函数项级数的一致收敛
- 格式:pdf
- 大小:185.52 KB
- 文档页数:9
1.函数项级数定义定义 设(){}nu x 是定义在数集E 上的一个函数列表达式:()()()12......n u x u x u x ++++ x E ∈ (1)称为定义在E 上的函数项级数,简称为函数级数.记作为1()nn ux ∞=∑或()n u x ∑.1()()nn k k S x u x ==∑称为函数项级数(1)的部分和函数列.若0x E ∈函数项级数: ()()()10200......n u x u x u x ++++ (2) 收敛,即部分和001()()nn k k S x u x ==∑,当n →∞时,极限存在,则称级数(1)在点0x 收敛,0x 称为收敛点.级数(1)在D 上的每一点x 与其所对应的数项级数(2)的和()S x 构成一个定义在D 上的函数称为级数(1)的和函数,即lim ()()n n S x S x →∞=.2.函数项级数一致收敛的几种判别法判别法1 (函数项级数一致收敛的定义)设函数级数()1n n u x ∞=∑在区间D 收敛于和函数()S x ,若0,,,N N n N x D ε+∀>∃∈∀>∀∈有:()()()n n S x S x R x ε-=< 则称函数级数()1n n u x ∞=∑在区间D 上一致收敛或一致收于和函数()Sx .例1 证明函数项级数nn x∞=∑在区间 []1,1δδ-+-(其中01δ<<)一致收敛.证明 ∀()0,1x ∈有01()1knnn k x S x x x =-==-∑.1()lim ()1n n S x S x x→∞==-. 11()()()1111nn nn n x x x S x S x R x x x x x-∴-==-==----. 对∀[]1,1x δδ∈-+-,对∀ε>要使不等式(1)()()()1nnn n xS x S x R x xδεδ--==≤<-成立.从而要不等式(1)nδεδ-<解得ln ln(1)n εδδ>-.取ln ln(1)N εδδ⎡⎤=⎢⎥-⎣⎦.于是∀0ε>,存在ln ln(1)N N εδδ+⎡⎤=∈⎢⎥-⎣⎦,∀n N >∀[]1,1x δδ∈-+-有:()()()n n S x S x R x ε-=<成立.所以函数项级数nn x∞=∑在区间[]1,1δδ-+-(其中01δ<<)一致收敛.非一致收敛的定义设函数项级数()1n n u x ∞=∑在区间I 非一致收敛于和函数()S x ,若∀0oε>,∀N N +∈,0,o n N x I ∃>∃∈有:000()()n S x S x ε-≥成立.则称函数项级数()1n n u x ∞=∑在区间I 上非一致收敛或非一致收敛于()S x .例2 证明函数项级数nn x∞=∑在区间 ()1,1-非一致收敛.证明 01ε∃=,∀N N +∈,()00111,1x n ∃=-∈-有: 000000001(1)1()()()(1)11n n n n n S x S x R x n n n --===-≥ 00000111lim(1)(1)1n n n n N n n e n +→∞⎛⎫-=∃∈-≥ ⎪⎝⎭所以,使.即函数项级数0nn x∞=∑在()1,1-非一致收敛.函数项级数一致收敛的几何意义函数项级数()1n n u x ∞=∑在区间I 一致收敛于()S x 的几何意义是,不论给定的以曲线()()S x S x εε+-与为边界的带形区域怎样窄,总存在正整数N (通用的N ),n N ∀>,任意一个部分和()n S x 的图像都位于这个带形区间内(如图1).若函数项级数在某个区间不存在通用的N ,就是非一致收敛.判别法2 (确界判别法)函数项级数()1n n u x ∞=∑在数集D 上一致收敛于()S x 的充要条件:limsup ()limsup ()()0n n n n x Dx DR x S x S x →∞→∞∈∈=-=.证明 (⇒) 已知函数项级数()1n n u x ∞=∑在区间D 一致收敛于()S x .即0,,,N N n N x D ε+∀>∃∈∀>∀∈有: ()()n S x S x ε-<.从而()()sup n x DS x S x ε∈-≤,即limsup ()()0n n x DS x S x →∞∈-=. (⇐)已知limsup ()()0n n x DS x S x →∞∈-=,即0,,,N N n N x Dε+∀>∃∈∀>∀∈有()()sup n x DS x S x ε∈-<.从而x D ∀∈有()()n S x S x ε-<.即函数项级数()1n n u x ∞=∑在区间D 上一致收敛于()S x .例3 证明 函数项级数()()111n x n x n ∞=+++∑在()0,+∞内一致收敛.证明 ()()()111nn k S x x k x k ==+++∑1111n k x kx k =⎛⎫=- ⎪+++⎝⎭∑11111111...122311x x x x x n x n x n x n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪+++++-++++⎝⎭⎝⎭⎝⎭⎝⎭1111x x n =-+++; ()0,x ∈+∞. ()()111lim lim111n n n S x S x x x n x →∞→∞==-=++++. 1lim sup ()()lim sup01n n n x Dx DS x S x x n →∞→∞∈∈∴-==++.所以函数级数()()111n x n x n ∞=+++∑在()0,+∞内一致收敛. 判别法3 (柯西一致收敛准则)函数级数()1n n u x ∞=∑在区间I 一致收敛0,,,,N N n N p N x I ε++⇔∀>∃∈∀>∀∈∀∈有:()()()12...n n n p u x u x u x ε++++++<.证明 必要性()⇒已知函数级数()1n n u x ∞=∑在区间I 一致收敛.设其和函数是()S x ,即0,,,,N N n N p N x I ε++∀>∃∈∀>∀∈∀∈有()()n S x S x ε-<也有()()n p S x S x ε+-<.于是()()()()12()n n n p n p n u x u x u x S x S x +++++++=-()()()()n p n S x S x S x S x +=-+-()()()()2n p n S x S x S x S x εεε+≤-+-<+=.充分性()⇐:已知0,,,,N N n N p N x I ε++∀>∃∈∀>∀∈∀∈,有:()()()()12()n n n p n p n u x u x u x S x S x ε+++++++=-<所以当P →+∞时上述不等式有:()()()n n S x S x R x ε-=≤即函数项级数()1n n u x ∞=∑在区间I 一致收敛.例4 讨论函数项级数111n n n x x n n +∞=⎛⎫- ⎪+⎝⎭∑在区间[]1,1-的一致收敛性. 解 应用柯西一致收敛准则[]1,1x ∀∈-即1,0x ε≤∀>,要使不等式()()12231223n n n n n p n x x x x S x S x n n n n +++++⎛⎫⎛⎫-=-+- ⎪ ⎪++++⎝⎭⎝⎭11n p n p x x n p n p ++-⎛⎫++- ⎪++-⎝⎭11111212n n p n n p x x x x n n n n ++++++=-≤+++++ 112111n n p n ε≤+<<++++ 成立,从不等式21n ε<+解得21n ε>-取21N ε⎡⎤=-⎢⎥⎣⎦于是0,ε∀>21,N ε⎡⎤∃=-⎢⎥⎣⎦[],,1,1n N p N x +∀>∀∈∀∈-,有()()n p n S x S x ε+-<,即函数级数111n n n x x nn +∞=⎛⎫- ⎪+⎝⎭∑在区间[]1,1-一致收敛.在这个例子中我们用确界判别法来也可以判断它的收敛性方法2 122311()()()()...()12231k k n n nn k x x x x x x x S x x kk n n ++=⎛⎫=-=-+-++- ⎪++⎝⎭∑ 11n x x n +=-+.lim ()()n n S x S x x →∞==故[][]11,11,11lim sup ()()lim suplim 011n n n n n x x x S x S x n n +→∞→∞→∞∈-∈--===++. 所以函数级数111n n n x x nn +∞=⎛⎫- ⎪+⎝⎭∑在区间[]1,1-一致收敛. 判别法4 (M 判别法)有函数项级数()1n n u x ∞=∑,I 是区间,若存在收敛的正项级数1,,nn an N ∞+=∀∈∑x I ∀∈,有()n n u x a ≤,则函数级数()1n n u x ∞=∑在区间I 一致收敛.证明 正项级数1nn a∞=∑收敛根据柯西一致收敛准则,即0,,,N N n N ε+∀>∃∈∀>p N +∀∈,有 12n n n p a a a ε+++++<由已知条件,x I ∀∈,有()()()12n n n p u x u x u x ++++++ ()()()12n n n p u x u x u x +++≤+++12n n n p a a a ε+++≤+++<即函数级数()1n n u x ∞=∑在区间I 一致收敛.例5 判断函数项级数1(1)!nn x n ∞=-∑在[],x r r ∈-上是否一致收敛.解∀[],x r r ∈-,有(1)!(1)!n nx r n n ≤--. 令(1)!n n r a n =-,则11(1)!lim lim lim 0!n n n n n n na r n ra n r n ++→∞→∞→∞-===. 所以(1)!n r n -∑是收敛.由M 判别法函数项级数1(1)!nn x n ∞=-∑在[],x r r ∈-上一致收敛.例6 证明4211n xn x ∞++∑在R 一致收敛. 证:x R ∀∈,有()224221210n x n x n x-+=-≥所以24221n x n x ≤+,即242211n x n x ≤+.故242422212111122n x n x n x n n =⋅≤++已知优级级数2112n n ∞=⎛⎫⎪⎝⎭∑收敛,根据M 判别法.函数级数4211n xn x ∞++∑在R 中一致收敛. 注 M 判别法是判别函数项级数一致收敛的很简使得判别法.但是这个方法有很大的局限性,凡能用M 判别法函数项级数必是一致收敛,此函数项级数必然是绝对收敛;如果函数项级数是一致收敛,而非绝对收敛,即条件收敛,那么就不能使用M 判别法.判别法5 (狄利克雷判别法)若级数()()1nnn a x b x ∞=∑满足如下条件:(1)函数列(){}n a x 对每个x I ∈是单调的且在区间I 一致收敛于0. (2)函数级数()1n n b x ∞=∑的部分和函数列(){}n B x 在区间I 一致有界,则函数级数()()1nnn a x b x ∞=∑在I 一致收敛.证明 已知函数列(){}n a x 一致收敛于0即0,N N ε+∀>∃∈,n N ∀>,x I ∀∈有1n a ε+<.又已知函数级数()1n n b x ∞=∑的部分和函数列(){}n B x 在区间I 一致有界。
第三节 函数项级数的一致收敛性本节将讨论函数项级数有关性质。
定义 1 设 )(1x u ,)(2x u ,……,)(x u n ,……,是集合E 上的函数列,我们称形为)(1x u +)(2x u +……+)(x u n +……为E 上的函数项级数,简记为∑∞=1)(n nx u。
其中)(x u n 称为第n 项.)(x u k +)(1x u k ++……+)(x u n +……也记为∑∞=kn n x u )(. 记号中n 可以用其它字母代之.同研究常数项级数一样,我们类似可以定义其收敛性。
定义 2 设∑∞=1)(n nx u是集合E 上的函数项级数,记∑==ni i n x u x S 1)()(=)(1x u +)(2x u +……+)(x u n ,它称为级数∑∞=1)(n nx u的部分和函数(严格地说是前n 项部分和函数). {})(x S n 称为∑∞=1)(n nx u的部分和函数列。
如果{})(x S n 在0x 点收敛,我们也说∑∞=1)(n nx u在0x 点收敛或称0x 为该级数的收敛点。
如果|)(|1∑∞=n nx u在0x 点收敛,我们称∑∞=1)(n n x u 在0x 点绝对收敛。
非常容易证明绝对收敛一定收敛。
{})(x S n 的收敛域也称为该级数的收敛域。
如果{})(x S n 在0x 点不收敛,我们说∑∞=1)(n nx u在0x 点发散。
如果{})(x S n 在D 上点态收敛于)(x S ,我们称∑∞=1)(n nx u在D 上点态收敛于)(x S . )(x S 称为该级数的的和函数。
)()()(x S x S x R n n -=称为该级数关于前n 项部分和的余项.{})(x R n 称为该级数的余项函数列.如果{})(x S n 在D 上一致收敛于)(x S ,我们称∑∞=1)(n nx u在D 上一致收敛于)(x S ,或∑∞=1)(n nx u在D 上一致收敛. 如果{})(x S n 在D 上内闭一致收敛于)(x S ,我们称∑∞=1)(n n x u 在D 上内闭一致收敛.用N -ε的进行叙述将是: 设∑∞=1)(n nx u是D 上函数项级数,)(x S 是D 上函数。
函数项级数一致收敛的定义函数项级数指的是形如$\sum_{n=1}^{\infty} f_n(x)$的无穷级数,其中$f_n(x)$表示一个与自变量$x$有关的函数序列。
一个函数项级数的一致收敛性是指当自变量$x$在其中一个区间$I$上时,函数项级数的部分和函数序列$\{S(x,N)\}$在该区间上一致收敛。
具体地说,给定函数项级数$\sum_{n=1}^{\infty} f_n(x)$,它的部分和函数序列定义为$S(x,N)=\sum_{n=1}^{N} f_n(x)$。
那么函数项级数的一致收敛定义如下:对于任意给定的正数$\varepsilon$,存在一个正整数$N_0$,当$n>N_0$时,对于任意$x\in I$,都有$,S(x,n)-S(x,N_0),<\varepsilon$。
换句话说,对于任意的正数$\varepsilon$,存在一个正整数$N_0$,当$n>N_0$时,级数的部分和与部分和函数之间的距离都小于$\varepsilon$,也就是说,在该区间$I$上,级数的每一项与级数的和之间的误差都可以无限接近于零。
要理解函数项级数一致收敛的定义,我们可以通过与其他类型的收敛进行比较。
首先,如果函数项级数在其中一点$x_0$处点态收敛,即级数的部分和序列$\{S(x_0,N)\}$收敛到其中一实数$L$,但这个$L$可能依赖于$x_0$,则我们无法将这个级数称为一致收敛的。
因为一致收敛要求对于任意的$x\in I$,部分和函数序列都收敛到同一个极限,也就是说,部分和函数序列不依赖于$x$。
类似地,如果部分和函数序列在其中一个区间上都是逐点收敛的,并且对于每个$x$都收敛到不同的极限,则也不能称为一致收敛。
一致收敛的概念可以看作是逐点收敛的一个强化版。
因为在逐点收敛中,对于每个$x\in I$,都要存在一个正整数$N_0(x)$使得当$n>N_0(x)$时,$,S(x,n)-S(x,N_0(x)),<\varepsilon$,这样的$N_0(x)$依赖于$x$。
第七节 函数项级数的一致收敛性内容分布图示★ 引例(讲义例1) ★ 一致收敛的概念★ 例2 ★ 例3 ★ 魏尔斯特拉斯判别法 ★ 例4 ★ 例5 一致收敛级数的基本性质 ★ 定理2★ 定理3★ 定理4幂级数的一致收敛性★ 定理5★ 定理6 ★ 内容小结★ 课堂练习★ 习题11—7 ★ 返回讲解注意:一、 一致收敛的概念:函数项级数在收敛域I 上收敛于和)(x s ,指的是它在I 上的每一点都收敛,即对任意给定的0>ε及收敛域上的每一点x ,总相应地存在自然数),(x N ε,使 得当N n >时,恒有ε<-|)()(|x s x s n .一般来说,这里的N 不仅与ε有关,而且与x 也有关. 如果对某个函数项级数能够找到这样的一个只与ε有关而不依赖于x 的自然数N ,则当N n >时,不等式ε<-|)()(|x s x s n 对于区间I 上每一点都成立,这类函数项级数就是所谓的一致收敛的级数.定义1 设函数项级数∑∞=1)(n n x u 在区间I 上收敛于和函数)(x s , 如果对任意给定的0>ε,都存在着一个与x 无关的自然数N , 使得当N n >时, 对区间I 上的一切x 恒有ε<-=|)()(||)(|x s x s x r n n ,则称该函数项级数在区间I 上一致收敛于和)(x s ,此时也称函数序列)}({x s n 在区间I 上一致收敛于)(x s .二、定理1(魏尔斯特拉斯判别法)如果函数项级数∑∞=1)(n n x u 在区间I 上满足条件:(1));,3,2,1(|)(| =≤n a x u n n (2)正项级数∑∞=1n n a 收敛.则该函数项级数在区间I 上一致收敛. 三、 一致收敛级数的基本性质定理2 如果级数∑∞=1)(n n x u 的各项)(x u n 在区间],[b a 上都连续,且级数在区间],[b a 上一致收敛于),(x s 则)(x s 在],[b a 上也连续.定理3 设)(x u n ),3,2,1( =n 在],[b a 上连续,且级数∑∞=1)(n n x u 在区间],[b a 上一致收敛于)(x s ,则⎰xx dx x s 0)(存在,且级数∑∞=1)(n n x u 在],[b a 上可以逐项积分,即])([])([)(11∑⎰⎰∑⎰∞=∞===n xx n x x n n xxdx x u dx x u dx x s (7.2)其中,0b x x a ≤<≤ 且上式右端的级数在],[b a 上也一致收敛.定理4 如果级数∑∞=1)(n n x u 在区间],[b a 上收敛于和)(x s , 它的各项)(x u n 都有连续导数)(x u n',并且级数∑∞='1)(n nx u 在],[b a 上一致收敛,则级数∑∞=1)(n n x u 在],[b a 上也一致收敛,且可 逐项求导,即有∑∑∞=∞='='⎪⎪⎭⎫⎝⎛='11)()()(n nn n x u x u x s (7.3) 四、 幂级数的一致收敛性定理5 如果幂级数∑∞=1n n n x a 的收敛半径为,0>R 则此级数在),(R R -内的任一闭区间],[b a 上一致收敛.定理6 如果幂级数∑∞=1n n n x a 的收敛半径为,0>R 则其和函数)(x s 在),(R R -内可导,且有逐项求导公式,)(111∑∑∞=-∞=='⎪⎪⎭⎫ ⎝⎛='n n n n n n x na x a x s逐项求导后所得到的幂级数与原级数有相同的收敛半径.例题选讲:一致收敛的概念例1(讲义例1)考察函数项级数+-++-+-+-)()()(1232n n x x x x x x x的和函数的连续性.本例表明,即使函数项级数的每一项都在[a , b ]上连续,并且级数在[a , b ]上收敛,但其和函数却不一定在[a , b ]上连续;同样也可举例说明,函数项级数的每一项的导数及积分所成的级数的和也不一定等于它们的和函数的导数及积分. 那么在什么条件下,我们才能够从级数每一项的连续性得出它的和函数的连续性,从级数的每一项的导数及积分所成的级数之和得出原级数的和函数的导数及积分呢? 要回答这个问题,就需要引入函数项级数的一致收敛性概念.例2(讲义例2)研究级数∑∞=+⎪⎪⎭⎫⎝⎛+-111n n n n x n x 在区间]1,1[-上的一致收敛性.例3(讲义例3)研究级数∑∞=-0)1(n n x x 在区间[0,1]上的一致收敛性.例4(讲义例4)证明级数++++22222sin 22sin 1sin nx n x x 在),(+∞-∞上一致收敛.例5(讲义例5)判别级数∑∞=+1241n x n x在),(+∞-∞上一致收敛. 课堂练习1. 研究级数+⎪⎭⎫ ⎝⎛-+-+++⎪⎭⎫ ⎝⎛+-+++111112111n x n x x x x 在区间),0[+∞上的一致收敛性.魏尔斯特拉斯(Weierstrass, Karl Wilhelm ,1815~1897)魏尔斯特拉斯德国数学家,1815年10月31日生于德国威斯特伐利亚地区的奥斯登费尔特;1897年2月19日卒于柏林。
函数项级数一致收敛性判别及应用1. 引言1.1 研究背景函数项级数是数学分析中一个重要的研究对象,它是由无穷个函数组成的无穷级数求和。
在实际的应用中,往往需要研究级数的收敛性,其中一致收敛性是一个重要的性质。
一致收敛性指的是对于每一个给定的ε>0,存在一个N,使得当n>N时,级数的部分和与其极限的差的绝对值小于ε。
函数项级数一致收敛性的研究有着重要意义,它可以帮助我们更好地理解函数序列之间的关系,从而应用到不同的数学问题中。
函数项级数的一致收敛性判别方法有多种,比较判别法和魏尔斯特拉斯判别法是常用的方法之一。
比较判别法通过比较级数与已知收敛的级数的大小关系来判断级数的收敛性,而魏尔斯特拉斯判别法则利用函数项级数中的Cauchy收敛原理来判断其收敛性。
在实际应用中,函数项级数的一致收敛性判别方法可以帮助我们解决各种数学问题,例如在微积分和数学分析中的应用。
通过深入研究函数项级数的一致收敛性,我们可以更好地理解其数学性质,为进一步的研究提供基础。
【研究背景】1.2 研究意义函数项级数是数学中重要的概念之一,它在分析学、数学物理等领域中有着广泛的应用。
研究函数项级数的一致收敛性对于深入理解这一概念的性质和特点具有重要意义。
一致收敛性是函数项级数收敛的一种较强的方式,它能够保证收敛的速度和稳定性,从而使得我们能够更好地掌握级数的性质和行为。
研究函数项级数的一致收敛性,不仅可以帮助我们更好地理解级数的收敛性质,还可以为我们解决实际问题提供有力的数学工具。
在实际应用中,我们经常会遇到需要考察函数项级数的收敛性的情况,比如在数值计算、信号处理、概率论等领域中都会涉及到函数项级数的处理。
研究函数项级数的一致收敛性具有重要的理论意义和实际应用价值。
1.3 研究目的研究目的是对函数项级数的一致收敛性进行深入探讨,通过研究不同的判别方法来确定函数项级数是否在整个定义域上一致收敛。
通过对比比较判别法和魏尔斯特拉斯判别法的优缺点,可以更好地理解和判断函数项级数的收敛性。
为什么函数项级数内闭一致收敛文章题目:探究函数项级数内闭一致收敛的原因在数学分析领域中,函数项级数内闭一致收敛是一个重要的概念。
它不仅在数学理论中有着重要的地位,也在实际问题的研究中发挥着重要作用。
本文将从函数项级数内闭一致收敛的定义和特性入手,探讨其原因,并对其在数学和科学研究中的应用进行分析。
一、函数项级数内闭一致收敛的定义和特性1. 函数项级数的定义函数项级数即由一系列函数组成的级数,形式为∑(n=1到∞)fn(x),其中每一项fn(x)都是定义在某个区间上的函数。
2. 内闭一致收敛的定义对于给定函数项级数∑(n=1到∞)fn(x),如果对任意ε>0,存在自然数N,使得当m≥n≥N时,有|∑(k=n到m)fn(x)|<ε对任意x∈E都成立,那么称该函数项级数在E上内闭一致收敛。
3. 特性函数项级数内闭一致收敛的特性包括一致收敛、极限函数连续等。
具体而言,内闭一致收敛意味着极限函数的存在,并且该极限函数在区间上连续。
二、函数项级数内闭一致收敛的原因探究在深入探究函数项级数内闭一致收敛的原因时,我们可以从以下几个方面入手:1. 函数项级数内闭一致收敛的几何解释函数项级数内闭一致收敛可以被解释为一个区间上的一致收敛。
这意味着,对于每一个ε>0,存在N,使得当m≥n≥N时,函数项级数的部分和与其极限函数之差小于ε,从而函数项级数在该区间上表现出较强的稳定性。
2. 一致收敛性质的影响一致收敛性质保证了在给定区间上的整体收敛性,这使得函数项级数的极限函数存在并且在该区间上连续。
这与点wise收敛不同,点wise收敛只能保证每个点上的收敛性,无法保证极限函数的连续性。
3. 函数项级数内闭一致收敛的充分条件内闭一致收敛的充分条件之一是Cauchy准则。
对于给定的ε>0,存在N,使得当m≥n≥N时,有|∑(k=n到m)fn(x)|<ε,这保证了函数项级数的部分和随着n的增大而趋向一个极限值,从而使得函数项级数内闭一致收敛。