过渡元素(3)
- 格式:ppt
- 大小:157.00 KB
- 文档页数:19
过渡元素的结构特点与基本性质元素周期表中第四、五、六七周期元素中,第III B-VIII 族,共25种元素,统称为过 渡元素。
过渡元素的单质都是金属,所以也称为过渡金属元素。
见表16.1.表16.1过渡金属元素(d 区元素共25种)周期'族 III B IV B V B VI B VII B VIII 四 Sc Ti V Cr Mn Fe Co Ni 五 Y Zr Nb Mo Tc Ru Rh Pd 八 La Hf Ta wRe Os lr Pt 七Ac过渡金属元素属于III V III 族,d 区,外层电子排布为(n-l)d 1-9 ns 1-2 (Pd, 4d 105s 。
,是一种例外的电子排布)。
翎系、铜系的元素的电子排布,增加的电子填入(n-2)f 亚层,例如:57La 4f°5d 16s 2, 在结构上,它们最外层二个电子层都是未充满的,因此在元素周期表的划分上不属于过渡 金属元素,而属于内过渡元素。
也称之为翎系、钢系元素。
翎系 57La 〜71Lu (15 种元素) 4f°-145d°-1 6s 2铜系 89Ac~103Lr 镑(15 种元素)5f 。
或6^-17s 216.1.1价电子构型过渡金属价电子构型的通式为:(n-l)dinsf原子核外电子排布遵循能量最低原理、保里不相容原理和洪特规则。
L. Pauling 原子轨 道近似能级图如下:Is; 2s 2p ; 3s 3p; 4s 3d 4p; 5s 4d 5p: 6s 4f 5d 6p ; 7s 5f 6d有一些电子排布例外的情况,例如:Z=24, 41 -46:不是4d 35s 2不是4d 55s 1不是4d 85s 2真化态,其根本原因在于内层电子的排布,过渡金属外层 ■l)d 轨道与ns 轨道能量相近,部分(n-l)d 电子参与成键。
+2, +3,+4, +6, +7. ,+3, +6.的族相等,最高氧化态二所处的族数s 2Mn +7 VII SdMs 1但Mil 族:多数最高氧化态小于其族数,是因为随着有效核电荷的增加(ZT),不是所有 (n-l)d 电子都参与成键。
第1篇一、实验目的1. 熟悉过渡元素的性质及其在化学和工业中的应用。
2. 掌握过渡元素的一些典型实验操作。
3. 通过实验探究,加深对过渡元素知识的理解和应用。
二、实验原理过渡元素位于元素周期表的d区,具有独特的性质,如多种氧化态、较高的熔点和硬度、催化性能等。
这些性质使得过渡元素在化学和工业中具有广泛的应用。
三、实验仪器与试剂1. 仪器:试管、酒精灯、铁架台、烧杯、滴管、镊子、移液管等。
2. 试剂:FeCl3溶液、KSCN溶液、K4[Fe(CN)6]溶液、HCl、H2SO4、HNO3、CuSO4溶液、NaOH溶液、苯、乙醇等。
四、实验内容1. 过渡元素的氧化还原性质(1)实验原理:利用FeCl3溶液与KSCN溶液的反应,观察血红色的Fe(SCN)3生成,说明Fe3+具有氧化性。
(2)实验步骤:取一支试管,加入少量FeCl3溶液,滴加KSCN溶液,观察现象。
(3)实验现象:溶液变为血红色。
(4)实验结论:Fe3+具有氧化性。
2. 过渡元素的配位性质(1)实验原理:利用K4[Fe(CN)6]溶液与FeCl3溶液的反应,观察普鲁士蓝的生成,说明Fe3+与[Fe(CN)6]4-形成配位化合物。
(2)实验步骤:取一支试管,加入少量FeCl3溶液,滴加K4[Fe(CN)6]溶液,观察现象。
(3)实验现象:溶液变为蓝色。
(4)实验结论:Fe3+与[Fe(CN)6]4-形成配位化合物。
3. 过渡元素的催化性质(1)实验原理:利用CuSO4溶液作为催化剂,观察苯与乙醇在CuSO4催化下的反应,说明Cu2+具有催化作用。
(2)实验步骤:取一支试管,加入少量苯和乙醇,滴加CuSO4溶液,加热,观察现象。
(3)实验现象:溶液变为蓝色,且有气体产生。
(4)实验结论:Cu2+具有催化作用。
4. 过渡元素在工业中的应用(1)实验原理:利用FeCl3溶液作为印染工业的染料。
(2)实验步骤:取一支试管,加入少量FeCl3溶液,观察溶液颜色。
元素周期表中的过渡元素元素周期表是描述化学元素的分类和属性的重要工具。
其中,过渡元素是周期表中的一类特殊元素,具有许多独特的化学和物理性质。
本文将介绍过渡元素的定义、特点、应用以及对人类社会的重要意义。
一、过渡元素的定义和特点过渡元素是周期表中d区的元素,它们的原子结构中有不满的d电子壳层。
根据IUPAC的定义,从原子序数21(钪,Sc)到原子序数30(锌,Zn)以及从原子序数39(钇,Y)到原子序数48(银,Ag)的元素属于过渡元素。
过渡元素具有以下几个特点:1. 多种氧化态:过渡元素的d电子壳层不是完全填满的,因此它们可以容易地失去或获得电子,形成多种氧化态。
这使得过渡元素在化学反应中具有多样性和灵活性。
2. 良好的催化性能:由于其电子结构的特殊性质,过渡元素常常表现出良好的催化活性。
它们可作为催化剂参与许多重要的化学反应,促进反应速率和选择性。
3. 彩色化合物:过渡元素离子在溶液中或固体中具有吸收和发射特定波长光谱的能力,因此它们通常形成彩色的化合物。
这也是过渡元素被应用于颜料、染料和激光材料等领域的原因之一。
4. 高熔点和密度:大多数过渡元素具有较高的熔点和相对密度。
这与它们的原子结构和离子半径有关,使得过渡元素在高温和高压条件下具有许多特殊的物理性质。
5. 磁性: 过渡金属元素中的许多具有未配对的d电子,这使得它们具有磁性。
这些元素在物理和材料科学中的磁学研究中非常重要。
二、过渡元素的应用过渡元素在许多领域都有广泛的应用,下面是一些重要的应用领域:1. 工业催化剂:过渡金属催化剂在化学工业中广泛应用,用于促进氢气合成、石油加工、氨的合成和环保领域。
2. 电子材料:许多过渡金属元素具有优异的电导率、热导率和磁性。
它们被广泛应用于电子、计算机、通信和数据存储等领域。
3. 生物学:过渡金属离子在生物学过程中发挥关键作用。
例如,铁在血红蛋白和细胞色素中起到氧气运输的重要作用。
4. 颜料和染料:由于过渡元素形成彩色的化合物,它们被广泛用于颜料、染料和陶瓷等领域,为我们的生活增添了色彩。
元素周期表中的过渡元素元素周期表是化学中一张重要的“地图”,该表按照化学元素的原子序数,显示了各元素的基本信息和特性。
其中,过渡元素是周期表中的一类重要元素,具有特殊的电子排布和化学性质。
本文将从过渡元素的定义、周期表中的位置、特性以及应用等方面进行探讨。
一、过渡元素的定义过渡元素是指周期表中d区的元素,它们的d轨道电子不满足“2n^2”原则。
具体来说,过渡元素的外层电子排布为(n-1)d^1-10ns^1-2,其中n为外层电子壳层的主量子数。
过渡元素特有的电子排布使其具有独特的物理和化学性质。
二、周期表中的过渡元素过渡元素主要分布在周期表的d区,从第3周期开始,一直延伸到第7周期。
常见的过渡元素包括钛(Ti)、铁(Fe)、铜(Cu)、银(Ag)等,共有38个元素。
在周期表中,它们有着相似的电子排布和共同的化学性质。
三、过渡元素的特性1. 高熔点和高密度:过渡元素具有较高的熔点和密度,这归功于它们结构中复杂的d电子排布和较强的金属键。
2. 多样的氧化态:过渡元素的d电子容易参与化学反应,具有多样的氧化态。
例如,铁可以呈现+2、+3和+6等多种氧化态。
3. 彩色化合物:过渡元素的d电子能级跃迁引起了它们的彩色性质,使得许多过渡金属化合物呈现出各种各样的颜色。
4. 优良的催化性能:过渡元素广泛应用于催化反应中,其复杂的电子结构和多样的氧化态使其具有较强的催化活性和选择性。
四、过渡元素的应用1. 金属合金:许多金属合金中含有过渡元素,通过调节过渡元素的含量和种类,可以改变合金的硬度、强度和导电性等性质。
2. 催化剂:过渡元素广泛应用于化工和能源领域的催化反应中,如催化剂的合成、汽车尾气净化等。
3. 生物学:一些过渡元素在生物学中发挥重要的作用,如铁在血红蛋白中的载氧功能、锌在酶催化中的作用等。
4. 电子行业:许多过渡金属元素在电子行业中具有重要的应用,如铜用于导线、钛用于制造电池等。
综上所述,过渡元素是周期表中一类特殊的元素,具有独特的电子排布和化学性质。
元素周期表中的过渡元素元素周期表是化学家们用来组织和分类元素的基本工具。
其中,过渡元素是周期表中一个重要的类别,它们在化学和物理性质上都有着独特的特点。
本文将介绍过渡元素的概念、特性以及它们在日常生活中的应用。
一、过渡元素的概念元素周期表是按照原子核中的质子数(即原子序数)递增的顺序排列的。
而过渡元素是指周期表中的d区元素,这些元素具有不完全填充的d电子层。
具体来说,它们的最外层电子结构可表示为(n-1)d(n-2)fnp,其中n代表能级,np代表填充的外层电子。
过渡元素包括3d系、4d系、5d系和6d系,分别位于周期表的第3至12组、第4至12组、第5至12组和第6至12组。
由于它们的外层电子结构不同,导致了它们之间的化学特性差异。
二、过渡元素的特性1. 化学性质:过渡元素在化学反应中通常表现出多价性。
由于d电子的相对能量较高,容易参与化学反应,并能形成稳定的离子化合物。
此外,由于外层电子的分布情况不同,过渡元素在形成氧化物时可能会形成不同的氧化态,这也是其多价性的表现。
2. 金属性质:过渡元素大多数都是金属,具有良好的导电性和导热性。
此外,它们还具有韧性、延展性和磁性等金属特性。
3. 催化性质:许多过渡元素、尤其是过渡金属,具有良好的催化活性。
它们可以通过吸附、解离或转移电子等方式参与化学反应,从而降低反应活化能,加速反应速率。
4. 彩色离子:过渡元素离子在溶液中呈现出丰富的颜色。
这是由于过渡元素离子的d电子能级间的跃迁所引起的。
三、过渡元素的应用1. 催化剂:由于过渡金属的催化活性,它们被广泛应用于化学工业中的催化反应过程,如重要的工业过程氨合成、有机合成和汽车尾气催化转化等。
2. 电池材料:过渡金属在电池材料中具有重要作用。
例如,锂电池中的过渡金属氧化物可用作正极材料。
3. 金属合金:过渡金属常用于制备各种金属合金,如不锈钢、合金钢等。
这些合金通常具有较高的强度和耐腐蚀性能。
4. 彩色玻璃和陶瓷:某些过渡金属元素可以通过调节其氧化态来改变颜色。
元素周期表中的过渡元素元素周期表是化学中最为重要的工具之一,它按照元素的原子序数排列,将各种元素分类并展示其基本性质。
其中,过渡元素是元素周期表中的一个重要分类。
本文将对过渡元素进行详细的介绍和解析。
一、什么是过渡元素过渡元素,又称过渡金属元素,是指元素周期表中位于d区的元素。
具体来说,它们位于周期表的第4至7周期,并且填充d轨道的电子数量从1至10,即d1至d10。
过渡元素具有一些特殊的性质,使得它们在化学反应和催化过程中起到重要的作用。
二、过渡元素的特性和性质1. 原子结构和电子配置过渡元素的原子结构是它们特殊性质的基础。
由于过渡元素具有填充d轨道的电子,其电子配置比较复杂。
以铁(Fe)为例,其电子配置为 [Ar] 3d^6 4s^2。
可以看出,过渡元素的电子配置中包含了未填满的d轨道和填满的s轨道。
2. 多种化合价和化合物形成过渡元素常常能够形成多种化合价和化合物。
这是因为过渡元素的d轨道中的电子容易发生配位反应,形成不同化合物的结构。
以铜(Cu)为例,它可以形成Cu+和Cu2+两种离子,分别与不同的配体形成多种不同的配合物。
3. 颜色和催化性能过渡元素及其化合物常常具有鲜艳的颜色,这是由于它们的d轨道电子发生跃迁所致。
这种特性使得过渡元素被广泛应用在染料、颜料和催化剂等领域。
例如,钛(Ti)被广泛用于催化剂制备中,而铬(Cr)则用于制造不锈钢。
4. 磁性和电导性由于过渡元素具有未填充的d轨道电子,它们常常表现出良好的磁性和电导性。
例如,铁(Fe)和钴(Co)是常见的磁性材料,可以用于制造磁铁和磁带。
铜(Cu)和银(Ag)则是良好的电导体,广泛用于导线和电路中。
三、过渡元素的应用1. 催化剂过渡元素及其化合物在催化剂制备中具有重要的应用。
催化剂可以加速化学反应速率,降低反应温度和能源消耗。
铂(Pt)和钯(Pd)常被用作催化剂,例如在汽车尾气净化中,它们能将有害气体转化为无害物质。
2. 电池和电子器件过渡元素在电池和电子器件中也发挥着重要的作用。