度的粒子选择出来。
只选择速度,与粒子的正负和带电量无关。
2、质谱仪
(1)构造:如图所示,由粒子源、加速电场、速度选择器、偏转磁场和
照相底片等构成。
(2)原理:
①粒子由静止在加速电场中被加速:qU=错误!mv2。
②粒子在速度选择器中,进行速度筛选。
凡是速度满足v=E B,才能顺
O
利进入偏转磁场。
③粒子进入偏转磁场,受洛伦兹力偏转,做匀速圆周运动。
根据牛顿第二定律得关系式qvB=m得出:
mv r
Bq
=
由图可知:
2mv
op=2r=
Bq
L=得出:
q2
m
v
BL
=
3、回旋加速器
(1)构造:如图所示,D1、D2是半圆金属盒,D形盒的缝隙处接交流电源。
D形盒处于匀强磁场中。
(2)原理:粒子从D1型盒中心附近射出。
经过D形盒缝隙间的电场加
速,获得一定的速度后,进入D2型盒区域,发生偏转(半
圆)后,再次进入电场,电场反向,粒子再次被加速后,再
次进入D1型盒区域,发生偏转(半圆)。
此过程交替进行,
粒子最终从D型盒边界射出。
由q vB=\f(m v2,R)得:
mv r
Bq
=
当粒子圆周运动的半径为D型盒半径R时,速度最大V max=BqR m
则:E kmax=q2B2R2 2m,
特点:①交流电的周期和粒子做匀速圆周运动的周期相等。
②粒子获得的最大动能由磁感应强度B和D形盒半径R决定,与加速电压无关。
4、磁流体发电机
(1)等离子体:等离子体是由部分电子被剥夺后的原子及原子团被
电离后产生的正负离子组成的离子化气体状物质。
(2)根据左手定则,如图中的B板是发电机正极。
(3)原理:等离子体中的正、负离子,在洛伦兹力的作用下横向偏转,A、B间出现电势差,形成电场。
当正、负离子所受的电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定。
磁流体发
电机两极板间的距离为d,等离子体速度为v,磁场的磁感应强度为B,
则由qE=q v B得:E=Bv
进而得出:两极板间能达到的稳定的电势差U=Bvd
5、电磁流量计
工作原理:如图所示,圆形导管直径为d,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a、b间出现电势差,形成电场,当自
由电荷所受的电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定,即:
qv B=qE=q,所以v=,因此液体流量Q=S v=·错误!=错误!。