单片机第十章串行口
- 格式:ppt
- 大小:289.50 KB
- 文档页数:34
串行口工作原理
串行口是一种用于数据传输的硬件接口,它可以将数据逐个比特地传输。
串行口工作的基本原理是将需要传输的数据按照一定的规则进行分割,并以连续的比特序列的形式进行传输。
在串行口的工作过程中,数据被分成一个个比特,然后按照事先约定好的规则,依次传输给接收端。
这个规则包括了每个比特的位宽、传输的顺序以及同步的方式等等。
通常情况下,串行口使用的是异步传输方式,也就是说,传输时不需要事先进行时钟同步,而是在数据的起始位置插入起始位和校验位来提供同步信息。
在串行口的数据传输过程中,发送端按照一定的时序将数据比特逐个发送给接收端。
接收端按照相同的时序依次接收每个比特,并通过解码、校验等操作恢复原始数据。
为了保证数据的准确性,通常还会在传输过程中加入差错检测和纠错机制,例如CRC校验等。
串行口的工作原理与并行口不同,串行口通过逐个比特的方式传输数据,相比之下,串行口在传输速率上可能会受到一定的限制。
但是串行口的传输距离相对较长,传输线路简单,而且可以灵活选择传输速率,因此在许多应用场景下得到了广泛的应用。
例如,在计算机、通信设备、工业自动化等领域中,串行口被广泛用于连接外部设备与主机进行数据交互。
80C51单片机的串行口在单片机的世界里,80C51 单片机凭借其稳定性和广泛的应用一直占据着重要的地位。
而串行口作为 80C51 单片机的重要通信接口,发挥着至关重要的作用。
要理解 80C51 单片机的串行口,首先得知道串行通信的概念。
简单来说,串行通信就是数据一位一位地依次传输,相比并行通信,它只需要较少的数据线,这在很多场景下能大大减少硬件成本和布线难度。
80C51 单片机的串行口有 4 种工作方式,分别是方式 0、方式 1、方式 2 和方式 3。
方式 0 是同步移位寄存器输入/输出方式。
在这种方式下,数据以 8 位为一帧,低位在前,高位在后,没有起始位和停止位。
它通常用于扩展并行 I/O 口,例如外接串入并出的移位寄存器 74LS164 或并入串出的移位寄存器 74LS165。
方式 1 是 8 位异步通信方式,波特率可变。
这是最常用的串行通信方式之一。
一帧数据由 1 位起始位(低电平)、8 位数据位(低位在前)和 1 位停止位(高电平)组成。
发送和接收都是通过专门的寄存器来实现的。
方式 2 是 9 位异步通信方式,波特率固定。
一帧数据由 1 位起始位、8 位数据位、1 位可编程的第 9 位数据和 1 位停止位组成。
这种方式常用于多机通信,第 9 位数据可以作为地址/数据的标识位。
方式 3 与方式 2 类似,也是 9 位异步通信方式,但波特率可变。
串行口的波特率是一个非常关键的概念。
波特率决定了数据传输的速度。
在 80C51 单片机中,方式 0 和方式 2 的波特率是固定的,而方式 1 和方式 3 的波特率则是由定时器 T1 的溢出率来决定的。
通过设置定时器 T1 的工作方式和初值,可以得到不同的波特率,以适应不同的通信需求。
在实际应用中,要使用 80C51 单片机的串行口进行通信,还需要对相关的寄存器进行配置。
比如,串行控制寄存器 SCON 用于设置串行口的工作方式、接收/发送控制等;电源控制寄存器 PCON 中的 SMOD 位用于控制方式 1、2、3 的波特率加倍。
单片机串口通信原理
单片机串口通信是指通过串行口进行数据的传输和接收。
串口通信原理是利用串行通信协议,将数据按照一定的格式进行传输和接收。
在单片机中,串口通信一般是通过UART(通用异步收发传输器)模块来实现的。
UART模块包括发送和接收两部分。
发送部分将数据从高位到低位逐位发送,接收部分则是将接收到的数据重新组装成完整的数据。
串口通信的原理是利用串行通信协议将发送的数据进行分帧传输。
在传输的过程中,数据被分成一个个的数据帧,每帧包括起始位、数据位、校验位和停止位。
起始位和停止位用于标识数据的开始和结束,数据位则是用来存放需要传输的数据。
校验位用于校验数据的正确性。
在发送端,单片机将需要发送的数据按照一定的格式组装成数据帧,然后通过UART发送出去。
在接收端,UART接收到的数据也是按照数据帧的格式进行解析,然后重新组装成完整的数据。
通过这样的方式,发送端和接收端可以进行数据的传输和接收。
串口通信具有简单、可靠性高、适应性强等优点,广泛应用于各种领域,如物联网、嵌入式系统等。
掌握串口通信原理对于单片机的应用开发具有重要意义。
单片机原理及应用串行口单片机是一种集成电路芯片,具有处理器核心、内存、定时器/计数器、输入/输出口等功能。
它采用单一芯片封装,具有体积小、功耗低、性价比高等优点,广泛应用于嵌入式系统、电子设备控制等领域。
串行口是单片机的一种重要接口,它通过串行通信协议实现与外部设备的数据交换。
串行口的主要特点是一次只能传输一个比特的数据,传输速率相对较慢,但传输距离较远,能够满足长距离数据传输的需求。
串行口的应用非常广泛,下面将从基本原理、工作方式和应用场景三个方面进行详细介绍。
1. 基本原理串行口基于串行通信协议,通过发送和接收两个引脚来实现与外部设备的数据交换。
串行口的发送和接收部分需要配合串行通信协议进行设置,包括数据位数、停止位数、奇偶校验位等。
2. 工作方式串行口的工作方式一般分为同步和异步两种模式。
同步模式中,数据传输的速率由外部计时器控制,发送和接收双方需要在同一时钟脉冲上进行数据传输;异步模式中,数据传输的速率由波特率发生器控制,发送和接收双方根据起始位和停止位进行数据传输。
3. 应用场景串行口广泛应用于各种嵌入式系统和电子设备控制中,以下是几个典型的应用场景:(1) 通信设备串行口可用于实现与计算机之间的数据交换,如通过串口与计算机进行数据通信、调试和程序下载等。
同时,串行口还可以与无线模块或蓝牙模块等外部设备配合,实现远程无线通信。
(2) 外设控制串行口可以控制各种外部设备,如继电器、数码管、液晶显示屏等。
通过串行口发送指令或数据,控制外部设备的状态和显示。
(3) 传感器数据采集串行口可以接收和解析各种传感器的数据,如温度传感器、湿度传感器、光照传感器等。
通过串行通信协议,将传感器采集到的数据发送给单片机进行处理和存储。
(4) 工业控制串行口广泛应用于工业领域的数据采集和控制系统中。
通过串行口,可以实现与各种传感器、执行器的数据交换和控制,如温湿度检测系统、智能电表系统等。
(5) 仪器仪表串行口可以连接到各种仪器仪表上,实现数据的采集和控制。
单片机串行口几种工作方式的波特率单片机串行口是单片机与外部设备进行通信的重要接口之一。
在串行口通信中,波特率是一个关键参数。
波特率是指每秒钟传送的波特数量,用于衡量数据的传输速率。
单片机串行口的波特率通常选择常见的标准波特率,例如9600、19200、38400等。
单片机串行口的工作方式有多种,下面将详细介绍几种不同的工作方式下的波特率设置。
1. 同步串行口同步串行口是指在传输数据时,发送端和接收端通过一个时钟信号来同步数据的传输。
在同步串行口中,波特率的设置是固定的,因为发送端和接收端需要以相同的波特率来同步数据传输。
常见的同步串行口波特率包括115200、230400等。
2. 异步串行口异步串行口是指在传输数据时,发送端和接收端通过起始位、停止位来进行数据的同步。
在异步串行口中,波特率的设置是非常重要的,因为发送端和接收端需要以相同的波特率来正确解析数据。
常见的异步串行口波特率包括9600、19200、38400等。
3. 高速串行口随着单片机技术的进步和应用的广泛,对串行口的传输速率要求也越来越高。
高速串行口通常指的是波特率在1Mbps及以上的串行口。
高速串行口通常应用于需要大量数据传输的场景,例如高速数据采集、图像传输等。
4. 自适应波特率有些情况下,单片机需要与多种速率不同的设备通信,这就需要单片机具备自适应波特率的能力。
自适应波特率指的是单片机可以根据外部设备的对应波特率来自动调整自身的波特率。
这种方式可以极大地提高单片机的通信灵活性和适用性。
在实际应用中,程序员需要根据具体的通信需求选择合适的波特率,并在程序中进行相应的设置和配置。
还需要注意波特率的选取要与外部设备相匹配,以确保数据的正确传输和解析。
通过上述对单片机串行口几种工作方式的波特率的介绍,我们可以更好地理解单片机串行口通信中波特率的重要性以及不同工作方式下的波特率设置方法。
在实际应用中,合理选择和设置波特率将有利于提高通信的可靠性和稳定性。
1.单片机串行通信的概述在通信领域内,有两种数据通信方式:并行通信和串行通信。
随着计算机网络化和微机分级分布式应用系统的发展,通信的功能越来越重要。
通信是指计算机与外界的信息传输,既包括计算机与计算机之间的传输,也包括计算机与外部设备,如终端、打印机和磁盘等设备之间的传输。
串行通信是指使用一条数据线,将数据一位一位地依次传输,每一位数据占据一个固定的时间长度。
其只需要少数几条线就可以在系统间交换信息,特别使用于计算机与计算机、计算机与外设之间的远距离通信。
使用串口通信时,发送和接收到的每一个字符实际上都是一次一位的传送的,每一位为1或者为0。
在串行通信中,把通信接口只能发送或接收的单向传送办法叫单工传送;而把数据在甲乙两机之间的双向传递,称之为双工传送。
在双工传送方式中又分为半双工传送和全双工传送。
半双工传送是两机之间不能同时进行发送和接收,任一时该,只能发或者只能收信息。
51系列单片机有一个可编程的全双工串行通信接口,它可作异步接收发送器用,也可做同步移位寄存器用,其帧格式可有8位、10位或11位,并能设置各种波特率,给使用带来很大的灵活性。
51系列单片机有两个物理上独立的接收、发送缓冲器SBUF,它们只占用同一地址99H,可同时发送、接送数据。
发送缓冲器只能写入,不能读出,接收缓冲器只能读出、不能写入。
串行发送接收的速率与波特率发生器产生的移位脉冲同频。
51系列单片机用定时器T1或直接用CPU时钟作为通信波特率发生器的输入,在串行接口的不同工作方式中,波特率发生器从两个输入信号中选择一个分频,产生移位脉冲来同步串口的接收和发送,移位脉冲的速率即是波特率。
接收器是双缓冲结构,在前一个字节被从接收缓冲器SBUF读出之前,第二字节即开始被接收。
但是,若在第二个字节接收完毕后,前一个字节还未被CPU 读取的话,第二个字就会覆盖第一个字节,造成第一个字节的丢失。
接收器是双缓冲结构,串行口的发送和接收都是以特殊功能寄存器SBUF的名义进行读或写的。
51单片机串行口的工作方式解析方式0是外接串行移位寄存器方式。
工作时,数据从RXD串行地输入/输出,TXD输出移位脉冲,使外部的移位寄存器移位。
波特率固定为fosc/12(即,TXD 每机器周期输出一个同位脉冲时,RXD接收或发送一位数据)。
每当发送或接收完一个字节,硬件置TI=1或RI=1,申请中断,但必须用软件清除中断标志。
实际应用在串行I/O口与并行I/O口之间的转换。
2)方式1方式1是点对点的通信方式。
8位异步串行通信口,TXD为发送端,RXD为接收端。
一帧为10位,1位起始位、8位数据位(先低后高)、1位停止位。
波特率由T1或T2的溢出率确定。
在发送或接收到一帧数据后,硬件置TI=1或RI=1,向CPU申请中断;但必须用软件清除中断标志,否则,下一帧数据无法发送或接收。
(1)发送:CPU执行一条写SBUF指令,启动了串行口发送,同时将1写入输出移位寄存器的第9位。
发送起始位后,在每个移位脉冲的作用下,输出移位寄存器右移一位,左边移入0,在数据最高位移到输出位时,原写入的第9位1的左边全是0,检测电路检测到这一条件后,使控制电路作最后一次移位,/SEND和DATA 无效,发送停止位,一帧结束,置TI=1。
(2)接收:REN=1后,允许接收。
接收器以所选波特率的16倍速率采样RXD端电平,当检测到一个负跳变时,启动接收器,同时把1FFH写入输入移位寄存器(9位)。
由于接、发双方时钟频率有少许误差,为此接收控制器把一位传送时间16等分采样RXD,以其中7、8、9三次采样中至少2次相同的值为接收值。
接收位从移位寄存器右边进入,1左移出,当最左边是起始位0时,说明已接收8位数据,再作最后一次移位,接收停止位。
此后:A、若RI=0、SM2=0,则8位数据装入SBUF,停止位入RB8,置RI=1。
B、若RI=0、SM2=1,则只有停止位为1时,才有上述结果。
C、若RI=0、SM2=1,且停止位为0,则所接数据丢失。
51单片机串行通讯在当今的电子世界中,单片机的应用无处不在,从家用电器到工业自动化,从智能仪表到航空航天,都能看到它的身影。
而在单片机的众多功能中,串行通讯是一项非常重要的技术。
首先,咱们来了解一下什么是串行通讯。
简单来说,串行通讯就是指数据一位一位地按顺序传送。
与并行通讯(数据的各位同时传送)相比,串行通讯虽然速度相对较慢,但它只需要少数几条线就能完成数据传输,大大降低了硬件成本和连线的复杂性。
51 单片机的串行通讯有两种工作方式:同步通讯和异步通讯。
异步通讯是比较常用的一种方式。
在异步通讯中,数据是以字符为单位进行传输的。
每个字符由起始位、数据位、奇偶校验位和停止位组成。
起始位是一个低电平信号,用于通知接收方数据即将开始传输。
数据位通常是 5 到 8 位,可以表示一个字符的信息。
奇偶校验位用于检验传输数据的正确性,而停止位则是高电平,标志着一个字符传输的结束。
同步通讯则是在发送和接收两端使用同一个时钟信号来控制数据的传输。
这种方式传输速度快,但硬件要求相对较高。
51 单片机的串行口结构包括发送缓冲器和接收缓冲器。
发送缓冲器只能写入不能读出,而接收缓冲器只能读出不能写入。
在进行串行通讯时,我们需要对 51 单片机的串行口进行初始化设置。
这包括设置波特率、数据位长度、奇偶校验位和停止位等参数。
波特率是指每秒传输的位数,它决定了数据传输的速度。
通过设置定时器 1 的工作方式和初值,可以得到不同的波特率。
在编程实现串行通讯时,我们可以使用查询方式或者中断方式。
查询方式相对简单,但会占用大量的 CPU 时间,影响系统的实时性。
中断方式则可以在数据接收或发送完成时触发中断,提高系统的效率。
比如说,我们要实现 51 单片机与 PC 机之间的串行通讯。
在 PC 端,我们可以使用串口调试助手等软件来发送和接收数据。
在单片机端,通过编写相应的程序,设置好串行口的参数,然后根据接收的数据执行相应的操作,或者将需要发送的数据发送出去。
一、实验目的1. 理解串行通信的基本原理和常用协议。
2. 掌握单片机串行口的工作方式及其程序设计。
3. 通过实际操作,实现单片机之间的串行通信,验证通信协议的正确性。
4. 学习串行通信在实际应用中的调试和故障排除方法。
二、实验设备1. 单片机开发板(如STC89C52、AT89C51等)2. 串行通信模块(如MAX232、CH340等)3. 连接线(杜邦线、串行线等)4. 电脑(用于调试程序)5. 串口调试工具(如串口助手、PuTTY等)三、实验原理串行通信是指数据在一条线路上按位顺序传送,一次只能传送一位。
与并行通信相比,串行通信具有成本低、传输距离远、易于实现等优点。
串行通信的常见协议有RS-232、RS-485、I2C、SPI等。
本实验采用RS-232协议,通过单片机的串行口实现数据的发送和接收。
四、实验步骤1. 硬件连接将单片机的串行口(如RXD、TXD)与串行通信模块的RXD、TXD引脚相连,并通过杜邦线连接到电脑的串口。
2. 软件设计(1)编写单片机程序,实现数据的发送和接收。
(2)编写电脑端程序,用于发送和接收数据。
3. 程序调试(1)将单片机程序烧写到单片机中。
(2)在电脑端打开串口调试工具,设置波特率、数据位、停止位、校验位等参数。
(3)通过串口调试工具发送数据,观察单片机接收到的数据是否正确。
4. 实验结果分析通过实验,成功实现了单片机之间的串行通信。
在调试过程中,遇到以下问题:(1)波特率设置不正确:波特率设置错误会导致数据无法正确接收。
通过查阅相关资料,找到了正确的波特率设置方法。
(2)串行口初始化错误:串行口初始化参数设置错误会导致通信中断。
通过查阅相关资料,找到了正确的初始化方法。
(3)数据接收错误:数据接收过程中,可能出现乱码现象。
通过检查程序代码,发现是数据接收缓冲区溢出导致的。
通过调整接收缓冲区大小,解决了该问题。
五、实验总结通过本次实验,掌握了单片机串行通信的基本原理和编程方法。
单片机串行口实验报告实验总结一、实验目的本实验旨在让学生了解单片机串行口的基本原理和应用,掌握单片机串行口的编程方法,培养学生动手实践和解决问题的能力。
二、实验器材1. STC89C52单片机开发板2. 电脑串口线3. 电脑终端仿真软件Tera Term三、实验原理串行口是单片机与外部设备进行通信的重要接口之一。
串行口通信是指将数据一个位一个地传输,每个数据位之间有一个时钟脉冲来同步传输。
常见的串行通信协议有RS232、RS485、SPI等。
本实验主要涉及到RS232协议。
四、实验内容1. 实现单片机向电脑发送数据并显示。
2. 实现电脑向单片机发送数据并控制LED灯闪烁。
五、实验步骤1. 连接STC89C52单片机开发板和电脑,使用Tera Term打开串口终端。
2. 编写程序,设置单片机的串行口通信参数(波特率、数据位数、停止位数等),并利用SendData函数向电脑发送数据。
3. 在Tera Term中设置相应的串口参数,并打开“local echo”选项,以便观察单片机发送的数据。
4. 编写程序,接收电脑发送的数据,并根据接收到的数据控制LED灯闪烁。
5. 在Tera Term中输入相应的命令,向单片机发送数据,观察LED灯的闪烁情况。
六、实验结果1. 实现了单片机向电脑发送数据并显示。
2. 实现了电脑向单片机发送数据并控制LED灯闪烁。
七、实验总结本实验使我对串行口通信有了更深入的理解,掌握了单片机串行口编程方法。
同时也锻炼了我的动手能力和解决问题的能力。
在实验过程中还需要注意串口参数设置和通信协议选择等问题,加深了我对这些知识点的理解。
51单片机串口通信串行口通信是一种在计算机和外部设备之间进行数据传输的通信方式,其中包括了并行通信、RS-232通信、USB通信等。
而在嵌入式系统中,最常见、最重要的通信方式就是单片机串口通信。
本文将详细介绍51单片机串口通信的原理、使用方法以及一些常见问题与解决方法。
一、串口通信的原理串口通信是以字节为单位进行数据传输的。
在串口通信中,数据传输分为两个方向:发送方向和接收方向。
发送方将待发送的数据通过串行转并行电路转换为一组相对应的并行信号,然后通过串口发送给接收方。
接收方在接收到并行信号后,通过串行转并行电路将数据转换为与发送方发送时相对应的数据。
在51单片机中,通过两个寄存器来实现串口通信功能:SBUF寄存器和SCON寄存器。
其中,SBUF寄存器用于存储要发送或接收的数据,而SCON寄存器用于配置串口通信的工作模式。
二、51单片机串口通信的使用方法1. 串口的初始化在使用51单片机进行串口通信之前,需要进行串口的初始化设置。
具体的步骤如下:a. 设置波特率:使用波特率发生器,通过设定计算器的初值和重装值来实现特定的波特率。
b. 串口工作模式选择:设置SCON寄存器,选择串行模式和波特率。
2. 发送数据发送数据的过程可以分为以下几个步骤:a. 将要发送的数据存储在SBUF寄存器中。
b. 等待发送完成,即判断TI(发送中断标志位)是否为1,如果为1,则表示发送完成。
c. 清除TI标志位。
3. 接收数据接收数据的过程可以分为以下几个步骤:a. 等待数据接收完成,即判断RI(接收中断标志位)是否为1,如果为1,则表示接收完成。
b. 将接收到的数据从SBUF寄存器中读取出来。
c. 清除RI标志位。
三、51单片机串口通信的常见问题与解决方法1. 波特率不匹配当发送方和接收方的波特率不一致时,会导致数据传输错误。
解决方法是在初始化时确保两端的波特率设置一致。
2. 数据丢失当发送方连续发送数据时,接收方可能会出现数据丢失的情况。