第十讲 串行接口 (1)
- 格式:pdf
- 大小:378.54 KB
- 文档页数:58
炎黄技工学校《微机原理与接口技术》教学大纲理论课时36实践课时36总课时72考核形式考查编写时间2022-03编写人审核人机电信息工程系计算机技术教研室编《微机原理与接口技术》课程标准课程名称:微机原理与接口技术适用专业:计算机网络应用课程学分:4学分计划学时:72学时一、课程概述1、课程性质与任务本课《微机原理与接口技术》是计算机专业的一门重要的专业课,它的前续课程有《电子技术基础》、《电路原理》通过本课程的学习,为后续课程《微机控制技术》打下良好的基础。
同时与毕业设计密切相关,为它提供了硬件和软件的基础。
本课程介绍了微型计算机原理及组成结构、微机接口的有关基本知识和实用技术、常用微机接口芯片的使用方法。
2、课程基本理念结合我们学生的实际情况,在平时的教与学中主要遵循以下的理念:(1)将专业课的学习与基础理论衔接,指导学生有针对性地预习;(2)帮助学生形成强烈兴趣;(3)指导学生了解课程教学目的,教师结合教学大纲和自己对课程的把握情况,阐明《微机原理与接口技术》的课程特点;(4)培养学生良好的学习习惯。
3、课程设计思路1、总体设计原则与思路:按照“以能力为本位,以职业实践为主线,以项目课程为主体的模块化专业设计课程体系”的总体设计要求,该门课程以形成电机与变压器的原理与性能指标、运行调试及维护维修等能力为基本目标,彻底打破学科课程的设计思路,紧紧围铙工作任务完成的需求来选择和组织课程内容,突出工作任务与知识的联系,让学生在职业实践活动的基础上掌握知识,增强课程内容与职业岗位能力要求的相关性,提高学生的就业能力。
2课程设计依据与评价方法:学习项目选取的基本依据是该门课程涉及的工作领域和工作任务范围,但在具体设计过程中,以自动化专业学生的就业为向导,根据行业专家对自动化专业所涵盖的的岗位群体进行的任务和职业能力分析,同时遵循中等职业学校学生的认识规律,紧密集合职业资格证书中相关考核内容,确定本课程的工作任务模块和课程内容。
串行接口是一种数字接口,用于在计算机系统中传输数字信号或者数据。
串行接口通过一根线依次传输每个位的数据,相比并行接口,串行接口只需要一根线就可以进行数据传输,因此在一些场景中可以节省成本和空间。
本文将首先简述串行接口的工作原理,然后分别对串行接口的优点和缺点进行详细介绍。
一、串行接口的工作原理1. 数据传输串行接口通过一个个数据位的顺序传送数据,每个数据位通过一根线进行传输。
在传输时,数据被分割成一个个数据包,每个数据包由起始位、数据位、校验位和停止位组成。
这些数据包按照一定的规则经过线路传输,接收端再将这些数据包组装还原成原始数据。
而整个过程中,数据包的传输是依赖于时钟脉冲信号的。
2. 时钟信号为了确保接收端能够正确地接收和理解发送端的数据,串行接口需要一个时钟信号来进行数据的同步。
时钟信号在数据传输的过程中充当了一个重要的角色,确保发送端的数据能够被准确地读取和复原。
3. 带宽利用串行接口能够更好地利用带宽,因为它只需要一根线来进行数据传输。
在一些对带宽有限制的环境下,串行接口可以更好地满足需求。
二、串行接口的优缺点串行接口作为一种常见的数字接口,在许多设备中被广泛使用。
其优缺点如下:优点:1. 使用简单串行接口只需要一根线进行数据传输,在设计和使用上相对简单。
这对于一些资源有限的情况下尤为重要,比如在一些嵌入式系统中,串行接口能够更好地满足需要。
2. 抗干扰能力强因为串行接口只需要一根线进行数据传输,相比并行接口,串行接口在传输过程中对于干扰的抵抗能力更强。
这使得串行接口能够更好地适用于电磁干扰严重的环境。
3. 长距离传输串行接口可以支持较长的传输距离,这对于一些需要进行长距离数据传输的场景非常重要。
缺点:1. 传输速率低由于串行接口是逐位传输数据的,因此在相同条件下,它的传输速率往往比并行接口要低。
这意味着在需要进行高速数据传输的场景下,串行接口可能无法满足需求。
2. 数据传输效率低串行接口在数据传输的过程中需要进行数据包的分割和再组装,这会导致数据传输的效率较低,尤其在大批量数据传输的情形下。
串行口的工程应用及原理图1. 什么是串行口串行口是计算机与外部设备进行数据通信的接口之一。
它使用一根线路在计算机和外设之间进行数据传输。
串行口一般是指串行通信口,即通过一条线路逐位传输数据的通信接口。
2. 串行口的工程应用2.1 老串行口应用在早期计算机时代,老式串行口(也称为RS232串行口)是最常见和最广泛应用的介质之一。
它被用于连接打印机、调制解调器、键盘、鼠标等各种外部设备。
通过串行口,计算机可以与这些外部设备进行数据交互。
例如,用户可以通过串行口连接打印机,并通过计算机将文本发送到打印机进行打印。
2.2 工业自动化串行口在工业自动化领域也有广泛的应用。
例如,在工厂的生产线上,计算机可以通过串行口与PLC(可编程逻辑控制器)进行通信,实现对生产过程的监控和控制。
串行口可以传输传感器数据和执行控制指令,实现工艺过程的自动化。
2.3 无线通信领域在无线通信领域,串行口也有重要的应用。
例如,在物联网设备中,通过串行口将传感器数据传输到计算机或云端进行分析和处理。
另外,通过串行口可以与无线模块进行通信,实现物联网设备的远程控制和监控。
3. 串行口的原理图下面是串行口的简化原理图:+-----------------+| 数据线 |+-----------------+||+----+----+| || 串行口 || |+----+----+||+---------------+| 电脑主板 |+---------------+原理图中的串行口由数据线和电脑主板组成。
数据线用于传输数据,电脑主板负责控制和管理串行口的工作。
计算机通过串行口向外部设备发送数据时,数据被序列化并逐位发送,接收时则逆序进行解码恢复原始数据。
4. 串行口的工作原理串行口的工作原理是逐位传输数据。
计算机将数据拆分为一系列的位,通过数据线逐位发送。
数据位按照事先约定好的编码格式进行传输,通常是使用ASCII码。
在串行口中,除数据位外,还有一个起始位和一个或多个停止位,用于标识数据的开始和结束。
串行接口标准串行接口是一种常见的硬件接口标准,它用于在两个设备之间进行数据传输。
下面将对串行接口标准的各个方面进行介绍。
1.物理接口串行接口的物理接口通常包括DB-9、DB-25、RS-232等标准接口。
这些接口定义了数据线的数量、类型以及连接方式等。
在物理层面上,串行接口采用二进制数据传输方式,通过一条或几条线路来传输数据。
2.数据格式串行接口的数据格式通常包括起始位、数据位、校验位和停止位等。
起始位表示数据包的开始,数据位表示实际传输的数据,校验位用于检测数据错误,停止位表示数据包的结束。
此外,串行接口还可以采用其他数据格式,如可编程数据格式等。
3.速率串行接口的速率指的是传输数据的速度,通常以比特率来表示。
常见的串行接口速率包括9600比特率、19200比特率、38400比特率等。
在选择波特率时,应根据实际应用需求和硬件性能来选择合适的速率。
4.通信协议通信协议是串行接口标准中的重要组成部分之一。
它规定了如何进行数据传输、如何控制传输过程以及如何处理错误等问题。
常见的通信协议包括ASCII、二进制、RTU等。
这些协议具有不同的数据格式和校验方式,应根据实际应用场景来选择合适的通信协议。
5.编码方式编码方式指的是将二进制数据转换成可以在物理线路上传输的信号的方式。
常见的编码方式有曼彻斯特编码和差分曼彻斯特编码等。
这些编码方式各有优缺点,应根据实际应用场景来选择合适的编码方式。
6.握手协议握手协议是串行接口标准中的另一个重要组成部分。
它用于协调发送设备和接收设备之间的通信。
常见的握手协议包括软件流控制和硬件流控制等。
软件流控制通过控制字符来实现流控制,硬件流控制则通过专门的硬件线路来实现流控制。
在选择握手协议时,应根据实际应用场景来选择合适的握手协议。
7.错误检测和修复错误检测和修复是串行接口标准中的重要组成部分之一。
它用于检测和修复传输过程中可能出现的错误。
常见的错误检测和修复方法包括奇偶校验、CRC校验等。
串行接口的工作原理
串行接口(Serial Interface)的工作原理是,通过一条传输线将数据位按照顺序进行传输,而不是同时传输所有数据位。
它一般由两根线组成,分别是发送线(TX)和接收线(RX)。
数据通过发送线以连续的位序列的形式从发送方传输到接收方,接收方通过接收线将接收到的数据重新组装成完整的消息。
在串行通信时,数据通常是按照位的顺序逐个传输的。
发送方将数据位按顺序逐个发送到发送线上,接收方通过接收线逐个接收数据位。
数据位的传输速率由波特率(Baud rate)来控制,波特率指的是每秒传输的位数。
为了确保数据能够被准确地发送和接收,串行口通常还需要使用其他信号线,如数据就绪信号(Ready)和数据结束信号(Stop)。
数据就绪信号用于通知接收方有新的数据即将到来,并准备好接收,而数据结束信号用于表示数据传输的结束。
串行口的工作原理可以被简单概括为发送方将数据按照位的顺序发送给接收方,接收方通过接收线逐个接收数据位,并将其重新组装成完整的消息。
通过控制波特率和使用其他信号线,串行口可以实现可靠的数据传输。