(九) 带电粒子在复合场中的运动
- 格式:docx
- 大小:297.68 KB
- 文档页数:6
【考向解读】1.2022年主要考试热点:(1)带电粒子在组合复合场中的受力分析及运动分析.(2)带电粒子在叠加复合场中的受力分析及运动分析.(3)带电粒子在交变电磁场中的运动.2.带电粒子在复合场中的运动应当是2022年高考压轴题的首选.(1)复合场中结合牛顿其次定律、运动的合成与分解、动能定理综合分析相关的运动问题.(2)复合场中结合数学中的几何学问综合分析多解问题、临界问题、周期性问题等.【命题热点突破一】带电粒子在组合场中的运动磁偏转”和“电偏转”的差别电偏转磁偏转偏转条件带电粒子以v⊥E进入匀强电场带电粒子以v⊥B进入匀强磁场受力状况只受恒定的电场力只受大小恒定的洛伦兹力运动状况类平抛运动匀速圆周运动运动轨迹抛物线圆弧物理规律类平抛学问、牛顿其次定律牛顿其次定律、向心力公式基本公式L=vt,y=12at2,a=qEm,tan θ=atvr=mvqB,T=2πmqB,t=θ2πT例1.如图所示,静止于A处的离子,经加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN 进入矩形区域的有界匀强电场,电场方向水平向左.静电分析器通道内有均匀辐射分布的电场,已知圆弧虚线的半径为R,其所在处场强为E、方向如图所示;离子质量为m、电荷量为q;QN=2d、PN=3d,离子重力不计.(1)求加速电场的电压U;(2)若离子恰好能打在Q点上,求矩形区域QNCD内匀强电场场强E0的值;(3)若撤去矩形区域QNCD内的匀强电场,换为垂直纸面对里的匀强磁场,要求离子能最终打在QN上,求磁场磁感应强度B的取值范围.(3)离子在匀强磁场中做匀速圆周运动,洛伦兹力供应向心力,依据牛顿其次定律,有qBv=mv2r则r=1BEmRq离子能打在QN上,则既没有从DQ边出去也没有从PN边出去,则离子运动径迹的边界如图中Ⅰ和Ⅱ.由几何关系知,离子能打在QN上,必需满足:32d<r≤2d则有12dEmRq≤B<23dEmRq.答案(1)12ER(2)3ER2d(3)12d EmRq≤B <23dEmRq【变式探究】如图所示的坐标系中,第一象限内存在与x轴成30°角斜向下的匀强电场,电场强度E=400 N/C;第四象限内存在垂直于纸面对里的有界匀强磁场,x轴方向的宽度OA=203cm,y轴负方向无限大,磁感应强度B=1×10-4T.现有一比荷为qm=2×1011 C/kg的正离子(不计重力),以某一速度v0从O点射入磁场,α=60 °,离子通过磁场后刚好从A点射出,之后进入电场.(1)求离子进入磁场B的速度v0的大小;(2)离子进入电场后,经多少时间再次到达x轴上;(3)若离子进入磁场B后,某时刻再加一个同方向的有界匀强磁场使离子做完整的圆周运动,求所加磁场磁感应强度的最小值.解析离子的运动轨迹如图所示离子沿电场方向做初速度为零的匀加速直线运动,加速度为a,位移为l2Eq=ma l2=12at2由几何关系可知tan 60°=l2l1代入数据解得t=3×10-7s(3)由Bqv=mv2r知,B越小,r越大.设离子在磁场中最大半径为R由几何关系得R=12(r1-r1sin 30°)=0.05 m由牛顿运动定律得B1qv0=mv20R得B1=4×10-4T则外加磁场ΔB1=3×10-4T答案(1)4×106 m/s(2)3×10-7s(3)3×10-4T【感悟提升】带电粒子在组合场中的运动问题,一般都是单物体多过程问题,求解策略是“各个击破”:(1)先分析带电粒子在每个场中的受力状况和运动状况,抓住联系相邻两个场的纽带——速度(一般是后场的入射速度等于前场的出射速度),(2)然后利用带电粒子在电场中往往做类平抛运动或直线运动,在磁场中做匀速圆周运动的规律求解.【命题热点突破二】带电粒子在叠加复合场中的运动例2.如图所示,水平线AC和竖直线CD相交于C点,AC上开有小孔S,CD上开有小孔P,AC与CD间存在磁感应强度为B的匀强磁场,磁场方向垂直纸面对里,∠DCG=60°,在CD右侧、CG的下方有一竖直向上的匀强电场E(大小未知)和垂直纸面对里的另一匀强磁场B1(大小未知),一质量为m、电荷量为+q的塑料小球从小孔S处无初速度地进入匀强磁场中,经一段时间恰好能从P孔水平匀速飞出而进入CD右侧,小球在CD右侧做匀速圆周运动而垂直打在CG板上,重力加速度为g.(1)求竖直向上的匀强电场的电场强度E的大小;(2)求CD右侧匀强磁场的磁感应强度B1的大小;(3)若要使小球进入CD右侧后不打在CG上,则B1应满足什么条件?解析(1)因小球在CD右侧受重力、电场力和洛伦兹力作用而做匀速圆周运动,所以有mg=qE,即E=mgq.(2)小球进入磁场后,由于重力作用,速率不断增大,同时在洛伦兹力的作用下小球右偏,当小球从小孔P水平匀速飞出时,受力平衡有Bqv =mg ,即v =mgBq从S 到P 由动能定理得mg CP =12mv 2,即CP =m 2g2q 2B2因小球从小孔P 水平飞入磁场B 1后做匀速圆周运动而垂直打在CG 上,所以C 点即为小球做圆周运动的圆心,半径即为r =CP 又因B 1qv =m v 2r联立得B 1=2B .答案 (1)mgq(2)2B (3)B 1≥4.3B【变式探究】如图所示,离子源A 产生的初速度为零、带电荷量为e 、质量不同的正离子被电压为U 1的加速电场加速后进入一电容器中,电容器两极板之间的距离为d ,电容器中存在磁感应强度大小为B 的匀强磁场和匀强电场.正离子能沿直线穿过电容器,垂直于边界MN 进入磁感应强度大小也为B 的扇形匀强磁场中,∠MNQ =90°.(不计离子的重力)(1)求质量为m 的离子进入电容器时,电容器两极板间的电压U 2; (2)求质量为m 的离子在磁场中做圆周运动的半径;(3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为16m 的离子打在S 2处.求S 1和S 2之间的距离以及能打在NQ 上正离子的质量范围.解析 (1)设离子经加速电场后获得的速度为v 1,应用动能定理有U 1e =12mv 21离子进入电容器后沿直线运动,有U 2ed =Bev 1得U 2=Bd2U 1em又ON =R 2-R 1由几何关系可知S 1和S 2之间的距离ΔS =R 22-ON 2-R 1联立解得ΔS =2(3-1)2U 1mB 2e由R ′2=(2R 1)2+(R ′-R 1)2 解得R ′=52R 1再依据12R 1≤R x ≤52R 1解得m ≤m x ≤25m 答案 (1)Bd 2U 1em(2)2U 1mB 2e(3)m ≤m x ≤25m【命题热点突破三】带电粒子在交变电磁场中的运动及多解问题例3、如图甲所示,宽度为d 的竖直狭长区域内(边界为L 1、L 2),存在垂直纸面对里的匀强磁场和竖直方向上的周期性变化的电场(如图乙所示),电场强度的大小为E 0,E >0表示电场方向竖直向上.t =0时,一带正电、质量为m 的微粒从左边界上的N 1点以水平速度v 射入该区域,沿直线运动到Q 点后,做一次完整的圆周运动,再沿直线运动到右边界上的N 2点.Q 为线段N 1N 2的中点,重力加速度为g .上述d 、E 0、m 、v 、g 为已知量.(1)求微粒所带电荷量q 和磁感应强度B 的大小. (2)求电场变化的周期T .(3)转变宽度d ,使微粒仍能按上述运动过程通过相应宽度的区域,求T 的最小值.(2)设微粒从N 1运动到Q 的时间为t 1,做圆周运动的周期为t 2,则d2=vt 1⑤(1分)qvB =m v 2R⑥(2分)2πR =vt 2⑦(1分)联立③④⑤⑥⑦得t 1=d 2v ;t 2=πvg⑧(2分)电场变化的周期T =t 1+t 2=d 2v +πvg⑨(1分)【感悟提升】空间存在的电场或磁场是随时间周期性变化的,一般呈现“矩形波”的特点.交替变化的电场及磁场会使带电粒子顺次经过不同特点的电场、磁场或叠加的场,从而表现出多过程现象,其特点较为隐蔽,应留意以下两点:(1)认真确定各场的变化特点及相应时间,其变化周期一般与粒子在磁场中的运动周期关联. (2)把粒子的运动过程用直观草图进行分析.【变式探究】如图甲所示,两竖直线所夹区域内存在周期性变化的匀强电场与匀强磁场,变化状况如图乙、丙所示,电场强度方向以y 轴负方向为正,磁感应强度方向以垂直纸面对外为正.t =0时刻,一质量为m 、电量为q 的带正电粒子从坐标原点O 开头以速度v 0沿x 轴正方向运动,粒子重力忽视不计,图乙、丙中E 0=3B 0v 04π,t 0=πm qB 0,B 0已知.要使带电粒子在0~4nt 0(n ∈N)时间内始终在场区运动,求:(1)在t 0时刻粒子速度方向与x 轴的夹角; (2)右边界到O 的最小距离; (3)场区的最小宽度.解析 (1)由牛顿其次定律,得E 0q =ma v y =qE 0mt 0(2分)E 0=3B 0v 04πtan θ=v yv 0(1分) θ=37°(1分)(2)x 1=v 0t 0(1分)如图所示,由几何关系得x 2=R 1-R 1cos 53°(1分)B 0qv =m v 2R 1(1分) v =v 0cos 37°(1分)x =x 1+x 2=(π+0.5)mv 0qB 0(1分)答案 (1)37° (2)(π+0.5)mv 0qB 0(3)(1.5n +1.5+π)mv 0qB 0【高考真题解读】1.(2021·福建理综,22,20分)如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面对外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开头沿MN 下滑,到达C 点时离开 MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .(1)求小滑块运动到C 点时的速度大小v C ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块连续运动到水平地面上 的P 点.已知小滑块在D 点时的速度大小为v D ,从D点运动到P 点的时间 为t ,求小滑块运动到P 点时速度的大小v P .(3)如图,小滑块速度最大时,速度方向与电场力、重力的合力方向垂直.撤 去磁场后小滑块将做类平抛运动,等效加速度为g ′g ′=(qE m)2+g 2⑥ 且v 2P =v 2D +g ′2t 2⑦解得v P =v 2D +⎣⎡⎦⎤(qE m )2+g 2t 2⑧ 答案 (1)E B (2)mgh -mE 22B 2(3)v 2D+⎣⎡⎦⎤(qE m )2+g 2t 22.(2021·重庆理综,9,18分)如图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面对外的匀强磁场.其中MN 和M ′N ′是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ′,O ′N ′=ON =d ,P 为靶点,O ′P =kd (k 为大于1的整数).极板间存在方向向上的匀强电场,两极板间电压为U .质量为m 、带电量为q 的正离子从O 点由静止开头加速,经O ′进入磁场区域.当离子打到极板上O ′N ′区域(含N ′点)或外壳上时将会被吸取.两虚线之间的区域无电场和磁场存在,离子可匀速穿过,忽视相对论效应和离子所受的重力.求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的全部可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间. 解析 (1)粒子经电场加速一次后的速度为v 1,由动能定理得 qU =12mv 21①粒子能打到P 点,则在磁场中的轨道半径r 1=kd2②对粒子在磁场中由牛顿其次定律得qv 1B 1=mv 21r 1③联立①②③式解得B 1=22Uqmqkd④答案 (1)22Uqm qkd (2)22nUqmqkd(n =1,2,3,…,k 2-1)(3)(2k 2-3)πkmd22Uqm (k 2-1)h 2(k 2-1)mUq3.(2021·天津理综,12,20分)现代科学仪器常利用电场、磁场把握带电粒子的运动.真空中存在着如图所示的多层紧密相邻的匀强电场和匀强磁场,电场与磁场的宽度均为d .电场强度为E ,方向水平向右;磁感应强度为B ,方向垂直纸面对里,电场、磁场的边界相互平行且与电场方向垂直.一个质量为m 、电荷量为q 的带正电粒子在第1层电场左侧边界某处由静止释放,粒子始终在电场、磁场中运动,不计粒子重力及运动时的电磁辐射.(1)求粒子在第2层磁场中运动时速度v 2的大小与轨迹半径r 2;(2)粒子从第n 层磁场右侧边界穿出时,速度的方向与水平方向的夹角为θn , 试求sin θn ;(3)若粒子恰好不能从第n 层磁场右侧边界穿出,试问在其他条件不变的状况 下,也进入第n 层磁场,但比荷较该粒子大的粒子能否穿出该层磁场右侧边界,请简要推理说明之.(2)设粒子在第n 层磁场中运动的速度为v n ,轨迹半径为r n (各量的下标均代表 粒子所在层数,下同). nqEd =12mv 2n ⑤qv n B =m v 2nr n⑥图1粒子进入第n 层磁场时,速度的方向与水平方向的夹角为αn ,从第n 层磁场右侧边界穿出时速度方向与水平方向的夹角为θn ,粒子在电场中运动时,垂直于电场线方向的速度重量不变,有v n -1sin θn -1=v n sin αn ⑦ 由图1看出r n sin θn -r n sin αn =d ⑧由⑥⑦⑧式得r n sin θn -r n -1sin θn -1=d ⑨由⑨式看出r 1sin θ1,r 2sin θ2,…,r n sin θn 为一等差数列,公差为d ,可得r n sin θn =r 1sin θ1+(n -1)d ⑩图2粒子穿出时的速度方向与水平方向的夹角为θn ,由于 q ′m ′>q m ⑮则导致 sin θn ′>1⑯说明θn ′不存在,即原假设不成立.所以比荷较该粒子大的粒子不能穿出该层磁场右侧边界.答案 (1)2qEd m 2BmEdq(2)B nqd2mE(3)见解析4.(2021·江苏单科,15,16分)一台质谱仪的工作原理如图所示, 电荷量均为+q 、质量不同的离子飘入电压为U 0的加速电场,其初速度几乎为零.这些离子经加速后通过狭缝O 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场,最终打在底片上.已知放置底片的区域MN =L ,且OM =L .某次测量发觉MN 中左侧23区域MQ 损坏,检测不到离子,但右侧13区域QN 仍能正常检测到离子.在适当调整加速电压后,原本打在MQ 的离子即可在QN 检测到.(1)求原本打在MN 中点P 的离子质量m ;(2)为使原本打在P 的离子能打在QN 区域,求加速电压U 的调整范围;(3)为了在QN 区域将原本打在MQ 区域的全部离子检测完整,求需要调整U 的最少次数.(取lg 2=0.301,lg 3=0.477,lg 5=0.699) 解析 (1)离子在电场中加速: qU 0=12mv 2在磁场中做匀速圆周运动:qvB =m v 2r解得r =1B2mU 0q打在MN 中点P 的离子半径为r 0=34L ,代入解得m =9qB 2L 232U 0(2)由(1)知,U =16U 0r 29L 2离子打在Q 点时r =56L ,U =100U 081 离子打在N 点时r =L ,U =16U 09,则电压的范围 100U 081≤U ≤16U 09 (3)由(1)可知,r ∝U由题意知,第1次调整电压到U 1,使原本Q 点的离子打在N 点L 56L =U 1U 0此时,原本半径为r 1的打在Q 1的离子打在Q 上56L r 1=U 1U 0解得r 1=⎝⎛⎭⎫562L答案 (1)9qB 2L 232U 0 (2)100U 081≤U ≤16U 09(3)3次5.(2022·浙江理综,25,22分)离子推动器是太空飞行器常用的动力系统.某种推动器设计的简化原理如图1所示,截面半径为R 的圆柱腔分为两个工作区.Ⅰ为电离区,将氙气电离获得1价正离子;Ⅱ为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.Ⅰ区产生的正离子以接近0的初速度进入Ⅱ区,被加速后以速度v M 从右侧喷出.Ⅰ区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出肯定速率范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图2所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α≤90°).推动器工作时,向Ⅰ区注入淡薄的氙气.电子使氙气电离的最小速率为v 0,电子在Ⅰ区内不与器壁相碰且能到达的区域越大,电离效果越好.已知离子质量为M ;电子质量为m ,电荷量为e .(电子遇到器壁即被吸取,不考虑电子间的碰撞)(1)求Ⅱ区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请推断Ⅰ区中的磁场方向(按图2说明是“垂直纸面对里”或“垂直纸面对外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围;(4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系. 解析 (1)由动能定理得12Mv 2M=eU ①U =Mv 2M2e②a =eE M =e U ML =v 2M 2L③(4)电子运动轨迹如图所示, OA =R -r ,OC =R2,AC =r依据几何关系得r =3R4(2-sin α)⑨由⑥⑨式得v max =3eBR4m (2-sin α)答案 (1)Mv 2M 2e v 2M2L (2)垂直纸面对外(3)v 0≤v <3eBR 4m (4)v max =3eBR4m (2-sin α)6.(2022·重庆理综,9,18分)如图所示,在无限长的竖直边界NS 和MT 间布满匀强电场,同时该区域上、下部分分别布满方向垂直于NSTM 平面对外和向内的匀强磁场,磁感应强度大小分别为B 和2B ,KL 为上、下磁场的水平分界线,在NS 和MT 边界上,距KL 高h 处分别有P 、Q 两点,NS 和MT 间距为1.8h .质量为m 、带电荷量为+q 的粒子从P 点垂直于NS 边 界射入该区域,在两边界之间做圆周运动,重力加速度为g .(1)求电场强度的大小和方向.(2)要使粒子不从NS 边界飞出,求粒子入射速度的最小值.(3)若粒子能经过Q 点从MT 边界飞出,求粒子入射速度的全部可能值. 解析 (1)设电场强度大小为E . 由题意有mg =qE得E =mgq,方向竖直向上.(2)如图1所示,设粒子不从NS 边飞出的入射速度最小值为V min ,对应的粒子 在上、下区域的运动半径分别为r 1和r 2,圆心的连线与NS 的夹角为φ. 由r =mvqB有r 1=mv min qB ,r 2=12r 1由(r 1+r 2)sin φ=r 2 r 1+r 1cos φ=hv min =(9-62)qBhm答案 (1)mg q ,方向竖直向上 (2)(9-62)qBhm(3)见解析7.(2022·大纲全国,25,20分)如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(xy 平面)向外;在第四象限存在匀强电场,方向沿x 轴负向.在y 轴正半轴上某点以与x 轴正向平行、大小为v 0的速度放射出一带正电荷的粒子,该粒子在(d ,0)点沿垂直于x 轴的方向进入电场.不计重力.若该粒子离开电场时速度方向与Y 轴负方向的夹角为θ,求(1)电场强度大小与磁感应强度大小的比值; (2)该粒子在电场中运动的时间.解析 (1)如图,粒子进入磁场后做匀速圆周运动.设磁感应强度的大小为B ,粒子质量与所带电荷量分别为m 和q ,圆周运动的半径为R 0.由洛仑兹力公式 及牛顿其次定律得qv 0B =m v 20R 0①由题给条件和几何关系可知R 0=d ②答案 (1)12v 0tan 2θ (2)2dv 0tan θ。
带电粒子在复合场中的运动(2007年全国卷2)25。
(20分)如图所示,在坐标系Oxy 的第一象限中在在沿y 轴正方向的匀强电场,场强大小为E 。
在其它象限中在在匀强磁场,磁场方向垂直于纸面向里,A 是y 轴上的一点,它到坐标原点O 的距离为h ;C 是x 轴上的一点,到O 点的距离为l ,一质量为m 、电荷量为q 的带负电的粒子以某一初速度沿x 轴方向从A 点进入电场区域,继而通过C 点进入磁场区域,并再次通过A 点,此时速度方向与y 轴正方向成锐角.不计重力作用。
试求: (1)粒子经过C 点时速度的大小和方向; (2)磁感应强度的大小B 。
(2008年全国卷1)25.(22分)如图所示,在坐标系xOy 中,过原点的直线OC 与x 轴正向的夹角φ=120º。
在OC 右侧有一匀强电场;在第二、三象限内有一匀强磁场,其上边界与电场边界重叠、右边界为y 轴、左边界为图中平行于y 轴的虚线,磁场的磁感应强度大小为B ,方向垂直纸面向里。
一带正电荷q 、质量为m 的粒子以某一速度自磁场左边界上的A 点射入磁场区域,并从O 点射出.粒子射出磁场的速度方向与x 轴的夹角θ=30º,大小为v 。
粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两倍。
粒子进入电场后,在电场力的作用下又由O 点返回磁场区域,经过一段时间后再次离开磁场。
已知粒子从A 点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期.忽略重力的影响.求:⑴粒子经过A 点时速度的方向和A 点到x 轴的距离; ⑵匀强电场的大小和方向;⑶粒子从第二次离开磁场到再次进入电场时所用的时间.(2009年全国卷2)25。
(18分)如图,在宽度分别为1l 和2l 的Ov ABCyθφ两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。
一带正电荷的粒子以速率v 从磁场区域上边界的P 点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q 点射出。
带电粒子在复合场中的运动1、如图所示,在y > 0的空间中存在匀强电场,场强沿y 轴负方向;在y < 0的空间中,存在匀强磁场,磁场方向垂直xy 平面(纸面)向外.一电量为q 、质量为m 的带正电的运动粒子,经过y 轴上y = h 处的点P1时速率为v0,方向沿x 轴正方向,然后经过x 轴上x = 2h 处的P2点进入磁场,并经过y 轴上y = – 2h 处的P3点.不计粒子的重力,求 (1)电场强度的大小;(2)粒子到达P2时速度的大小和方向; (3)磁感应强度的大小. 2、如图所示的区域中,第二象限为垂直纸面向外的匀强磁场,磁感应强度为B ,第一、第四象限是一个电场强度大小未知的匀强电场,其方向如图。
一个质量为m ,电荷量为+q 的带电粒子从P 孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=30°,粒子恰好从y 轴上的C孔垂直于匀强电场射入匀强电场,经过x 轴的Q 点,已知OQ=OP ,不计粒子的重力,求:(1)粒子从P 运动到C 所用的时间t ; (2)电场强度E 的大小;(3)粒子到达Q 点的动能Ek 。
3、如图所示,半径分别为a 、b 的两同心虚线圆所围空间分别存在电场和磁场,中心O 处固定一个半径很小(可忽略)的金属球,在小圆空间内存在沿半径向内的辐向电场,小圆周与金属球间电势差为U ,两圆之间的空间存在垂直于纸面向里的匀强磁场,设有一个带负电的粒子从金属球表面沿+x 轴方向以很小的初速度逸出,粒子质量为m ,电量为q ,(不计粒子重力,忽略粒子初速度)求:(1)粒子到达小圆周上时的速度为多大?(2)粒子以(1)中的速度进入两圆间的磁场中,当磁感应强度超过某一临界值时,粒子将不能到达大圆周,求此最小值B 。
(3)若磁感应强度取(2)中最小值,且b =(2+1)a ,要粒子恰好第一次沿逸出方向的反方向回到原出发点,粒子需经过多少次回旋?并求粒子在磁场中运动的时间。
0906 带电粒子在复合场中运动2一、复合场复合场是指、和重力场并存,或其中某两场并存,或分区域存在.二、带电粒子在复合场中的运动分类1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处在静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受的合外力的大小和方向均变化,且与初速度方向不在同一条直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.三、带电粒子在复合场中运动的应用实例速度选择器(如图所示)(1)平行板中电场强度E 和磁感应强度B 互相这种装置能把含有一定速度的粒子选择出来,因此叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是:qE=qvB,即v=.【针对训练】1.在两平行金属板间,有如图所示的互相正交的匀强电场和匀强磁场.α粒子以速度v0从两板的正中央垂直于电场方向和磁场方向射入时,正好能沿直线匀速通过.供下列各小题选择的答案有A.不偏转B.向上偏转C.向下偏转D.向纸内或纸外偏转(1)若质子以速度v0从两板的正中央垂直于电场方向和磁场方向射入时,质子将.(2)若电子以速度v0从两板的正中央垂直于电场方向和磁场方向射入时,电子将.(3)若质子以不小于v0的速度,沿垂直于匀强电场和匀强磁场的方向从两板正中央射入,质子将.(4)若增大匀强磁场的磁感应强度,其它条件不变,电子以速度v0 沿垂直于电场和磁场的方向,从两极正中央射入,电子将.2.磁流体发电机(1)重要构造如图所示.(2)原理:等离子体(即高温下电离的气体,含有大量带正电和带负电的粒子,而从整体来说呈电中性)喷入磁场,正、负粒子在洛伦兹力的作用下发生上下偏转而聚集到A、B 板上,产生电势差,设A、B 平行金属板的面积为S,相距为L,等离子体的电阻率为ρ,喷入气体速度为v,板间磁场的磁感强度为B,板外电阻为R,当等离子体匀速通过A、B 板间时,A、B 板上聚集的电荷最多,板间电势差最大,相称于电源电动势E,此时离子受力平衡:E 场q=qvB,E 场=vB,电动势E=E 场L=BLv,电源内电阻r=,因此R 中电流为。
带电粒子在复合场中的运动基础知识归纳1.复合场复合场是指 电场 、 磁场 和 重力场 并存,或其中两场并存,或分区域存在,分析方法和力学问题的分析方法基本相同,不同之处是多了电场力和磁场力,分析方法除了力学三大观点(动力学、动量、能量)外,还应注意:(1) 洛伦兹力 永不做功.(2) 重力 和 电场力 做功与路径 无关 ,只由初末位置决定.还有因洛伦兹力随速度而变化,洛伦兹力的变化导致粒子所受 合力 变化,从而加速度变化,使粒子做 变加速 运动.2.带电粒子在复合场中无约束情况下的运动性质(1)当带电粒子所受合外力为零时,将 做匀速直线运动 或处于 静止 ,合外力恒定且与初速度同向时做匀变速直线运动,常见情况有:①洛伦兹力为零(v 与B 平行),重力与电场力平衡,做匀速直线运动,或重力与电场力合力恒定,做匀变速直线运动.②洛伦兹力与速度垂直,且与重力和电场力的合力平衡,做匀速直线运动.(2)当带电粒子所受合外力充当向心力,带电粒子做 匀速圆周运动 时,由于通常情况下,重力和电场力为恒力,故不能充当向心力,所以一般情况下是重力恰好与电场力相平衡,洛伦兹力充当向心力.(3)当带电粒子所受合外力的大小、方向均不断变化时,粒子将做非匀变速的 曲线运动 .3.带电粒子在复合场中有约束情况下的运动带电粒子所受约束,通常有面、杆、绳、圆轨道等,常见的运动形式有 直线运动 和圆周运动 ,此类问题应注意分析洛伦兹力所起的作用.4.带电粒子在交变场中的运动带电粒子在不同场中的运动性质可能不同,可分别进行讨论.粒子在不同场中的运动的联系点是速度,因为速度不能突变,在前一个场中运动的末速度,就是后一个场中运动的初速度.5.带电粒子在复合场中运动的实际应用(1)质谱仪①用途:质谱仪是一种测量带电粒子质量和分离同位素的仪器.②原理:如图所示,离子源S 产生质量为m ,电荷量为q 的正离子(重力不计),离子出来时速度很小(可忽略不计),经过电压为U 的电场加速后进入磁感应强度为B 的匀强磁场中做匀速圆周运动,经过半个周期而达到记录它的照相底片P 上,测得它在P 上的位置到入口处的距离为L ,则qU =21mv 2-0;q B v =m r v 2;L =2r 联立求解得m =UL qB 822,因此,只要知道q 、B 、L 与U ,就可计算出带电粒子的质量m ,若q 也未知,则228L B U m q 又因m ∝L 2,不同质量的同位素从不同处可得到分离,故质谱仪又是分离同位素的重要仪器.(2)回旋加速器①组成:两个D 形盒、大型电磁铁、高频振荡交变电压,D 型盒间可形成电压U .②作用:加速微观带电粒子.③原理:a .电场加速qU =ΔE kb .磁场约束偏转qBv =m rv 2,r =qB mv ∝v c .加速条件,高频电源的周期与带电粒子在D 形盒中运动的周期相同,即T 电场=T 回旋=qBm π2 带电粒子在D 形盒内沿螺旋线轨道逐渐趋于盒的边缘,达到预期的速率后,用特殊装置把它们引出.④要点深化a .将带电粒子在两盒狭缝之间的运动首尾相连起来可等效为一个初速度为零的匀加速直线运动.b .带电粒子每经电场加速一次,回旋半径就增大一次,所以各回旋半径之比为1∶2∶3∶…c .对于同一回旋加速器,其粒子回旋的最大半径是相同的.d .若已知最大能量为E km ,则回旋次数n =qUE 2k m e .最大动能:E km =mr B q 22m 22 f .粒子在回旋加速器内的运动时间:t =UBr 2π2m (3)速度选择器①原理:如图所示,由于所受重力可忽略不计,运动方向相同而速率不同的正粒子组成的粒子束射入相互正交的匀强电场和匀强磁场所组成的场区中,已知电场强度为B ,方向垂直于纸面向里,若粒子运动轨迹不发生偏转(重力不计),必须满足平衡条件:qBv =qE ,故v =BE ,这样就把满足v =BE 的粒子从速度选择器中选择出来了. ②特点:a .速度选择器只选择速度(大小、方向)而不选择粒子的质量和电荷量,如上图中若从右侧入射则不能穿过场区.b .速度选择器B 、E 、v 三个物理量的大小、方向互相约束,以保证粒子受到的电场力和洛伦兹力等大、反向,如上图中只改变磁场B 的方向,粒子将向下偏转.c .v ′>v =B E 时,则qBv ′>qE ,粒子向上偏转;当v ′<v =BE 时,qBv ′<qE ,粒子向下偏转. ③要点深化a .从力的角度看,电场力和洛伦兹力平衡qE =qvB ;b .从速度角度看,v =BE ; c .从功能角度看,洛伦兹力永不做功.(4)电磁流量计①如图所示,一圆形导管直径为d ,用非磁性材料制成,其中有可以导电的液体流过导管.②原理:导电液体中的自由电荷(正、负离子)在洛伦兹力作用下横向偏转,a 、b 间出现电势差,形成电场.当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定.由Bqv =Eq =dU q ,可得v =Bd U 液体流量Q =Sv =4π2d ·Bd U =BdU 4π (5)霍尔效应如图所示,高为h 、宽为d 的导体置于匀强磁场B 中,当电流通过导体时,在导体板的上表面A 和下表面A ′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.设霍尔导体中自由电荷(载流子)是自由电子.图中电流方向向右,则电子受洛伦兹力 向上 ,在上表面A 积聚电子,则qvB =qE ,E =Bv ,电势差U =Eh =Bhv .又I =nqSv导体的横截面积S =hd得v =nqhdI 所以U =Bhv =dBI k nqd BI k=nq1,称霍尔系数.重点难点突破一、解决复合场类问题的基本思路1.正确的受力分析.除重力、弹力、摩擦力外,要特别注意电场力和磁场力的分析.2.正确分析物体的运动状态.找出物体的速度、位置及其变化特点,分析运动过程,如果出现临界状态,要分析临界条件.3.恰当灵活地运用动力学三大方法解决问题.(1)用动力学观点分析,包括牛顿运动定律与运动学公式.(2)用动量观点分析,包括动量定理与动量守恒定律.(3)用能量观点分析,包括动能定理和机械能(或能量)守恒定律.针对不同的问题灵活地选用,但必须弄清各种规律的成立条件与适用范围.二、复合场类问题中重力考虑与否分三种情况1.对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应考虑其重力.2.在题目中有明确交待是否要考虑重力的,这种情况比较正规,也比较简单.3.直接看不出是否要考虑重力的,在进行受力分析与运动分析时,要由分析结果,先进行定性确定是否要考虑重力.典例精析1.带电粒子在复合场中做直线运动的处理方法【例1】如图所示,足够长的光滑绝缘斜面与水平面间的夹角为α(sin α=0.6),放在水平方向的匀强电场和匀强磁场中,电场强度E =50 V/m ,方向水平向左,磁场方向垂直纸面向外.一个电荷量q =+4.0×10-2 C 、质量m =0.40 kg 的光滑小球,以初速度v 0=20 m/s 从斜面底端向上滑,然后又下滑,共经过3 s 脱离斜面.求磁场的磁感应强度(g 取10 m/s 2).【解析】小球沿斜面向上运动的过程中受力分析如图所示.由牛顿第二定律,得qE cos α+mg sin α=ma 1,故a 1=g sin α+mqE α cos =10×0.6 m/s 2+40.08.050100.42⨯⨯⨯- m/s 2=10 m/s 2,向上运动时间t 1=100a v --=2 s 小球在下滑过程中的受力分析如图所示.小球在离开斜面前做匀加速直线运动,a 2=10 m/s 2运动时间t 2=t -t 1=1 s脱离斜面时的速度v =a 2t 2=10 m/s在垂直于斜面方向上有:qvB +qE sin α=mg cos α故B =T 106.050-T 10100.48.01040.0 sin cos 2⨯⨯⨯⨯⨯=--v E qv mg αα=5 T 【思维提升】(1)知道洛伦兹力是变力,其大小随速度变化而变化,其方向随运动方向的反向而反向.能从运动过程及受力分析入手,分析可能存在的最大速度、最大加速度、最大位移等.(2)明确小球脱离斜面的条件是F N =0.【拓展1】如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m ,带电荷量为q ,小球可在棒上滑动,现将此棒竖直放入沿水平方向且互相垂直的匀强磁场和匀强电场中.设小球电荷量不变,小球由静止下滑的过程中( BD )A.小球加速度一直增大B.小球速度一直增大,直到最后匀速C.杆对小球的弹力一直减小D.小球所受洛伦兹力一直增大,直到最后不变【解析】小球由静止加速下滑,f 洛=Bqv 在不断增大,开始一段,如图(a):f 洛<F 电,水平方向有f 洛+F N =F 电,加速度a =mf mg -,其中f =μF N ,随着速度的增大,f 洛增大,F N 减小,加速度也增大,当f 洛=F 电时,a 达到最大;以后如图(b):f 洛>F 电,水平方向有f 洛=F 电+F N ,随着速度的增大,F N 也增大,f 也增大,a =mf mg -减小,当f =mg 时,a =0,此后做匀速运动,故a 先增大后减小,A 错,B 对,弹力先减小后增大,C 错,由f 洛=Bqv 知D 对.2.灵活运用动力学方法解决带电粒子在复合场中的运动问题【例2】如图所示,水平放置的M 、N 两金属板之间,有水平向里的匀强磁场,磁感应强度B =0.5 T.质量为m 1=9.995×10-7 kg 、电荷量为q =-1.0×10-8 C 的带电微粒,静止在N 板附近.在M 、N 两板间突然加上电压(M 板电势高于N 板电势)时,微粒开始运动,经一段时间后,该微粒水平匀速地碰撞原来静止的质量为m 2的中性微粒,并粘合在一起,然后共同沿一段圆弧做匀速圆周运动,最终落在N 板上.若两板间的电场强度E =1.0×103 V/m ,求:(1)两微粒碰撞前,质量为m 1的微粒的速度大小;(2)被碰撞微粒的质量m 2;(3)两微粒粘合后沿圆弧运动的轨道半径.【解析】(1)碰撞前,质量为m 1的微粒已沿水平方向做匀速运动,根据平衡条件有m 1g +qvB =qE解得碰撞前质量m 1的微粒的速度大小为v =5.0100.11010995.9100.1100.187381⨯⨯⨯⨯-⨯⨯⨯=----qB g m qE m/s =1 m/s (2)由于两微粒碰撞后一起做匀速圆周运动,说明两微粒所受的电场力与它们的重力相平衡,洛伦兹力提供做匀速圆周运动的向心力,故有(m 1+m 2)g =qE解得m 2=g qE 1m -=)10995.910100.1100.1(738--⨯-⨯⨯⨯ kg =5×10-10 kg (3)设两微粒一起做匀速圆周运动的速度大小为v ′,轨道半径为R ,根据牛顿第二定律有qv ′B =(m 1+m 2)Rv 2' 研究两微粒的碰撞过程,根据动量守恒定律有m 1v =(m 1+m 2)v ′以上两式联立解得R =5.0100.1110995.9)(87121⨯⨯⨯⨯=='+--qB v m qB v m m m≈200 m 【思维提升】(1)全面正确地进行受力分析和运动状态分析,f洛随速度的变化而变化导致运动状态发生新的变化.(2)若mg 、f 洛、F 电三力合力为零,粒子做匀速直线运动.(3)若F 电与重力平衡,则f 洛提供向心力,粒子做匀速圆周运动.(4)根据受力特点与运动特点,选择牛顿第二定律、动量定理、动能定理及动量守恒定律列方程求解.【拓展2】如图所示,在相互垂直的匀强磁场和匀强电场中,有一倾角为θ的足够长的光滑绝缘斜面.磁感应强度为B ,方向水平向外;电场强度为E ,方向竖直向上.有一质量为m 、带电荷量为+q 的小滑块静止在斜面顶端时对斜面的正压力恰好为零.(1)如果迅速把电场方向转为竖直向下,求小滑块能在斜面上连续滑行的最远距离L 和所用时间t ;(2)如果在距A 端L /4处的C 点放入一个质量与滑块相同但不带电的小物体,当滑块从A点静止下滑到C 点时两物体相碰并黏在一起.求此黏合体在斜面上还能再滑行多长时间和距离?【解析】(1)由题意知qE =mg场强转为竖直向下时,设滑块要离开斜面时的速度为v ,由动能定理有(mg +qE )L sin θ=221mv ,即2mgL sin θ=221mv 当滑块刚要离开斜面时由平衡条件有qvB =(mg +qE )cos θ,即v =qBmg θ cos 2 由以上两式解得L =θθ sin cos 2222B q g m 根据动量定理有t =θθ cot sin 2qBm mg mv = (2)两物体先后运动,设在C 点处碰撞前滑块的速度为v C ,则2mg ·4L sin θ=21mv 2 设碰后两物体速度为u ,碰撞前后由动量守恒有mv C =2mu设黏合体将要离开斜面时的速度为v ′,由平衡条件有qv ′B =(2mg +qE )cos θ=3mg cos θ由动能定理知,碰后两物体共同下滑的过程中有3mg sin θ·s =21·2mv ′2-21·2mu 2 联立以上几式解得s =12sin cos 32222L B q g m -θθ 将L 结果代入上式得s =θθ sin 12cos 352222B q g m 碰后两物体在斜面上还能滑行的时间可由动量定理求得t ′=qBm mg mu v m 35 sin 322=-'θcot θ【例3】在平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图所示.不计重力,求:(1)M 、N 两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r ;(3)粒子从M 点运动到P 点的总时间t .【解析】(1)设粒子过N 点时的速度为v ,有v v 0=cos θ ① v =2v 0 ②粒子从M 点运动到N 点的过程,有qU MN =2022121mv mv - ③ U MN =3mv 20/2q ④(2)粒子在磁场中以O ′为圆心做匀速圆周运动,半径为O ′N ,有qvB =rmv 2⑤ r =qBmv 02 ⑥ (3)由几何关系得ON =r sin θ⑦ 设粒子在电场中运动的时间为t 1,有ON =v 0t 1 ⑧ t 1=qB m 3 ⑨粒子在磁场中做匀速圆周运动的周期T =qB m π2 ⑩设粒子在磁场中运动的时间为t 2,有t 2=2ππθ-T ⑪ t 2=qB m 32π ⑫t =t 1+t 2=qBm 3π)233(+ 【思维提升】注重受力分析,尤其是运动过程分析以及圆心的确定,画好示意图,根据运动学规律及动能观点求解.【拓展3】如图所示,真空室内存在宽度为s =8 cm的匀强磁场区域,磁感应强度B =0.332 T ,磁场方向垂直于纸面向里.紧靠边界ab 放一点状α粒子放射源S ,可沿纸面向各个方向放射速率相同的α粒子.α粒子质量为m=6.64×10-27 kg ,电荷量为q =+3.2×10-19 C ,速率为v=3.2×106 m/s.磁场边界ab 、cd 足够长,cd 为厚度不计的金箔,金箔右侧cd 与MN 之间有一宽度为L =12.8 cm 的无场区域.MN 右侧为固定在O 点的电荷量为Q =-2.0×10-6 C 的点电荷形成的电场区域(点电荷左侧的电场分布以MN 为边界).不计α粒子的重力,静电力常量k =9.0×109 N·m 2/C 2,(取sin 37°=0.6,cos 37°=0.8)求:(1)金箔cd 被α粒子射中区域的长度y ;(2)打在金箔d 端离cd 中心最远的粒子沿直线穿出金箔,经过无场区进入电场就开始以O 点为圆心做匀速圆周运动,垂直打在放置于中心线上的荧光屏FH 上的E 点(未画出),计算OE 的长度;(3)计算此α粒子从金箔上穿出时损失的动能.【解析】(1)粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,有qvB =m Rv 2,得R =Bqmv =0.2 m如图所示,当α粒子运动的圆轨迹与cd 相切时,上端偏离O ′最远,由几何关系得O ′P =22)(s R R --=0.16 m 当α粒子沿Sb 方向射入时,下端偏离O ′最远,由几何关系得O ′Q =)(2s R R --=0.16 m故金箔cd 被α粒子射中区域的长度为y =O ′Q +O ′P =0.32 m(2)如上图所示,OE 即为α粒子绕O 点做圆周运动的半径r .α粒子在无场区域做匀速直线运动与MN 相交,下偏距离为y ′,则 tan 37°=43,y ′=L tan 37°=0.096 m 所以,圆周运动的半径为r =︒'+'37 cos Q O y =0.32 m (3)设α粒子穿出金箔时的速度为v ′,由牛顿第二定律有k r v m rQq 22'= α粒子从金箔上穿出时损失的动能为ΔE k =21mv 2-21mv ′2=2.5×10-14 J3.带电体在变力作用下的运动【例4】竖直的平行金属平板A 、B 相距为d ,板长为L ,板间的电压为U ,垂直于纸面向里、磁感应强度为B 的磁场只分布在两板之间,如图所示.带电荷量为+q 、质量为m 的油滴从正上方下落并在两板中央进入板内空间.已知刚进入时电场力大小等于磁场力大小,最后油滴从板的下端点离开,求油滴离开场区时速度的大小.【错解】由题设条件有Bqv =qE =qdU ,v =Bd U ;油滴离开场区时,水平方向有Bqv +qE =ma ,v 2x =2a ·mqU d 22= 竖直方向有v 2y =v 2+2gL 离开时的速度v ′=m qU dB U gL v v y x 2222222++=+ 【错因】洛伦兹力会随速度的改变而改变,对全程而言,带电体是在变力作用下的一个较为复杂的运动,对这样的运动不能用牛顿第二定律求解,只能用其他方法求解.【正解】由动能定理有mgL +qE 212122-'=v m d mv 2 由题设条件油滴进入磁场区域时有Bqv =qE ,E =U /d由此可以得到离开磁场区域时的速度v ′=m qU dB U gL ++2222 【思维提升】解题时应该注意物理过程和物理情景的把握,时刻注意情况的变化,然后结合物理过程中的受力特点和运动特点,利用适当的解题规律解决问题,遇到变力问题,特别要注意与能量有关规律的运用.【例5】回旋加速器是用来加速带电粒子的装置,如图所示。
带电粒子在复合场中的运动一、带电粒子在复合场中的受力特点带电粒子在重力、电场力、磁场力并存的空间运动时,三种力将按自身的特性独立作用于粒子。
其中洛仑兹力对运动电荷不做功,重力与电场力做功与路径无关。
对微观粒子,重力通常被忽略;对质量较大的油滴或固体微粒,则重力不能忽略。
二、带电粒子在复合场中运动的分析1、当带电微粒在复合场中所受的合外力为零时,微粒将作。
2、当带电微粒所受的合外力与运动方向在一条直线上时,微粒将作。
3、当带电微粒所受合力充当向心力时,微粒将作。
4、当带电微粒所受的合力的大小、方向均是不断变化时的,则粒子将作。
这类问题一般只能用能量关系处理。
设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示,已知一离子在电场力和洛仑兹力作用下由静止开始,自A点沿曲线ACB运动,到达B点时速度为零。
C 点是轨迹的最低点,忽略重力,以下说法不正确的是:()A.此离子必带正电B.A、B位于同一高度C.离子在C点时的速度最大D.离子到达B点后将沿原曲线返回A点如图所示,在绝缘的、竖直放置的塑料管内有一质量为0.1g、带电量为q=+4×10-4C 的小球。
管子放在如图所示的正交匀强电场E和匀强磁场B中,电场强度E=10N/C,方向水平向右,磁戌应强度B=0.5T,方向垂直纸面向里。
小球与管壁动摩擦因数为u=0.2,g=10m/s2.求(1)小球沿管内壁下滑的最大速度。
(2)若其他条件不变,仅将电场方向改为反向时,小球下滑的最大速度又为多少?如图所示,M、N两平行金属板间存在着正交的匀强电场和匀强磁场,一带电粒子(重力不计)从O点以速度υ沿着与两板平行的方向射入场区后,做匀速直线运动,经过时间t1飞出场区;如果两板间只有电场,粒子仍以原来的速度从O点进入电场,经过时间的t2飞出电场;如果两板间只有磁场,粒子仍以原来的速度从O点进入磁场后,经过时间t3飞出磁场,则t1、t2、t3的大小关系为(A)A.t1 = t2<t3B.t2>t1>t3C.t1 = t2 = t3D.t1>t2 = t3训练题如图所示,B为垂直于纸面向里的匀强磁场,小球带有不多的正电荷.让小球从水平、光滑、绝缘的桌面上的A点开始以初速度υ0向右运动,并落在水平地面上,历时t1,落地点距A点的水平距离为s1.然后撤去磁场,让小球仍从A点出发向右做初速为υ0的运动,落在水平地面上,历时t2,落地点距A点的水平距离为s2,则下列结论错误的是(C )A.s1>s2B.t1>t2C.两次落地速度相同D.两次落地动能相同【例2】一带电量为+q、质量为m的小球,从一倾角为θ的光滑斜面上由静止开始滑下.斜面处于磁感应强度为B的匀强磁场中,磁场方向垂直于纸面向外,如图所示.求小球在斜面上滑行的速度范围和最大距离.【解析】以小球为研究对象,分析其受力情况:小球受重力、斜面支持力及洛伦兹力作用.沿斜面方向上,有mg sinθ=ma在垂直于斜面方向上,有F N+F f洛=mg cosθ由F f洛=qυB,知F f洛随着小球运动速度的增大而增大.当F f洛增大到使F N=0时,小球将脱离斜面此时F f洛=qυm B=mg cosθ.所以:υm =qBmg θcos ,此即为小球在斜面上运动速度的最大值. 所以:小球在斜面上滑行的速度范围是0≤υ≤qBmg θcos 小球在斜面上匀加速运动的最大距离为s =22m a υ=θθsin 2)cos (2g qBmg =θθsin 2cos 2222B q mg . 训练题如图质量为m 的小球A 穿在绝缘细杆上,杆的倾角为α,小球A 带正电,电量为q ,在杆上B 点处固定一个电量为Q 的正电荷.将A 由距B 竖直高度为H 处无初速释放,小球A 下滑过程中电量不变,不计A 与细杆间的摩擦,整个装置处在真空中,已知静电力常量k 和重力加速度g .(1)A 球刚释放时的加速度是多大?(2)当A 球的动能最大时,A 球与B 点的距离多大? 答案:(1)a=gsinα-kQqsin 2α/mH 2 (2)s=(kQq/mgsin α)1/2三个质量相同的质点a 、b 、c ,带有等量的正电荷,它们从静止开始,同时从相同的高度落下,下落过程中a 、b 、c 分别进入如图所地的匀强电场、匀强磁场和真空区域中,设它们都将落到同一水平地面上,不计空气阻力,则下列说法中正确的是( )A 、落地时a 的动能最大B 、落地时a 、b 的动能一样大C 、b 的落地时间最短D 、b 的落地时间最长一个质量m=0.1g 的小滑块,带有q=5×10-4C 的电荷放置在倾角α=30°光滑斜面上(绝缘),斜面置于B=0.5T 的匀强磁场中,磁场方向垂直纸面向里,如图所示,小滑块由静止开始沿斜面滑下,其斜面足够长,小滑块滑至某一位置时,要离开斜面。
带电粒子在复合场中的运动目标:1. 掌握带电粒子在电场、磁场中运动的特点2. 理解复合场、组合场对带电粒子受力的分析。
重难点:重点: 带电粒子在电场、磁场中运动的特点;带电粒子在复合场中受力分析 难点: 带电粒子在复合场中运动受力与运动结合。
知识:知识点1 带电粒子在复合场中的运动 1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存. (2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现. 2.带电粒子在复合场中的运动形式(1)静止或匀速直线运动:当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.(2)匀速圆周运动:当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.(3)较复杂的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线. 易错判断(1)带电粒子在复合场中不可能处于静止状态.(×) (2)带电粒子在复合场中可能做匀速圆周运动.(√) (3)带电粒子在复合场中一定能做匀变速直线运动.(×) 知识点2 带电粒子在复合场中的运动实例 1.质谱仪(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等构成.(2)原理:粒子由静止被加速电场加速,qU =12mv 2.粒子在磁场中做匀速圆周运动,有qvB =m v 2r .由以上两式可得r =1B2mUq , m =qr 2B 22U , q m =2UB 2r 2.2.回旋加速器(1)构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子经电场加速,经磁场回旋,由qvB =mv 2r ,得E km =q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒半径r 决定,与加速电压无关.3.速度选择器(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器(如图所示).(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =E/B. 4.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,图中的B 是发电机正极. (3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =qU/L =qvB 得两极板间能达到的最大电势差U =BLv . 易错判断(1)电荷在速度选择器中做匀速直线运动的速度与电荷的电性有关.(×) (2)不同比荷的粒子在质谱仪磁场中做匀速圆周运动的半径不同.(√)(3)粒子在回旋加速器中做圆周运动的半径、周期都随粒子速度的增大而增大.(×)题型分类:题型一 带电粒子在组合场中的运动题型分析:1.带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零 做初速度为零的匀加速直线运动 保持静止 初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点 受恒力作用,做匀变速运动洛伦兹力不做功,动能不变2.“电偏转”和“磁偏转”的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力 运动规律匀速圆周运动r =mv 0Bq ,T =2πmBq类平抛运动v x =v 0,v y =Eqm t x =v 0t ,y =Eq2m t 2运动时间 t =θ2πT =θmBqt =Lv 0,具有等时性动能不变变化3.常见模型(1)从电场进入磁场(2)从磁场进入电场考向1 先电场后磁场【例1】.(2018·哈尔滨模拟)如图所示,将某正粒子放射源置于原点O ,其向各个方向射出的粒子速度大小均为v 0,质量均为m 、电荷量均为q ;在0≤y ≤d 的一、二象限范围内分布着一个匀强电场,方向与y 轴正向相同,在d <y ≤2d 的一、二象限范围内分布着一个匀强磁场,方向垂直于xOy 平面向里.粒子第一次离开电场上边缘y =d 时,能够到达的位置x 轴坐标范围为-1.5d ≤x ≤1.5d, 而且最终恰好没有粒子从y =2d 的边界离开磁场.已知sin 37°=0.6,cos 37°=0.8,不计粒子重力以及粒子间的相互作用,求: (1)电场强度E ; (2)磁感应强度B ;(3)粒子在磁场中运动的最长时间.(只考虑粒子第一次在磁场中的运动时间) [解析](1)沿x 轴正方向发射的粒子有:由类平抛运动基本规律得1.5d =v 0t, d =12at 2a =qE m ,联立可得:E =8mv 209qd .(2)沿x 轴正方向发射的粒子射入磁场时有:d =v y 2t,联立可得:v y =43v 0,电场中:加速直线运动⇓磁场中:匀速圆周运动 电场中:类平抛运动⇓磁场中:匀速圆周运动磁场中:匀速圆周运动 ⇓v 与E 同向或反向 电场中:匀变速直线运动磁场中:匀速圆周运动⇓v 与E 垂直 电场中:类平抛运动v =v 2x+v 2y=53v 0 方向与水平成53°,斜向右上方,据题意知该粒子轨迹恰与上边缘相切,则其余粒子均达不到y =2d 边界,由几何关系可知:d =R +35R根据牛顿第二定律得:Bqv =m v 2R 联立可得:B =8mv 03qd .(3)粒子运动的最长时间对应最大的圆心角,经过(1.5d ,d)恰与上边界相切的粒子轨迹对应的圆心角最大,由几何关系可知圆心角为:θ=254°粒子运动周期为:T =2πR v =3πd4v 0则时间为:t =θ360°T =127πd240v 0.考向2 先磁场后电场 【例2】.(2018·潍坊模拟)在如图所示的坐标系中,第一和第二象限(包括y 轴的正半轴)内存在磁感应强度大小为B 、方向垂直xOy 平面向里的匀强磁场;第三和第四象限内存在平行于y 轴正方向、大小未知的匀强电场.p 点为y 轴正半轴上的一点,坐标为(0,l );n 点为y 轴负半轴上的一点,坐标未知.现有一带正电的粒子由p 点沿y 轴正方向以一定的速度射入匀强磁场,该粒子经磁场偏转后以与x 轴正半轴成45°角的方向进入匀强电场,在电场中运动一段时间后,该粒子恰好垂直于y 轴经过n 点.粒子的重力忽略不计.求: (1)粒子在p 点的速度大小;(2)第三和第四象限内的电场强度的大小;(3)带电粒子从由p 点进入磁场到第三次通过x 轴的总时间.[解析] 粒子在复合场中的运动轨迹如图所示(1)由几何关系可知rsin 45°=l 解得r =2l 又因为qv 0B =m v 20r ,可解得v 0=2Bql m .(2)粒子进入电场在第三象限内的运动可视为平抛运动的逆过程,设粒子射入电场坐标为(-x 1,0),从粒子射入电场到粒子经过n 点的时间为t 2,由几何关系知x 1=(2+1)l ,在n 点有v 2=22v 1=22v 0由类平抛运动规律有(2+1)l =22v 0t 2;22v 0=at 2=Eqm t 2 联立以上方程解得t 2=2+1m qB ,E =2-1qlB 2m. (3)粒子在磁场中的运动周期为T =2πmqB粒子第一次在磁场中运动的时间为t 1=58T =5πm4qB 粒子在电场中运动的时间为2t 2=22+1mqB粒子第二次在磁场中运动的时间为t 3=34T =3πm2qB故粒子从开始到第三次通过x 轴所用时间为t =t 1+2t 2+t 3=(11π4+22+2)mqB .[反思总结] 规律运用及思路①带电粒子经过电场区域时利用动能定理或类平抛的知识分析; ②带电粒子经过磁场区域时利用圆周运动规律结合几何关系来处理; ③注意带电粒子从一种场进入另一种场时的衔接速度.【巩固】如图所示,在第Ⅱ象限内有水平向右的匀强电场,电场强度为E ,在第Ⅰ、Ⅳ象限内分别存在如图所示的匀强磁场,磁感应强度大小相等.有一个带电粒子以垂直于x 轴的初速度v 0从x 轴上的P 点进入匀强电场中,并且恰好与y 轴的正方向成45°角进入磁场,又恰好垂直于x 轴进入第Ⅳ象限的磁场.已知OP 之间的距离为d ,则带电粒子在磁场中第二次经过x 轴时,在电场和磁场中运动的总时间为( ) A.7πd 2v 0B.dv 0(2+5π) C.d v 0⎝ ⎛⎭⎪⎫2+3π2D.d v 0⎝ ⎛⎭⎪⎫2+7π2D [带电粒子的运动轨迹如图所示.由题意知,带电粒子到达y 轴时的速度v =2v 0,这一过程的时间t 1=d v 02=2dv 0.又由题意知,带电粒子在磁场中的偏转轨道半径r =22d.故知带电粒子在第Ⅰ象限中的运动时间为:t 2=38×2πr v =32πd 2v =3πd2v 0带电粒子在第Ⅳ象限中运动的时间为:t 3=12×2πr v =22πd v =2πd v 0故t 总=d v 0⎝ ⎛⎭⎪⎫2+7π2.故D 正确.] 题型二 带电粒子在叠加场中的运动考向1 电场、磁场叠加【例3】(多选)(2018·临川模拟)向下的匀强电场和水平方向的匀强磁场正交的区域里, 一带电粒子从a 点由静止开始沿曲线abc 运动到c 点时速度变为零, b 点是运动中能够到达的最高点, 如图所示,若不计重力,下列说法中正确的是( ) A .粒子肯定带负电, 磁场方向垂直于纸面向里 B .a 、c 点处于同一水平线上 C .粒子通过b 点时速率最大D. 粒子达到c 点后将沿原路径返回到a 点ABC [粒子开始受到电场力作用而向上运动,受到向右的洛伦兹力作用,则知电场力方向向上,故粒子带负电;根据左手定则判断磁场方向垂直于纸面向里,故A 正确.将粒子在c 点的状态与a 点进行比较,c 点的速率为零,动能为零,根据能量守恒可知,粒子在c 与a 两点的电势能相等,电势相等,则a 、c 两点应在同一条水平线上;由于在a 、c 两点粒子的状态(速度为零,电势能相等)相同,粒子将在c 点右侧重现前面的曲线运动,因此,粒子是不可能沿原曲线返回a 点的,故B 正确,D 错误.根据动能定理得,粒子从a 运动到b 点的过程电场力做功最大,则b 点速度最大,故C 正确.考向2 电场、磁场、重力场的叠加【例4】(2017·全国Ⅰ卷)如图所示,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里.三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c .已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.下列选项正确的是( ) A .m a >m b >m c B .m b >m a >m c C .m c >m a >m b D .m c >m b >m aB [设三个微粒的电荷量均为q ,a 在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,即 m a g =qE ①b 在纸面内向右做匀速直线运动,三力平衡,则m b g =qE +qvB ②c 在纸面内向左做匀速直线运动,三力平衡,则m c g +qvB =qE ③ 比较①②③式得:m b >m a >m c ,选项B 正确.]考向3 复合场中的动量、能量综合问题【例5】(2018·南昌模拟)如图所示,带负电的金属小球A 质量为m A =0.2 kg ,电量为q =0.1 C ,小球B 是绝缘体不带电,质量为m B =2 kg ,静止在水平放置的绝缘桌子边缘,桌面离地面的高h =0.05 m ,桌子置于电、磁场同时存在的空间中,匀强磁场的磁感应强度B =2.5 T ,方向沿水平方向且垂直纸面向里,匀强电场电场强度E =10 N/C ,方向沿水平方向向左且与磁场方向垂直,小球A 与桌面间的动摩擦因数为μ=0.4,A 以某一速度沿桌面做匀速直线运动,并与B 球发生正碰,设碰撞时间极短,B 碰后落地的水平位移为0.03 m ,g 取10 m/s 2,求: (1)碰前A 球的速度? (2)碰后A 球的速度?(3)若碰后电场方向反向(桌面足够长),小球A 在碰撞结束后,到刚离开桌面运动的整个过程中,合力对A 球所做的功.[答案](1)2 m/s (2)1 m/s ,方向与原速度方向相反 (3)6.3 J 【例5-2】 (1)上题中,A 与B 的碰撞是弹性碰撞吗?为什么?(2)在第(3)问中,根据现有知识和条件,能否求出电场力对A 球做的功?提示:A 、B 碰前,只有A 有动能E kA =12m A v 2A1=12×0.2×22 J =0.4 JA 、B 碰后,E kA ′=12m A v 2A2=12×0.2×12 J =0.1 JE kB =12m B v 2B =12×2×0.32=0.09 J 因E kA >E kA ′+E kB故A 、B 间的碰撞不是弹性碰撞.提示:不能.因无法求出A 球的位移.【巩固1】(多选)(2017·济南模拟)如图所示,在正交坐标系O xyz 中,分布着电场和磁场(图中未画出).在Oyz 平面的左方空间内存在沿y 轴负方向、磁感应强度大小为B 的匀强磁场;在Oyz 平面右方、Oxz 平面上方的空间内分布着沿z 轴负方向、磁感应强度大小也为B 的匀强磁场;在Oyz 平面右方、Oxz 平面下方分布着沿y 轴正方向的匀强电场,电场强度大小为aqB 24m .在t =0时刻,一个质量为m 、电荷量为+q 的微粒从P 点静止释放,已知P 点的坐标为(5a ,-2a,0),不计微粒的重力.则( )A .微粒第一次到达x 轴的速度大小为aqb mB .微粒第一次到达x 轴的时刻为4mqBC .微粒第一次到达y 轴的位置为y =2aD .微粒第一次到达y 轴的时刻为⎝ ⎛⎭⎪⎫40+5π2mqBBD [微粒从P 点由静止释放至第一次到达y 轴的运动轨迹如图所示.释放后,微粒在电场中做匀加速直线运动,由E =aqB 24m ,根据动能定理有Eq ·2a =12mv 2,解得微粒第一次到达x 轴的速度v =aqB m ,又Eq m t 1=v ,解得微粒第一次到达x 轴的时刻t 1=4mqB ,故选项A 错误,B 正确;微粒进入磁场后开始做匀速圆周运动,假设运动的轨道半径为R ,则有qvB =m v 2R ,可得:R =a ,所以微粒到达y 轴的位置为y =a ,选项C 错误;微粒在磁场中运动的周期T =2πR v =2πm qB ,则运动到达y 轴的时刻:t 2=5t 1+54T ,代入得:t 2=⎝ ⎛⎭⎪⎫40+5π2m qB ,选项D 正确.]【巩固2】 (多选)(2018·兰州模拟)如图所示,空间中存在一水平方向的匀强电场和一水平方向的匀强磁场,磁感应强度大小为B ,电场强度大小为E =3mgq ,且电场方向和磁场方向相互垂直,在正交的电磁场空间中有一足够长的固定粗糙绝缘杆,与电场正方向成60°夹角且处于竖直平面内,一质量为m ,带电量为q (q >0)的小球套在绝缘杆上,若小球沿杆向下的初速度为v 0时,小球恰好做匀速直线运动,已知重力加速度大小为g ,小球电荷量保持不变,则以下说法正确的是( )A .小球的初速度v 0=mg2qBB .若小球沿杆向下的初速度v =mgqB ,小球将沿杆做加速度不断增大的减速运动,最后停止C .若小球沿杆向下的初速度v =3mgqB ,小球将沿杆做加速度不断减小的减速运动,最后停止D. 若小球沿杆向下的初速度v =4mgqB ,则从开始运动到稳定过程中,小球克服摩擦力做功为6m 3g 2q 2B 2BD题型三 带电粒子在复合场中运动的常见实例考向1 回旋加速器的工作原理【例6】(多选)(2018·成都模拟)粒子回旋加速器的工作原理如图所示,置于真空中的D 形金属盒的半径为R ,两金属盒间的狭缝很小,磁感应强度为B 的匀强磁场与金属盒盒面垂直,高频率交流电的频率为f ,加速器的电压为U ,若中心粒子源处产生的质子质量为m ,电荷量为+e ,在加速器中被加速.不考虑相对论效应,则下列说法正确是( )A .质子被加速后的最大速度不能超过2πRfB .加速的质子获得的最大动能随加速器的电压U 增大而增大C .质子第二次和第一次经过D 形盒间狭缝后轨道半径之比为2∶1 D .不改变磁感应强度B 和交流电的频率f ,该加速器也可加速其它粒子AC [质子出回旋加速器时速度最大,此时的半径为R ,最大速度为:v =2πRT =2πRf ,故A 正确; 根据qvB =m v 2R 得,v =qBR m ,则粒子的最大动能E km =12mv 2=q 2B 2R 22m ,与加速器的电压无关,故B 错误;粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动,根据qU =12mv 2,得v =2qU m ,质子第二次和第一次经过D 形盒狭缝的速度比为2∶1,根据r =mvqB ,则半径比为2∶1,故C 正确;带电粒子在磁场中运动的周期与加速电场的周期相等,根据T =2πmqB 知,换用其它粒子,粒子的比荷变化,周期变化,回旋加速器需改变交流电的频率才能加速其它粒子,故D 错误.故选AC.]考向2 速度选择器的工作原理【例7】在如图所示的平行板器件中,电场强度E 和磁感应强度B 相互垂直.一带电粒子(重力不计)从左端以速度v 沿虚线射入后做直线运动,则该粒子( ) A .一定带正电B .速度v =EBC .若速度v >EB ,粒子一定不能从板间射出D .若此粒子从右端沿虚线方向进入,仍做直线运动B考向3 质谱仪的工作原理【例7】质谱仪是测量带电粒子的质量和分析同位素的重要工具.如图所示为质谱仪的原理示意图,现利用质谱仪对氢元素进行测量.让氢元素三种同位素的离子流从容器A 下方的小孔S 无初速度飘入电势差为U 的加速电场.加速后垂直进入磁感应强度为B 的匀强磁场中.氢的三种同位素最后打在照相底片D 上,形成a 、b 、c 三条“质谱线”.则下列判断正确的是( ) A .进入磁场时速度从大到小排列的顺序是氕、氘、氚 B .进入磁场时动能从大到小排列的顺序是氕、氘、氚 C .在磁场中运动时间由大到小排列的顺序是氕、氘、氚 D .a 、b 、c 三条“质谱线”依次排列的顺序是氕、氘、氚A [离子通过加速电场的过程,有qU =12mv 2,因为氕、氘、氚三种离子的电量相同、质量依次增大,故进入磁场时动能相同,速度依次减小,故A 项正确,B 项错误;由T =2πmqB 可知,氕、氘、氚三种离子在磁场中运动的周期依次增大,又三种离子在磁场中运动的时间均为半个周期,故在磁场中运动时间由大到小排列依次为氚、氘、氕,C 项错误;由qvB =m v 2R 及qU =12mv 2,可得R =1B 2mUq ,故氕、氘、氚三种离子在磁场中的轨道半径依次增大,所以a 、b 、c 三条“质谱线”依次对应氚、氘、氕,D 项错误.]【巩固3】(多选)如图所示,含有11H 、21H 、42He 的带电粒子束从小孔O 1处射入速度选择器,沿直线O 1O 2运动的粒子在小孔O 2处射出后垂直进入偏转磁场,最终打在P 1、P 2两点.则( ) A .打在P 1点的粒子是42HeB .打在P 2点的粒子是21H 和42He C .O 2P 2的长度是O 2P 1长度的2倍D .粒子在偏转磁场中运动的时间都相等BC [通过同一速度选择器的粒子具有相同的速度,故11H 、21H 、42He 的速度相等,由牛顿第二定律得qvB 2=m v 2R ,解得R =mv qB 2,由此可知,设质子的质量为m ,质子带电量为q ,11H 的半径R 1=mvqB 2,21H的半径R 2=2mv qB 2,42He 的半径R 3=2mvqB 2,故打在P 1点的粒子是11H ,打在P 2点的粒子是21H 和42He ,选项A 错误,B 正确;O 2P 1=2R 1=2mv qB 2,O 2P 2=2R 2=4mvqB 2,故O 2P 2=2O 2P 1,选项C 正确;粒子在磁场中运动的时间t =T 2=πmqB ,11H 运动的时间与21H 和42He 运动的时间不同,选项D 错误.故选B 、C.]基础练习:考查点:速度选择器1.如图所示,一束质量、速度和电荷不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A 、B 两束,下列说法中正确的是( ) A .组成A 束和B 束的离子都带负电 B .组成A 束和B 束的离子质量一定不同 C .A 束离子的比荷大于B 束离子的比荷D .速度选择器中的磁场方向垂直于纸面向外[答案] C考查点:磁流体发电机2.(多选)磁流体发电机是利用洛伦兹力的磁偏转作用发电的.A 、B 是两块处在磁场中互相平行的金属板,一束在高温下形成的等离子束(气体在高温下发生电离,产生大量的带等量异种电荷的粒子)射入磁场.下列说法正确的是( ) A .B 板是电源的正极 B .A 板是电源的正极C .电流从上往下流过电流表D .电流从下往上流过电流表[答案] AD考查点:电磁流量计3.如图所示,电磁流量计的主要部分是柱状非磁性管.该管横截面是边长为d 的正方形,管内有导电液体水平向左流动.在垂直于液体流动方向上加一个水平指向纸里的匀强磁场,磁感应强度为B .现测得液体上下表面a 、b 两点间的电势差为U .则管内导电液体的流量Q (流量是指流过该管的液体体积与所用时间的比值)为( )A.UdB B.Ud 2B C.U BdD.d BU[答案] A考查点:质谱仪4. A 、B 是两种同位素的原子核,它们具有相同的电荷、不同的质量.为测定它们的质量比,使它们从质谱仪的同一加速电场由静止开始加速,然后沿着与磁场垂直的方向进入同一匀强磁场,打到照相底片上.如果从底片上获知A 、B 在磁场中运动轨迹的直径之比是d 1∶d 2,则A 、B 的质量之比为( )A .d 21∶d 22B .d 1∶d 2C .d 22∶d 21D .d 2∶d 1 [答案] A分类巩固:带电粒子在组合场中的运动1.如图所示,某种带电粒子由静止开始经电压为U 1的电场加速后,射入水平放置、电势差为U 2的两导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M 、N 两点间的距离d 随着U 1和U 2的变化情况为(不计重力,不考虑边缘效应)( )A .d 随U 1变化,d 与U 2无关B .d 与U 1无关,d 随U 2变化C .d 随U 1变化,d 随U 2变化D .d 与U 1无关,d 与U 2无关A [带电粒子在电场中做类平抛运动,可将射出电场的粒子速度v 分解成初速度方向与加速度方向,设出射速度与水平夹角为θ,则有:v 0v =cos θ 而在磁场中做匀速圆周运动,设运动轨迹对应的半径为R ,由几何关系得,半径与直线MN 夹角正好等于θ,则有:d2R =cos θ,所以d =2Rv 0v ,又因为半径公式R =mv Bq ,则有d =2mv 0Bq =2B 2mU 1q .故d 随U 1变化,d 与U 2无关,故A 正确,B 、C 、D 错误.]2.(多选)(2017·烟台模拟)如图所示,在x 轴上方有沿y 轴负方向的匀强电场,电场强度为E ,在x 轴下方的等腰直角三角形CDM 区域内有垂直于xOy 平面向外的匀强磁场,磁感应强度为B ,其中C 、D 在x 轴上,它们到原点O 的距离均为a .现将质量为m 、电荷量为+q 的粒子从y 轴上的P 点由静止释放,设P 点到O 点的距离为h ,不计重力作用与空气阻力的影响.下列说法正确的是( )A .若粒子垂直于CM 射出磁场,则h =B 2a 2q2mEB .若粒子垂直于CM 射出磁场,则h =B 2a 2q8mEC .若粒子平行于x 轴射出磁场,则h =B 2a 2q2mED .若粒子平行于x 轴射出磁场,则h =B 2a 2q8mEAD [粒子在电场中加速,有qEh =12mv 20.在磁场中做圆周运动,若粒子垂直于CM 射出磁场,则轨迹所对的圆心角θ=45°,半径R =a ,由洛伦兹力提供向心力,有qv 0B =mv 20R ,得R =mv 0qB ,联立以上各式得h =B 2a 2q2mE ,A 正确;若粒子平行于x 轴射出磁场,则轨迹所对的圆心有θ=90°,半径R =a 2,同理可得h =B 2a 2q8mE ,D 正确.]3.(2018·银川模拟)如图所示,AB 、CD 间的区域有竖直向上的匀强电场,在CD 的右侧有一与CD 相切于M 点的圆形有界匀强磁场,磁场方向垂直于纸面.一带正电粒子自O 点以水平初速度v 0正对P 点进入该电场后,从M 点飞离CD 边界,再经磁场偏转后又从N 点垂直于CD 边界回到电场区域,并恰能返回O 点.已知OP 间距离为d ,粒子质量为m ,电荷量为q ,电场强度大小E =3mv 20qd ,不计粒子重力.试求: (1)M 、N 两点间的距离;(2)磁感应强度的大小和圆形匀强磁场的半径;(3)粒子自O 点出发到回到O 点所用的时间.[解析](1)据题意,作出带电粒子的运动轨迹,如图所示:粒子从O 到M 的时间:t 1=d v 0;粒子在电场中加速度:a =qE m =3v 2d故PM 间的距离为:PM =12at 21=32d粒子在M 点时竖直方向的速度:v y =at 1=3v 0粒子在M 点时的速度:v =v 20+v 2y =2v 0速度偏转角正切:tan θ=v yv 0= 3 ,故θ=60°粒子从N 到O 点时间:t 2=d 2v 0,粒子从N 到O 点过程的竖直方向位移:y =12at 22故P 、N 两点间的距离为:PN =y =38d.所以MN =PN +PM =538 d.(2)由几何关系得:Rcos 60°+R =MN =538d,可得半径:R =5312d由qvB =m v 2R 解得:B =83mv 05qd ;由几何关系确定区域半径为:R ′=2Rcos 30°,即R ′=54d.(3)O 到M 的时间:t 1=d v 0;N 到O 的时间:t 2=d2v 0在磁场中运动的时间:t 3=4π3R 2v 0=53πd18v 0无场区运动的时间:t 4=Rcos 30°2v 0=5d 16v 0;t =t 1+t 2+t 3+t 4=29d 16v 0+53πd18v 0. 带电物体在叠加场中的运动4.如图所示,界面MN 与水平地面之间有足够大且正交的匀强磁场B 和匀强电场E ,磁感线和电场线都处在水平方向且互相垂直.在MN 上方有一个带正电的小球由静止开始下落,经电场和磁场到达水平地面.若不计空气阻力,小球在通过电场和磁场的过程中,下列说法中正确的是( )A .小球做匀变速曲线运动B .小球的电势能保持不变C .洛伦兹力对小球做正功D .小球的动能增量等于其电势能和重力势能减少量的总和D [带电小球在刚进入复合场时受力如图所示,则带电小球进入复合场后做曲线运动,因为速度会发生变化,洛伦兹力就会跟着变化,所以不可能是匀变速曲线运动,选项A 错误;根据电势能公式E p =q φ,知只有带电小球竖直向下做直线运动时,电势能保持不变,选项B 错误;根据洛伦兹力的方向确定方法知,洛伦兹力方向始终和速度方向垂直,所以洛伦兹力不做功,选项C 错误;从能量守恒角度知道选项D 正确.]5. (2017·桂林模拟)如图所示,空间存在互相垂直的匀强电场和匀强磁场,图中虚线为匀强电场的等势线,一不计重力的带电粒子在M 点以某一初速度垂直等势线进入正交电磁场中,运动轨迹如图所示(粒子在N 点的速度比在M 点的速度大).则下列说法正确的是( )A .粒子一定带正电B .粒子的运动轨迹一定是抛物线C .电场线方向一定垂直等势面向左D .粒子从M 点运动到N 点的过程中电势能增大C [根据粒子在电、磁场中的运动轨迹和左手定则可知,粒子一定带负电,选项A 错误;由于洛伦兹力方向始终与速度方向垂直,故粒子受到的合力是变力,而物体只有在恒力作用下做曲线运动时,轨迹才是抛物线,选项B 错误;由于空间只存在电场和磁场,粒子的速度增大,说明在此过程中电场力对带电粒子做正功,则电场线方向一定垂直等势面向左,选项C 正确;电场力做正功,电势能减小,选项D 错误.]6.如图所示,空间存在水平向左的匀强电场和垂直纸面向里的匀强磁场,电场和磁场相互垂直.在电磁场区域中,有一个光滑绝缘圆环,环上套有一个带正电的小球.O 点为圆环的圆心,a 、b 、c 为圆环上的三个点,a 点为最高点,c 点为最低点, bd 沿水平方向.已知小球所受电场力与重力大小相等.现将小球从环的顶端a 点由静止释放,下列判断正确的是( )A .当小球运动到c 点时,洛伦兹力最大B .小球恰好运动一周后回到a 点C .小球从a 点运动到b 点,重力势能减小,电势能减小D .小球从b 点运动到c 点,电势能增大,动能增大C [电场力与重力大小相等,则二者的合力指向左下方45°,由于合力是恒力,故类似于新的重力,所以ad 弧的中点相当于平时竖直平面圆环的“最高点”.关于圆心对称的位置(即bc 弧的中点)就是“最低点”,速度最大,此时洛伦兹力最大;由于a 、d 两点关于新的最高点对称,若从a 点静止释放,最高运动到d 点,故A 、B 错误.从a 到b ,重力和电场力都做正功,重力势能和电势能都减少,故C 正确.小球从b 点运动到c 点,电场力做负功,电势能增大,但由于bc 弧的中点速度最大,所以动能先增大后减小,故D 错误.所以C 正确,A 、B 、D 错误.]7.(多选)(2018·哈尔滨模拟)如图所示,空间同时存在竖直向上的匀强磁场和匀强电场,磁感应强度为B ,电场强度为E .一质量为m ,电量为q 的带正电小球恰好处于静止状态,现在将磁场方向顺时针旋转30°,同时给小球一个垂直磁场方向斜向下的速度v ,则关于小球的运动,下列说法正确的是( )A .小球做匀速圆周运动B .小球运动过程中机械能守恒C .小球运动到最低点时电势能增加了mgv 2BqD .小球第一次运动到最低点历时πm2qB。
第九课时:带电粒子在复合场中的运动[知识要点]一、电场力和洛仑兹力的比较1、在电场中的电荷,不管其运动与否,均始终受到电场力作用;而磁场仅仅对运动着的,且速度与磁场方向不平行的电荷有洛仑兹力作用.2、电场力的大小与电荷运动的速度无关;而洛仑兹力的大小与电荷运动的速度有关.3、电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场方向垂直,又和速度方向垂直.4、电场力既可以改变电荷运动的速度方向,也可以改变电荷运动速度的大小;而洛仑兹力只能改变电荷运动速度的方向,不能改变其速度的大小.5、电场力可以对电荷做功,且电场力做功与路径无关,能改变电荷的动能.洛仑兹力不能对电荷作功,不能改变电荷的动能.二.带电粒子在复合场中的运动性质1、带电粒子在复合场中的直线运动:自由的带电粒子(无轨道约束)在匀强电场、匀强磁场和重力场中做的直线运动应是匀速直线运动,除非运动方向沿匀强磁场方向而粒子不受洛仑兹力.这是因为电场力和重力都是恒力,若它们的合力不能与洛仑兹力平衡,则带电粒子速度的大小和方向将会改变,就不可能做直线运动.2、带电粒子在复合场中的曲线运动当带电粒子所受合外力变化且与粒子速度不在一条直线上时,带电粒子做非匀变速曲线运动.3、带电粒子在复合场中的匀速圆周运动:当带电粒子进入匀强电场、匀强磁场和重力场共存的复合场中,电场力和重力相平衡,粒子运动方向与匀强磁场方向相垂直时,带电粒子就在洛仑兹力作用下做匀速圆周运动。
三、解决带电粒子在复合场中运动问题的方法带电粒子在复合场中的运动分析方法和力学问题的分析方法基本相同,不同之处是多了电场力和洛仑兹力。
一般来说,对单个物体,用动能定理或动量定理;对多个物体组成的系统,用能量守恒定律或动量守恒定律,涉及加速度等力学问题必定用牛二定律和运动学公式.1.力和运动的观点:在正确分析受力情况的前提下,根据粒子的受力情况和初始状态,利用F =ma的瞬时性,分析其运动情况,寻找解题的突破口.2.利用功和能或冲量、动量的观点:由于洛仑兹力的方向总是与运动方向垂直,在很多情况中带电粒子在复合场中的运动是任意曲线运动,同时根据场力做功的特点,处理这类问题往往利用动能定理,动量定理或能量守恒、动量守恒比较方便.3.认真分析运动过程的细节,充分挖掘题中的隐含条件,注意过程中力和运动的相互制约关系,形成清晰的物理情景,全面整体地把握问题的实质,把物理模型转化为数学模型,提高综合分析解决问题的能力。
带电粒子在复合场中的运动发表时间:2011-08-19T16:29:23.780Z 来源:《学习方法报》教研周刊 作者: 马敬卫[导读] 带电粒子在复合场中的运动一般有两种情况:直线运动和圆周运动。
山东省郓城第一中学 马敬卫复合场是指电场、磁场、重力场中三者或任意两者共存的场。
虽然带电粒子在复合场中的运动情况一般较为复杂,但它作为一个力学问题,同样遵循联系力和运动的基本规律。
带电粒子在复合场中的运动一般有两种情况:直线运动和圆周运动。
(1)若带电粒子在电场力、重力和洛伦兹力共同作用下做直线运动,由于电场力和重力为恒力,洛伦兹力方向和速度方向垂直且大小随速度大小而改变,所以只要带电粒子速度大小发生变化,垂直于速度方向的合力就要发生变化,该方向带电粒子的运动状态就会发生变化,带电粒子就会脱离原来的直线轨道而沿曲线运动。
可见,只有带电粒子速度大小不变,才可能做直线运动,也就是说,带电粒子在电场力、重力和洛伦兹力共同作用下做直线运动时,一定是做匀速直线运动。
(2)若带电粒子在电场力、重力和洛伦兹力共同作用下做匀速圆周运动时,由于物体做匀速圆周运动的条件是所受合外力大小恒定、方向时刻和速度方向垂直,这是任何几个恒力或恒力和某一变力无法合成实现的,只有洛伦兹力可满足该条件。
也就是说,带电粒子在上述复合场中如果做匀速圆周运动,只能是除洛伦兹力以外的所有恒力的合力为零才能实现。
总之,处理此类问题,一定要牢牢把握隐含条件。
在解决实际问题时,要做到以下三点:①正确分析受力情况;②充分理解和掌握不同场对带电粒子作用的特点和差异;③认真分析带电粒子运动的详细过程,充分发掘题目中的隐含条件,建立清晰的物理情景,最终把物理模型转化为数学表达式。
下面以两个例子来说明处理此类问题的方法。
1. 带电微粒在电场力、重力和洛伦兹力共同作用下做匀速圆周运动。
必然是电场力和重力平衡,而洛伦兹力充当向心力。
例1 一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直平面内做匀速圆周运动。
带电粒子在复合场中的运动一、带电粒子....(通常不计重力)在混合场中的运动 1.速度选择器正交的匀强磁场和匀强电场组成速度选择器。
带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。
否则将发生偏转。
这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq ,BE v =。
在本图中,速度方向必须向右。
(1)这个结论与离子带何种电荷、电荷多少都无关。
(2)若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。
【例1】 某带电粒子从图中速度选择器左端由中点O 以速度v 0向右射去,从右端中心a 下方的b 点以速度v 1射出;若增大磁感应强度B ,该粒子将打到a 点上方的c 点,且有ac =ab ,则该粒子带___电;第二次射出时的速度为_____。
【例2】 如图所示,一个带电粒子两次以同样的垂直于场线的初速度v 0分别穿越匀强电场区和匀强磁场区, 场区的宽度均为L 偏转角度均为α,求E ∶B2.回旋加速器(1)有关物理学史知识和回旋加速器的基本结构和原理1932年美国物理学家应用了带电粒子在磁场中运动的特点发明了回旋加速器,其原理如图所示。
A 0处带正电的粒子源发出带正电的粒子以速度v 0垂直进入匀强磁场,在磁场中匀速转动半个周期,到达A 1时,在A 1 A 1/处造成向上的电场,粒子被加速,速率由v 0增加到v 1,然后粒子以v 1在磁场中匀速转动半个周期,到达A 2/时,在A 2/ A 2处造成向下的电场,粒子又一次被加速,速率由v 1增加到v 2,如此继续下去,每当粒子经过A A /的交界面时都是它被加速,从而速度不断地增加。
带电粒子在磁场中作匀速圆周运动的周期为qBT mπ2=,为达到不断加速的目的,只要在A A /上加上周期也为T 的交变电压就可以了。
专题九带电粒子在叠加场中的运动基本知识点1.带电粒子在叠加场中运动的基本性质(1)匀速直线运动:若带电粒子所受合外力为零,它将处于静止或匀速直线运动状态;(2)匀速圆周运动:若带电粒子所受合外力只充当向心力,它将做匀速圆周运动;(3)匀变速运动:若带电粒子所受合外力恒定,它将做匀变速运动;(4)非匀变速运动:若带电粒子所受合外力不恒定,它将做非匀变速运动。
2.带电体所受重力、静电力与洛伦兹力的性质各不相同,做功情况也不同,应予以区别。
大小方向做功特点做功大小重力mg 竖直向下与路径无关,只与始、末位置的高度差有关W=mgh静电力qE与电场方向相同或相反与路径无关,只与始、末位置间的电势差有关W=qU洛伦兹力v∥B,则f=0v⊥B,则f=q v B由左手定则判定永不做功0例题分析一、带电粒子在叠加场中的圆周运动例1如图所示,在竖直平面内建立直角坐标系xOy,其第一象限存在着正交的匀强电场和匀强磁场,电场强度的方向水平向右,磁感应强度的方向垂直纸面向里。
一带电荷量为+q、质量为m的微粒从坐标原点出发,沿与x轴正方向的夹角为45°的初速度方向进入复合场中,正好做直线运动,当微粒运动到A(l,l)时,电场方向突然变为竖直向上(不计电场变化的时间),微粒继续运动一段时间后,正好垂直于y轴穿出复合场。
不计一切阻力,求:(1)电场强度E的大小;(2)磁感应强度B的大小;(3)微粒在复合场中的运动时间t。
(对应训练)如图所示,在地面附近有一个范围足够大的相互正交的匀强电场和匀强磁场,匀强磁场的磁感应强度为B,方向水平并垂直纸面向外,一质量为m、带电荷量为-q 的带电微粒在此区域恰好做速度大小为v的匀速圆周运动(重力加速度为g)。
(1)求此区域内电场强度的大小和方向;(2)若某时刻微粒运动到场中距地面高度为H的P点,速度与水平方向成45°角,如图所示,则该微粒至少需要经过多长时间运动到距地面最高点?二、带电粒子在空间叠加场中的运动例2在如图所示的空间中存在场强为E的匀强电场和沿x轴负方向、磁感应强度为B 的匀强磁场。
带电粒子在复合场中的运动1、 如图,在平面直角坐标系xOy 内,第1象限存在沿y 轴负方向的匀强电场,第Ⅳ象限以ON 为直径的半圆形区域内,存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电的粒子,从y 轴正半轴上y =h 处的M 点,以速度v 0垂直于y 轴射入电场,经x 轴上x =2h 处的P 点进入磁场,最后以速度v 垂直于y 轴射出磁场。
不计粒子重力。
求:(1)电场强度大小E ;(2)粒子在磁场中运动的轨道半径; (3)粒子离开磁场时的位置坐标。
2、 如图所示,在xoy 平面的第一象限内,分布有沿x 轴负方向的场强4410/3E N C =⨯的匀强电场,第四象限内分布有垂直纸面向里的磁感应强度10.2B T =的匀强磁场,第二、三象限内分布有垂直纸面向里的磁感应强度2B 的匀强磁场。
在x 轴上有一个垂直于y 轴的挡板OM ,挡板上开有一个小孔P ,P 处连接有一段长度2110d m -=⨯内径不计的准直管,管内由于静电屏蔽没有电场。
y 轴负方向上距O 点210h m -的粒子源S 可以向第四象限平面内各个方向发射带正电的粒子,粒子速度大小均为50210/v m s =⨯,粒子的比荷7510/qC kg m=⨯,不计粒子重力和粒子间的相互作用,求:(1)粒子在第四象限的磁场中运动时的轨道半径r ; (2)粒子第一次到达y 轴的位置与O 点的距离H ;(3)要使离开电场的粒子只经过第二、三象限回到S 处,磁感应强度2B 应为多大。
3、 如图所示,空间存在方向与xoy 平面垂直,范围足够大的匀强磁场。
在0x ≥区域,磁感应强度大小为B 0,方向向里;x <0区域,磁感应强度大小为2B 0,方向向外。
某时刻,一个质量为m 、电荷量为q (q >0)的带电粒子从x 轴上P (L ,0)点以速度02qB Lv m=垂直x 轴射入第一象限磁场,不计粒子的重力。
求:(1)粒子在两个磁场中运动的轨道半径;(2)粒子离开P 点后经过多长时间第二次到达y 轴。
(九) 带电粒子在复合场中的运动
1.(2019·山师大附中模拟)如图1所示,两平行金属板E 、F 之间电压为U ,两足够长的平行边界MN 、PQ 区域内,有垂直纸面向外的匀强磁场,一质量为m 、带电荷量为+q 的粒子(不计重力),由E 板中央处静止释放,经F 板上的小孔射出后,垂直进入磁场,且进入磁场时与边界MN 成60°角,磁场区域的两平行边界MN 和PQ 之间的距离为d .求:
图1
(1)粒子离开电场时的速度大小;
(2)若粒子最终从磁场边界MN 离开磁场,磁感应强度的范围. 答案 (1)
2qU m (2)B ≥3
2d
2mU
q
解析 (1)粒子在电场中加速,由动能定理有: qU =1
2
m v 2,解得v =
2qU
m
. (2)粒子在磁场中的运动轨迹刚好与PQ 相切时的轨道半径,是粒子从边界MN 离开磁场最大轨道半径,如图所示:
由几何知识得:d =r +r sin 30°,
粒子在磁场中做圆周运动,洛伦兹力提供向心力, 由牛顿第二定律得:q v B =m v 2r
解得B =
3
2d
2mU q .若粒子最终从磁场边界MN 离开磁场,则磁感应强度:B ≥3
2d
2mU
q
.
2.(2017·天津理综)平面直角坐标系xOy 中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ象限存在沿y 轴负方向的匀强电场,如图2所示.一带负电的粒子从电场中的Q 点以速度v 0沿x 轴正方向开始运动.Q 点到y 轴的距离为到x 轴距离的2倍.粒子从坐标原点O 离开电场进入磁场,最终从x 轴上的P 点射出磁场,P 点到y 轴距离与Q 点到y 轴距离相等.不计粒子重力,问:
图2
(1)粒子到达O 点时速度的大小和方向; (2)电场强度和磁感应强度的大小之比.
答案 (1)2v 0 方向与x 轴正方向成45°角斜向上 (2)v 02
解析 (1)在电场中,粒子做类平抛运动,设Q 点到x 轴距离为L ,到y 轴距离为2L ,粒子的加速度为a ,运动时间为t ,有2L =v 0t ① L =1
2
at 2②
设粒子到达O 点时沿y 轴方向的分速度为v y v y =at ③
设粒子到达O 点时速度方向与x 轴正方向夹角为α,有 tan α=v y
v 0
④
联立①②③④式得α=45°⑤
即粒子到达O 点时速度方向与x 轴正方向成45°角斜向上. 设粒子到达O 点时速度大小为v ,由运动的合成有 v =
v 02+v y 2⑥
联立①②③⑥式得v =2v 0⑦
(2)设电场强度为E ,粒子电荷量为q ,质量为m ,粒子在电场中受到的电场力为F ,由牛顿第二定律可得
F =ma ⑧ 又F =qE ⑨
设磁场的磁感应强度大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,所受的洛伦兹力提供向心力,有 q v B =m v 2
R
⑩
由几何关系可知R =2L ⑪ 联立①②⑦⑧⑨⑩⑪式得E B =v 02
3.(2019·郑州市高二检测)如图3所示,在xOy 平面内有以虚线OP 为理想边界的匀强电场和匀强磁场区域.OP 与x 轴成45°角,OP 与y 轴之间的磁场方向垂直纸面向里,OP 与x 轴之间的电场平行于x 轴向左,电场强度为E .在y 轴上有一点M ,到O 点的距离为L .现有一个质量为m 、带电荷量为-q 的带电粒子,从静止经电压为U 的电场加速后,从M 点以垂直y 轴的速度方向进入磁场区域(加速电场图中没有画出),不计带电粒子的重力,求:
图3
(1)带电粒子在磁场中运动的轨迹与OP 相切时,磁感应强度B 的大小;
(2)只改变匀强磁场磁感应强度的大小,使带电粒子经磁场能沿y 轴负方向进入匀强电场,则带电粒子从x 轴离开电场时的位置到O 点的距离为多少?从进入磁场到离开电场经过的时间为多少? 答案 (1)
2+1
L
2mU
q
(2)L 2+EL 216U ⎝⎛⎭
⎫L 4+πL 82m qU
解析 (1)粒子在加速电场中加速,由动能定理可知:
qU =1
2m v 02-0
解得v 0=
2qU
m
由几何关系可知r +2r =L , 解得r =
L
2+1
带电粒子在磁场中做匀速圆周运动, 则q v 0B =m v 02
r ,解得B =
2+1L
2mU
q
; (2)由图可知带电粒子能沿y 轴负方向进入匀强电场时,在磁场中运动的轨迹半径为R =L
2
带电粒子在电场中做类平抛运动,加速度a =qE
m
粒子在y 轴方向做匀速运动,则L
2=R =v 0t
粒子在x 轴方向做匀加速运动,则x =1
2at 2
解得x =EL 2
16U
因此带电粒子从x 轴离开电场时的位置到O 点的距离为 R +x =L 2+EL 2
16U
由图可知带电粒子在磁场中转过角度为90°,因此在磁场中的运动时间为t 1=T 4=14×2πR v 0=
πR
2v 0=πL 8
2m qU
又因为在电场中运动时间t 2=R v 0=
L
4
2m qU
因此,带电粒子从进入磁场到离开电场经过的时间为 t =t 1+t 2=⎝⎛⎭
⎫
L 4+πL 82m
qU
. 4.如图4所示,在以坐标原点O 为圆心、半径为R 的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B ,磁场方向垂直于xOy 平面向里.一带正电的粒子(不计重力)从O 点沿y 轴正方向以某一速度射入,带电粒子恰好做匀速直线运动,经t 0时间从P 点射出.
图4
(1)求电场强度的大小和方向;
(2)若仅撤去磁场,带电粒子仍从O 点以相同的速度射入,经t 0
2时间恰从半圆形区域的边界射
出,求粒子运动加速度的大小;
(3)若仅撤去电场,带电粒子仍从O 点射入,但速度为原来的4倍,求粒子在磁场中运动的时间.
答案 (1)BR t 0 沿x 轴正方向 (2)43R t 02 (3)3π
18t 0
解析 (1)设带电粒子的质量为m ,电荷量为q ,初速度为v ,电场强度为E .可判断出粒子受到的洛伦兹力沿x 轴负方向,于是可知电场强度沿x 轴正方向, 且有qE =q v B ① 又R =v t 0② 则E =BR
t 0
③
(2)仅有电场时,带电粒子在匀强电场中做类平抛运动,在y 方向上的位移为y =v t 0
2④
由②④式得y =R
2
⑤
设在水平方向的位移为x ,因射出位置在半圆形区域边界上,于是x =32
R 又x =12a ⎝⎛⎭⎫t 022
⑥
得a =43R t 0
2⑦
(3)仅有磁场时,入射速度v ′=4v ⑧
带电粒子在匀强磁场中做匀速圆周运动,如图所示,
设轨道半径为r,由牛顿第二定律有q v′B=m v′2
r⑨又qE=ma⑩
由②③⑦⑧⑨⑩式得r=3R
3⑪
由几何知识得sin α=R
2r⑫
即sin α=3
2,α=π
3⑬
带电粒子在磁场中的运动周期T=2πm
qB⑭
由③⑦⑩⑬⑭得带电粒子在磁场中的运动时间t B=2α
2πT=
3π18t0.。