过渡元素
- 格式:ppt
- 大小:1.83 MB
- 文档页数:79
过渡元素(一)(一) 过渡元素通性过渡元素一般是指原子的电子层结构中d轨道或f轨道仅部分填充的元素。
d区元素价电子构型为(n-1)d1~8ns1~2 (Pd 4d10和Pt 5d96s1例外), 最外两层电子均未填满。
由此构成了d区元素如下通性:(1)单质的相似性(2) 原子半径变化趋势(3) 有可变氧化态例1对同一族元素来说,随周期数增加,为什么主族元素低氧化态趋于稳定而过渡元素高氧化态趋于稳定?例如,处于同一纵列的Ni和Pt,前四个电离能为I1+I2/kJ·mol-1I1+I2/kJ·mol-1Ni 2.49 8.69Pt 2.66 6.70(3) 过渡元素的氧化物及氢氧化物的性质(4) 容易形成配合物(5)配离子大多有颜色d-d跃迁MnO4-、CrO42-、VO43-等:荷移跃迁(6) 具有磁性和催化性能例2Ziegler-Natta 催化剂(6)间充化合物如r.t.下用Pd吸收H2所得氢化钯中,氢的最大含量可达PdH0.8,其他如LaH-,CeH2.69等(为原子数比值)。
这种化2.76合物仍保持金属结构特征,其间除金属键外,还存在金属和B、C、N、H等的共价键。
(二) 几种晶格类型1.钙钛矿具有边长为3.84 Å的立方晶胞,Ca、Ti和O 原子分别处在它的顶角、体心和面心的位置上。
i)给出钙钛矿的化学计量式。
ii)计算晶体密度。
iii)描述三种离子的配位情况。
(ⅰ) CaTiO3(ⅱ) ρ= 3.99 g·cm―3(ⅲ) Ca2+12个O2―围绕12面体Ti(IV) 6个O2―围绕八面体O2―2个Ti4+和4个Ca2+围绕八面体2.Fe3O4的结构:反式尖晶石结构尖晶石的通式M II M2III O4常式尖晶石中,M II占据四面体位置,M III占据八面体位置反式尖晶石中,一半M III占据四面体位置,另一半M III和M II占据八面体位置,所以Fe3O4的结构可表示为[Fe III]t[Fe II Fe III]o O4其电导是Fe2O3的106倍例尖晶石是一种金属氧化物M3O4,它的氧离子接近于按密堆积排列。
元素周期表中的过渡元素元素周期表是描述化学元素的分类和属性的重要工具。
其中,过渡元素是周期表中的一类特殊元素,具有许多独特的化学和物理性质。
本文将介绍过渡元素的定义、特点、应用以及对人类社会的重要意义。
一、过渡元素的定义和特点过渡元素是周期表中d区的元素,它们的原子结构中有不满的d电子壳层。
根据IUPAC的定义,从原子序数21(钪,Sc)到原子序数30(锌,Zn)以及从原子序数39(钇,Y)到原子序数48(银,Ag)的元素属于过渡元素。
过渡元素具有以下几个特点:1. 多种氧化态:过渡元素的d电子壳层不是完全填满的,因此它们可以容易地失去或获得电子,形成多种氧化态。
这使得过渡元素在化学反应中具有多样性和灵活性。
2. 良好的催化性能:由于其电子结构的特殊性质,过渡元素常常表现出良好的催化活性。
它们可作为催化剂参与许多重要的化学反应,促进反应速率和选择性。
3. 彩色化合物:过渡元素离子在溶液中或固体中具有吸收和发射特定波长光谱的能力,因此它们通常形成彩色的化合物。
这也是过渡元素被应用于颜料、染料和激光材料等领域的原因之一。
4. 高熔点和密度:大多数过渡元素具有较高的熔点和相对密度。
这与它们的原子结构和离子半径有关,使得过渡元素在高温和高压条件下具有许多特殊的物理性质。
5. 磁性: 过渡金属元素中的许多具有未配对的d电子,这使得它们具有磁性。
这些元素在物理和材料科学中的磁学研究中非常重要。
二、过渡元素的应用过渡元素在许多领域都有广泛的应用,下面是一些重要的应用领域:1. 工业催化剂:过渡金属催化剂在化学工业中广泛应用,用于促进氢气合成、石油加工、氨的合成和环保领域。
2. 电子材料:许多过渡金属元素具有优异的电导率、热导率和磁性。
它们被广泛应用于电子、计算机、通信和数据存储等领域。
3. 生物学:过渡金属离子在生物学过程中发挥关键作用。
例如,铁在血红蛋白和细胞色素中起到氧气运输的重要作用。
4. 颜料和染料:由于过渡元素形成彩色的化合物,它们被广泛用于颜料、染料和陶瓷等领域,为我们的生活增添了色彩。
元素周期表中的过渡元素元素周期表是化学中一张重要的“地图”,该表按照化学元素的原子序数,显示了各元素的基本信息和特性。
其中,过渡元素是周期表中的一类重要元素,具有特殊的电子排布和化学性质。
本文将从过渡元素的定义、周期表中的位置、特性以及应用等方面进行探讨。
一、过渡元素的定义过渡元素是指周期表中d区的元素,它们的d轨道电子不满足“2n^2”原则。
具体来说,过渡元素的外层电子排布为(n-1)d^1-10ns^1-2,其中n为外层电子壳层的主量子数。
过渡元素特有的电子排布使其具有独特的物理和化学性质。
二、周期表中的过渡元素过渡元素主要分布在周期表的d区,从第3周期开始,一直延伸到第7周期。
常见的过渡元素包括钛(Ti)、铁(Fe)、铜(Cu)、银(Ag)等,共有38个元素。
在周期表中,它们有着相似的电子排布和共同的化学性质。
三、过渡元素的特性1. 高熔点和高密度:过渡元素具有较高的熔点和密度,这归功于它们结构中复杂的d电子排布和较强的金属键。
2. 多样的氧化态:过渡元素的d电子容易参与化学反应,具有多样的氧化态。
例如,铁可以呈现+2、+3和+6等多种氧化态。
3. 彩色化合物:过渡元素的d电子能级跃迁引起了它们的彩色性质,使得许多过渡金属化合物呈现出各种各样的颜色。
4. 优良的催化性能:过渡元素广泛应用于催化反应中,其复杂的电子结构和多样的氧化态使其具有较强的催化活性和选择性。
四、过渡元素的应用1. 金属合金:许多金属合金中含有过渡元素,通过调节过渡元素的含量和种类,可以改变合金的硬度、强度和导电性等性质。
2. 催化剂:过渡元素广泛应用于化工和能源领域的催化反应中,如催化剂的合成、汽车尾气净化等。
3. 生物学:一些过渡元素在生物学中发挥重要的作用,如铁在血红蛋白中的载氧功能、锌在酶催化中的作用等。
4. 电子行业:许多过渡金属元素在电子行业中具有重要的应用,如铜用于导线、钛用于制造电池等。
综上所述,过渡元素是周期表中一类特殊的元素,具有独特的电子排布和化学性质。
元素周期表中的过渡元素元素周期表是化学家们用来组织和分类元素的基本工具。
其中,过渡元素是周期表中一个重要的类别,它们在化学和物理性质上都有着独特的特点。
本文将介绍过渡元素的概念、特性以及它们在日常生活中的应用。
一、过渡元素的概念元素周期表是按照原子核中的质子数(即原子序数)递增的顺序排列的。
而过渡元素是指周期表中的d区元素,这些元素具有不完全填充的d电子层。
具体来说,它们的最外层电子结构可表示为(n-1)d(n-2)fnp,其中n代表能级,np代表填充的外层电子。
过渡元素包括3d系、4d系、5d系和6d系,分别位于周期表的第3至12组、第4至12组、第5至12组和第6至12组。
由于它们的外层电子结构不同,导致了它们之间的化学特性差异。
二、过渡元素的特性1. 化学性质:过渡元素在化学反应中通常表现出多价性。
由于d电子的相对能量较高,容易参与化学反应,并能形成稳定的离子化合物。
此外,由于外层电子的分布情况不同,过渡元素在形成氧化物时可能会形成不同的氧化态,这也是其多价性的表现。
2. 金属性质:过渡元素大多数都是金属,具有良好的导电性和导热性。
此外,它们还具有韧性、延展性和磁性等金属特性。
3. 催化性质:许多过渡元素、尤其是过渡金属,具有良好的催化活性。
它们可以通过吸附、解离或转移电子等方式参与化学反应,从而降低反应活化能,加速反应速率。
4. 彩色离子:过渡元素离子在溶液中呈现出丰富的颜色。
这是由于过渡元素离子的d电子能级间的跃迁所引起的。
三、过渡元素的应用1. 催化剂:由于过渡金属的催化活性,它们被广泛应用于化学工业中的催化反应过程,如重要的工业过程氨合成、有机合成和汽车尾气催化转化等。
2. 电池材料:过渡金属在电池材料中具有重要作用。
例如,锂电池中的过渡金属氧化物可用作正极材料。
3. 金属合金:过渡金属常用于制备各种金属合金,如不锈钢、合金钢等。
这些合金通常具有较高的强度和耐腐蚀性能。
4. 彩色玻璃和陶瓷:某些过渡金属元素可以通过调节其氧化态来改变颜色。
元素周期表中的过渡元素元素周期表是化学中最为重要的工具之一,它按照元素的原子序数排列,将各种元素分类并展示其基本性质。
其中,过渡元素是元素周期表中的一个重要分类。
本文将对过渡元素进行详细的介绍和解析。
一、什么是过渡元素过渡元素,又称过渡金属元素,是指元素周期表中位于d区的元素。
具体来说,它们位于周期表的第4至7周期,并且填充d轨道的电子数量从1至10,即d1至d10。
过渡元素具有一些特殊的性质,使得它们在化学反应和催化过程中起到重要的作用。
二、过渡元素的特性和性质1. 原子结构和电子配置过渡元素的原子结构是它们特殊性质的基础。
由于过渡元素具有填充d轨道的电子,其电子配置比较复杂。
以铁(Fe)为例,其电子配置为 [Ar] 3d^6 4s^2。
可以看出,过渡元素的电子配置中包含了未填满的d轨道和填满的s轨道。
2. 多种化合价和化合物形成过渡元素常常能够形成多种化合价和化合物。
这是因为过渡元素的d轨道中的电子容易发生配位反应,形成不同化合物的结构。
以铜(Cu)为例,它可以形成Cu+和Cu2+两种离子,分别与不同的配体形成多种不同的配合物。
3. 颜色和催化性能过渡元素及其化合物常常具有鲜艳的颜色,这是由于它们的d轨道电子发生跃迁所致。
这种特性使得过渡元素被广泛应用在染料、颜料和催化剂等领域。
例如,钛(Ti)被广泛用于催化剂制备中,而铬(Cr)则用于制造不锈钢。
4. 磁性和电导性由于过渡元素具有未填充的d轨道电子,它们常常表现出良好的磁性和电导性。
例如,铁(Fe)和钴(Co)是常见的磁性材料,可以用于制造磁铁和磁带。
铜(Cu)和银(Ag)则是良好的电导体,广泛用于导线和电路中。
三、过渡元素的应用1. 催化剂过渡元素及其化合物在催化剂制备中具有重要的应用。
催化剂可以加速化学反应速率,降低反应温度和能源消耗。
铂(Pt)和钯(Pd)常被用作催化剂,例如在汽车尾气净化中,它们能将有害气体转化为无害物质。
2. 电池和电子器件过渡元素在电池和电子器件中也发挥着重要的作用。
第⼋章过渡元素第⼋章过渡元素8.1 过渡元素简介原⼦或其重要氧化物种中d轨道部分充满,其特征电⼦构型为(n-1)d1~9 ns1~2的元素称为过渡元素,不包括锌分族。
⼴义上,过渡元素也包括锌分族。
过渡元素⼏乎都是熔点⾼、导热导电性好、硬度⼤、⽐重⼤的典型⾦属元素;⼤多数都能溶于⽆机酸;可呈多种氧化态,易形成配位化合物,离⼦和化合物⼤多数都有⾊,易形成顺磁性化合物。
表8-1 过渡元素在周期表中的位置过渡元素的原⼦化焓具有相同的变化趋势,因⽽其熔点和升华热从左到右逐渐升⾼,在第6、7族达到最⼤值,然后下降;第⼆、第三系列过渡元素⽐第⼀过渡系列元素⼤很多。
过渡元素电离能从左到右总体上逐渐增⼤,但在破坏半满和全满构型处出现电离能增⼤的点,在⽣成半满和全满构型处出现电离能减⼩的点,曲线出现折点。
因⽽过渡元素电离能随原⼦序数的变化曲线不是平滑的⽽是出现⼀些折点。
8.2 d轨道特性与过渡元素原⼦的电⼦构型d轨道⽐s、p轨道数⽬多,成键可能性增多。
(n-1)d轨道的能量与np、ns⽐较接近,是易参与成键的内层轨道。
电⼦在原⼦核外距离为r的⼀薄层球壳中出现的概率,随半径变化时的分布情况⽤概率的径向分布函数D(r)表⽰,其峰值的数⽬为(n-1)。
3d电⼦⽐同层的s、p电⼦峰的数⽬少,钻到原⼦核附近的概率⼩,能量低。
这个特点导致不同主量⼦数轨道的能级交错。
过渡⾦属价电⼦构型的通式为:(n-1)d1~9 ns1~2。
原⼦核外电⼦排布遵循能量最低原理、保⾥不相容原理和洪特规则。
L. Pauling 原⼦轨道近似能级图如下:1s; 2s 2p ; 3s 3p; 4s 3d 4p; 5s 4d 5p; 6s 4f 5d 6p ; 7s 5f 6d也有⼀些电⼦排布例外的情况,例如:Z = 24,41 ~ 46:Nb 铌4d45s1不是4d35s241W 钨 5d46s2不是4d55s142Ru 钌4d75s1不是4d65s244Rh 铑4d85s1不是4d75s245Pd 钯4d105s0 不是4d85s2468.3过渡元素的氧化态及其稳定性1.氧化性过渡⾦属元素常表现为多种氧化态,其根本原因在于内层电⼦的排布,过渡⾦属外层电⼦排布为:(n-1)d1~9 ns1~2 ,(n-1)d轨道与ns轨道能量相近,部分(n-1)d电⼦参与成键。
元素周期表中的过渡元素在化学的广袤世界里,元素周期表就像是一座神秘的宝库,而其中的过渡元素则是宝库中璀璨夺目的明珠。
过渡元素以其独特的性质和多样的用途,在化学、材料科学、生物学等众多领域发挥着至关重要的作用。
让我们先来了解一下什么是过渡元素。
过渡元素是指元素周期表中d 区的一系列元素,包括了从第 3 族到第 12 族的元素。
它们的最外层电子构型通常为(n 1)d 1 10 ns 1 2 。
这一特殊的电子构型赋予了过渡元素许多与众不同的化学性质。
过渡元素的一个显著特点是它们具有多种氧化态。
这是因为其 d 轨道上的电子可以参与成键,并且在不同的条件下,d 轨道上电子的得失相对较为容易。
比如铁元素,常见的氧化态有+2 价和+3 价;锰元素则有+2、+4、+6、+7 等多种氧化态。
这种多氧化态的特性使得过渡元素在化学反应中表现出丰富的化学行为。
由于存在未充满的 d 轨道,过渡元素常常形成配合物。
配合物是由中心原子或离子与围绕它的一组分子或离子(称为配体)通过配位键结合而成的化合物。
例如,铜离子可以与氨分子形成深蓝色的四氨合铜离子Cu(NH 3 ) 4 2+ 。
这些配合物在生物体内也具有重要意义,例如血红蛋白中的铁离子与卟啉环形成的配合物,能够实现氧气的运输。
过渡元素的物理性质也颇具特色。
它们大多具有较高的熔点和沸点,这是由于过渡元素原子之间存在较强的金属键。
此外,过渡元素的金属往往具有良好的导电性、导热性和延展性。
在实际应用中,过渡元素的身影无处不在。
在催化领域,过渡元素可谓是“明星选手”。
许多重要的化学反应都需要催化剂来加速反应进程,而过渡金属及其化合物常常充当着这一关键角色。
例如,在工业生产中,铂、钯等过渡金属常用于催化加氢反应;在汽车尾气处理中,铂和铑等元素的催化剂能够将有害气体转化为无害物质。
材料科学中,过渡元素也功不可没。
钛合金由于其高强度、低密度和良好的耐腐蚀性,被广泛应用于航空航天领域;不锈钢中加入铬、镍等过渡元素,大大提高了其抗腐蚀性能。
化学中的过渡元素
过渡元素是化学元素周期表中3到12族元素的总称,它们在化学性质上表现
出许多独特的特征。
过渡元素在化学反应中常常扮演催化剂的角色,对催化反应具有重要影响。
在自然界中,过渡元素广泛存在于矿物、岩石和生物体系中。
过渡元素的特性
1.电子结构复杂:过渡元素的原子内电子结构相对较为复杂,其中的
电子填充到d轨道中,形成不同的电子排布。
2.多价态:过渡元素常常呈现不同的氧化态,由于d轨道的电子容易
失去或获得,使其能在不同的氧化态之间转变。
3.催化活性:过渡元素常常表现出良好的催化活性,对于许多化学反
应中的反应速率有显著影响。
过渡元素的应用
1.合金制备:过渡元素常用于合金的制备中,如钛合金、钨合金等,
合金常常具有优良的机械性能和耐高温性能。
2.催化剂:过渡元素广泛应用于化学工业中的催化剂制备,如铂、钯、
铁等元素在氢化反应、氧化反应中发挥着重要作用。
3.生物体系:过渡元素在生物体系中也扮演着重要角色,如铁元素在
血液中的氧气运输、锌元素在酶活性中的作用等。
过渡元素的周期表分布
过渡元素在周期表中主要分布在3到12族之间,包括铁系、铬系、锰系、镍
系等,它们的物理化学性质各有不同,但都具有过渡元素的共同特征。
总之,过渡元素在化学中扮演着重要角色,其多样的化学性质和广泛的应用使
其成为化学领域中不可或缺的一部分。
希望通过对过渡元素的研究和应用,能够推动化学技术的发展和创新。
过渡元素的名词解释过渡元素,也称为过渡金属,是化学元素周期表中的一部分。
它们位于周期表的中间,处于主族元素和稀有气体之间。
过渡元素的特征是具有多种化学价态,并且具有良好的热和电导性能。
本文将通过对过渡元素的性质和应用的介绍,来深入解释这一概念。
1. 过渡元素的性质过渡元素具有许多独特的性质,使它们在化学和物理领域中具有广泛的应用。
首先,过渡元素的电子配置具有特殊性。
它们的电子填充在d轨道中,因此能够容纳更多的电子。
这也是为什么过渡金属能够形成多个氧化态的原因之一。
正因为这种电子配置的特殊性,过渡元素之间的相互作用和混杂非常复杂,导致它们具有丰富的化学性质。
其次,过渡元素的离子半径逐渐减小。
在周期表中,随着元素的原子序数的增加,过渡金属离子的半径逐渐减小。
这一性质使得过渡元素可以形成复杂的配合物,与其他离子或分子进行配位反应。
这也是过渡金属在催化剂和生物学中广泛应用的原因之一。
另外,由于过渡元素在周期表中的位置接近稀有气体,因此具有稳定的电子云分布和较高的原子核电荷。
这使得过渡元素具有良好的热和电导性能,并且能够形成稳定的化合物。
例如,许多过渡金属是良好的催化剂,它们能够加速化学反应的速率,提高产率和选择性。
2. 过渡元素的应用过渡元素在各个领域具有广泛的应用。
以下将介绍几个重要的领域。
首先是催化剂领域。
过渡金属催化剂被广泛应用于化学反应中。
在催化剂作用下,化学反应的速率可以被显著提高,反应条件也变得更加温和。
许多工业生产中的重要反应都依赖于过渡金属催化剂,如加氢反应、氧化反应和聚合反应等。
其次是生物学领域。
许多生物体内的重要酶活性中心含有过渡金属。
例如,血红蛋白中的铁离子能够与氧气结合,用于氧气的运输;叶绿素中的镁离子参与光合作用过程。
这些过渡金属离子在生物学中起着关键的作用,保证了生物体正常的新陈代谢和生命活动。
此外,过渡元素还被广泛应用于材料科学和电子工程领域。
过渡金属的合金和化合物具有良好的热和电导性能,使它们成为制造高温材料和半导体器件的重要原料。